SlideShare a Scribd company logo
On line selection of poles of controlled structure
based on frequency content of applied dynamic loading
National Technical University of Athens
School of Civil Engineering
Metal Structures Laboratory
Nikos Pnevmatikos, Charis Gantes
Fourth World Conference on Structural Control and Monitoring (4WCSCM)
11-13 July, 2006
San Diego, California, U.S.A.
Fourth World Conference on Structural Control and Monitoring, San Diego 2006
N.T.U.A.
2
Contents
• Control strategy based on Pole Assignment
algorithm
• Numerical Examples
• Selection of poles based on the frequency content
of the incoming dynamic load signal
Fourth World Conference on Structural Control and Monitoring, San Diego 2006
N.T.U.A.
3
Structural control
PC
Data manipulation
Control algorithm
Pole placement
sensors
Hybrid
Actuator Active
Tendons
AVSD
MR
DAMPERS Semi-Active
Control is a multidisciplinary
research area
Fourth World Conference on Structural Control and Monitoring, San Diego 2006
N.T.U.A.
5
Structural control
sensors
Real time
Fourier or
Wavelet
analysis
ω1
ωl ωh
ω2
ω3
ω
ω
ω
ωo,1
ωo,2
ξc
ωc
λc
ξc
ωc
λc
Tendons
Actuator
AVSD
MR
DAMPERS
Data manipulation
control algorithm
Pole assignment
Wire or
wireless
sensors
Fourth World Conference on Structural Control and Monitoring, San Diego 2006
N.T.U.A.
12
Selection of poles of the controlled
structure based on dynamic signal
From structure to the complex plane
2
i i i i i
λ =ζ ω jω 1-ζ
 ωi
ζi=Cosφi
λi
ωci
ζci=Cosφci
λci
2
ci ci ci ci ci
λ =ζ ω jω 1-ζ

Re
Im
Fourth World Conference on Structural Control and Monitoring, San Diego 2006
N.T.U.A.
13

e o o
ξ ω t
Im
Re
ωq
2
c c c c c
λ =ζ ω jω 1-ζ


e c c
ξ ω t
Selection of poles of the controlled
structure based on dynamic signal
e ci ci
ξ ω t
λc
ωq=ωο
ω q1…. ωqi
ap%
ωqi
ω q1
λo
ζοωο
2
o o
ω 1-ζ
2
o o o o o
λ =ζ ω jω 1-ζ

ωc
λc
λc
λc

e c c
ξ ω t
λc
From loading to the complex plane
Requirement:
Equivalent control
force from the
device
Fourth World Conference on Structural Control and Monitoring, San Diego 2006
N.T.U.A.
14
ωl ωh
Im
Re
Selection of poles of the controlled
structure based on dynamic signal
ω1
0
λ
c
λc,1
C
B
A
λο,3
λο,2
λo,1
Β’
C’
A’
ω1
ω2
ω3
ω2
ω3
ωs
ωs
ap
%
G
F
ap?,
ωs or AB ?,
ζc or BC ?
λc,3
Fourth World Conference on Structural Control and Monitoring, San Diego 2006
N.T.U.A.
16
Selection of poles of the controlled
structure based on earthquake signal
p p
p
p
a a
I
a
2
1.669 86.11 12580
125
  


Selection of ap
2
s
x x+0.9641
ω
x+0.01857
1.232 0.30
 

Selection of ωs
2
c
3385x x+4300
ζ
x+1342
7625


Selection of ζc
Fourth World Conference on Structural Control and Monitoring, San Diego 2006
N.T.U.A.
17
Selection of poles of the controlled
structure based on earthquake signal
10 20 30 40 50 60 70 80 90
10
20
30
40
50
60
70
80
90
100
ap
Ip
average
Aigio
Athens
Elcentro
Kobe
Lomaprieta
Mex
Northridge
Northridge near
Pulse
Sanfernanto
Tabas
Virginia
p p
p
p
a a
I
a
2
1.669 86.11 12580
125
  


Ag(f)
f
fi
max[Ag(f)]
apmax[Ag(f)]
Ip
Ag(f)
f
fi
max[Ag(f)]
apmax[Ag(f)]
Ip
Selection of ap
Fourth World Conference on Structural Control and Monitoring, San Diego 2006
N.T.U.A.
18
3 5 7 9 11 13 15 17 19 21 23 25
25
0
1000
2000
3000
4000
5000
6000
ωi
(rad/sec)
Fmax
ωo
ωmin
ωs1
ωs2
ωi
3 5 7 9 11 13 15 17 19 21 23 25
0
0.2
0.4
0.6
0.8
1
1.2
1.4
ωi
(rad/sec)
Umax/U
o,max
ωmin ωo
ωi
Selection of poles of the controlled
structure based on earthquake signal
2
s
x x+0.9641
ω
x+0.01857
1.232 0.30
 

Im
Re
ωs2
ωs1
λο
ωmin
Umax
ζ
ωi
λοi
Umax,i
ωs1
ωs2
ωο
Selection of ωs
Fourth World Conference on Structural Control and Monitoring, San Diego 2006
N.T.U.A.
19
ξ
ωi
λοi
Im
Re
ωs2
ωs1
λo, ωο
ωq
umax/uo,max
ωi
ω
m
i
n
1
x
Fourth World Conference on Structural Control and Monitoring, San Diego 2006
N.T.U.A.
20
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.5
0.6
0.7
0.8
0.9
1
1.1
Fmax /Fmax,i
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.5
0.6
0.7
0.8
0.9
1
1.1
ζi
Selection of poles of the controlled
structure based on earthquake signal
Im
Re
ωs2
ωs1
λο
ωmin
ζ
ωi
λοi
Umax
Umax,i
ωο
2
3385x x+4300
ξ
x+1342
7625


ζi
Selection of ζc
Fourth World Conference on Structural Control and Monitoring, San Diego 2006
N.T.U.A.
21
Flow chart of control program
pole_place_mdof_on_line.mdl
Load System Response
Kfm
Saturation
Time delay
Selection of poles.m
• FFT
• Selection of frequencies based on ap and Ιp
• Design of cycles of quake and the unsafe zone in the complex plane
• Placement of poles of the uncontrolled structure
• Selection of poles of the controlled structure base on the rules:
 If pole inside the unsafe zone put them out.
 If pole outside of the unsafe zone leave them temporarilly
 If you want more reduction give artificial damping
 If signal too small no control
• Calculate the new values of poles based on the above new position
ni =α+βi.
Control on line.m
• M, C, K
• State space formulation A, B
• Ti, ωi, ξi
• Define parameters: ap Ιp, x, No
of parts of signal.
• Define load signal
• Initial conditions
• For ith part of signal:
• Kfm=poles(A,B, n).
• Sim(pole_place_mdof_on_line)
• Keep the response and force for
this part of load.
• Update the initial conditions
with the final of the previous
part.
• Continue to the next part of load
Fourth World Conference on Structural Control and Monitoring, San Diego 2006
N.T.U.A.
22
-50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0
0
5
10
15
20
25
30
35
40
45
50
Re
Im
A
0 5 10 15
0
0.05
0.1
0.15
0.2
0.25
Frequency, Hz
Abs
acceleration,
m/sec
2
First part of signal
0 50 100 150 200 250 300 350
-4
-3
-2
-1
0
1
2
3
4
x 10
-3
time
Displacement
0 0.5 1 1.5 2 2.5 3 3.5
-5
-4
-3
-2
-1
0
1
2
3
4
5
Time, sec
Acc.
m/sec
2
Numerical examples
System:
Sdof: T=0.2s, ζ=0.05, n=2±31.35
Load:
T=0.2s , f1=5 Hz, amplitude=0.3g ,
5 parts
Control algorithm:
Pole place
w_secure=10 rad/s, amplification factor=1.1
Controlled system damping, ζ=0.95
Β
C
Fourth World Conference on Structural Control and Monitoring, San Diego 2006
N.T.U.A.
23
0 200 400 600 800 1000 1200
-8
-6
-4
-2
0
2
4
6
8
x 10
-4
time
Displacement
-80 -70 -60 -50 -40 -30 -20 -10 0
0
10
20
30
40
50
60
70
80
Re
Im
A
-80 -70 -60 -50 -40 -30 -20 -10 0
0
10
20
30
40
50
60
70
80
Re
Im
A
-80 -70 -60 -50 -40 -30 -20 -10 0
0
10
20
30
40
50
60
70
80
Re
Im
0 1 2 3 4 5 6
-4
-3
-2
-1
0
1
2
3
4
time
part
of
quake
0 5 10 15 20 25
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
Frequency, Hz
Abs
acceleration
m/sec
2
Numerical examples
0 1 2 3 4 5 6
-5
-4
-3
-2
-1
0
1
2
3
4
5
Time, sec
Acc.
m/se
2
0 1 2 3 4 5 6
-4
-3
-2
-1
0
1
2
3
4
time
part
of
quake
0 5 10 15 20 25
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
Frequency, Hz
Abs
acceleration
m/sec
2
0 200 400 600 800 1000 1200
-1.5
-1
-0.5
0
0.5
1
1.5
x 10
-3
time
Displacement
0 200 400 600 800 1000 1200
-10
-5
0
5
x 10
-4
time
Displacement
0 1 2 3 4 5 6
-4
-3
-2
-1
0
1
2
3
4
time
part
of
quake
0 5 10 15 20 25
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
Frequency, Hz
Abs
acceleration
m/sec
2
Β
C
A
Β
C
C
Fourth World Conference on Structural Control and Monitoring, San Diego 2006
N.T.U.A.
24
0 5 10 15 20 25 30
0
0.005
0.01
0.015
0.02
0.025
Frequency, Hz
Abs
acceleration
m/sec
2
0 50 100 150 200 250 300 350 400 450 500
-8
-6
-4
-2
0
2
4
x 10
-5
Time steps
Displacement
(m)
0 50 100 150 200 250 300 350 400 450 500
-1.5
-1
-0.5
0
0.5
1
1.5
x 10
-3
Time steps
Displacement
(m)
0 50 100 150 200 250 300 350 400 450 500
-3
-2
-1
0
1
2
3
x 10
-4
Time steps
Displacement
(m)
0 1000 2000 3000 4000 5000 6000 7000 8000
-4
-3
-2
-1
0
1
2
3
Time steps
Acc.
(m/sec
2
)
0 5 10 15 20 25 30
0
0.002
0.004
0.006
0.008
0.01
0.012
0.014
Frequency, Hz
Abs
acceleration
m/sec
2
0 5 10 15 20 25 30
0
0.005
0.01
0.015
0.02
0.025
Frequency, Hz
Abs
acceleration
m/sec
2
-70 -60 -50 -40 -30 -20 -10 0
0
10
20
30
40
50
60
70
Re
Im
A
C
-35 -30 -25 -20 -15 -10 -5 0
0
5
10
15
20
25
30
35
Re
Im
A
-45 -40 -35 -30 -25 -20 -15 -10 -5 0
0
5
10
15
20
25
30
35
40
45
Re
Im
A
C
B
C
Fourth World Conference on Structural Control and Monitoring, San Diego 2006
N.T.U.A.
25
0 500 1000 1500 2000 2500 3000
-0.025
-0.02
-0.015
-0.01
-0.005
0
0.005
0.01
0.015
0.02
0.025
time
Displacement
0 500 1000 1500 2000 2500 3000
-25
-20
-15
-10
-5
0
5
10
15
20
25
time
Acceleration
0 500 1000 1500 2000 2500 3000
-0.025
-0.02
-0.015
-0.01
-0.005
0
0.005
0.01
0.015
0.02
0.025
Time steps
Displacement
(m)
0 500 1000 1500 2000 2500 3000
-25
-20
-15
-10
-5
0
5
10
15
20
25
Time steps
Acceleration
(m/sec
2
0 1000 2000 3000 4000 5000 6000 7000 8000
-6
-4
-2
0
2
4
6
x 10
-3
Time steps
Displacement
(m)
Numerical examples
Sinusoidal u1 F
mm m/sec2 kN
Controlled 1.00 3.08 1002
Uncontrolled 23.90 23.81
Two
Sinusoidal
u1 F
mm m/sec2 kN
Controlled 1.10 5.04 1079
Uncontrolled 23.80 25.06
Athens 99
quake
u1 F
mm m/sec2 kN
Controlled 1.30 3.63 787
Uncontrolled 5.70 7.41
1
u
1
u
1
u
0 1000 2000 3000 4000 5000 6000 7000 8000
-6
-4
-2
0
2
4
6
8
Time steps
Acceleration
(m/sec
2
)
Fourth World Conference on Structural Control and Monitoring, San Diego 2006
N.T.U.A.
26
-60 -50 -40 -30 -20 -10 0
0
10
20
30
40
50
60
Re
Im
-60 -50 -40 -30 -20 -10 0
0
10
20
30
40
50
60
Re
-70 -60 -50 -40 -30 -20 -10 0
0
10
20
30
40
50
60
70
Re
Im
Numerical examples
System:
3 dof: mi= 50 t, ki=39000 kN/m
Load:
Athens 99, PGA=0.3g
16 parts
80% of max amplitude freq
Control algorithm:
Pole place
w_secure=25 rad/s,
Controlled and no controlled,
system damping, ζi={0.90, 0.95,0.97}
0 1000 2000 3000 4000 5000 6000 7000 8000
-4
-3
-2
-1
0
1
2
3
4
Time steps
Acc.
(m/sec
2
)
Fourth World Conference on Structural Control and Monitoring, San Diego 2006
N.T.U.A.
27
Numerical examples
1
u 2
u 3
u
u1 u2 u3 F1 F2 F3
mm m/sec2 kN
Controlled 0.70 0.90 0.8 3.30 3.48 3.39 152 162 170
Uncontrolled 22.50 26.20 31.90 6.72 7.89 10.33
0 1000 2000 3000 4000 5000 6000 7000 8000
-0.05
-0.04
-0.03
-0.02
-0.01
0
0.01
0.02
0.03
0.04
0.05
Time steps
Displacement
3rd
(m)
0 1000 2000 3000 4000 5000 6000 7000 8000
-8
-6
-4
-2
0
2
4
6
8
10
12
Time steps
Acceleration
3rd
(m/sec
2
)
0 1000 2000 3000 4000 5000 6000 7000 8000
-200
-150
-100
-50
0
50
100
150
200
Time steps
Force
(kN)
Fourth World Conference on Structural Control and Monitoring, San Diego 2006
N.T.U.A.
28
Conclusions
• On line procedure of selection of poles of the controlled
structure were proposed.
• The procedure is based on the frequency content from the
specific incoming dynamic signal and the control face wide
range of the applied signals.
• The numerical examples shows reduction to both the
displacement and the acceleration with adequate control
force.
• Pole Assignment algorithm adequate for active or semi-
active control were used.

More Related Content

PDF
KalmanForecast
PPT
PDF
Water demand forecasting for the optimal operation of large-scale water networks
PDF
Control Synthesis for Marine Vessels in Case of Limited Disturbances
PDF
Adaptive and inteligence
PDF
Haţiegan_2017_IOP_Conf._Ser.__Mater._Sci._Eng._163_012030.pdf
PDF
【潔能講堂】大型風力發電廠之發電效率分析與預測
PPTX
Calculation of efficiency for a high-resolution gamma-ray spectrometer used f...
KalmanForecast
Water demand forecasting for the optimal operation of large-scale water networks
Control Synthesis for Marine Vessels in Case of Limited Disturbances
Adaptive and inteligence
Haţiegan_2017_IOP_Conf._Ser.__Mater._Sci._Eng._163_012030.pdf
【潔能講堂】大型風力發電廠之發電效率分析與預測
Calculation of efficiency for a high-resolution gamma-ray spectrometer used f...

Similar to 4WCSCM_PRESENTATION.ppt (20)

PDF
PROPAN - Propeller Panel Code
PDF
PPT
Iasted Open Loop
PDF
First results from the full-scale prototype for the Fluorescence detector Arr...
PPTX
ONERA M6 "Defence Presentation"
PDF
Presentation for the 19th EUROSTAR Users Conference June 2011
PPTX
Particle Learning in Online Tool Wear Diagnosis and Prognosis
PDF
Btl control system-lab-manual-10 eel68
PPTX
ARIMA.pptx
PDF
Controls Based Q Measurement Report
PPTX
Presentació renovables
PPT
tracking.ppt
PDF
ICDE2006, Singapore
PDF
DSD-INT - SWAN Advanced Course - 02 - Setting up a SWAN computation
PDF
Bridge Assessment & Monitoring
PDF
Presentacion CCE_2018.pdf
PDF
2014 PV Performance Modeling Workshop: Outdoor Module Characterization Method...
PPTX
Radio active particle tracking implemnetation
PDF
SkySweeper: A High Wire Robot
PPT
Unsteady Potential Flow Calculations of Marine Propellers Using BEM
PROPAN - Propeller Panel Code
Iasted Open Loop
First results from the full-scale prototype for the Fluorescence detector Arr...
ONERA M6 "Defence Presentation"
Presentation for the 19th EUROSTAR Users Conference June 2011
Particle Learning in Online Tool Wear Diagnosis and Prognosis
Btl control system-lab-manual-10 eel68
ARIMA.pptx
Controls Based Q Measurement Report
Presentació renovables
tracking.ppt
ICDE2006, Singapore
DSD-INT - SWAN Advanced Course - 02 - Setting up a SWAN computation
Bridge Assessment & Monitoring
Presentacion CCE_2018.pdf
2014 PV Performance Modeling Workshop: Outdoor Module Characterization Method...
Radio active particle tracking implemnetation
SkySweeper: A High Wire Robot
Unsteady Potential Flow Calculations of Marine Propellers Using BEM

Recently uploaded (20)

PPTX
CH1 Production IntroductoryConcepts.pptx
PPTX
Lecture Notes Electrical Wiring System Components
PDF
R24 SURVEYING LAB MANUAL for civil enggi
PDF
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
PDF
Digital Logic Computer Design lecture notes
PPT
introduction to datamining and warehousing
PDF
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
PPTX
Foundation to blockchain - A guide to Blockchain Tech
PPT
Project quality management in manufacturing
PPTX
Artificial Intelligence
PPTX
UNIT 4 Total Quality Management .pptx
PPTX
web development for engineering and engineering
DOCX
573137875-Attendance-Management-System-original
PDF
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
PDF
Automation-in-Manufacturing-Chapter-Introduction.pdf
PDF
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
PDF
Model Code of Practice - Construction Work - 21102022 .pdf
PPTX
Safety Seminar civil to be ensured for safe working.
PDF
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
PDF
composite construction of structures.pdf
CH1 Production IntroductoryConcepts.pptx
Lecture Notes Electrical Wiring System Components
R24 SURVEYING LAB MANUAL for civil enggi
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
Digital Logic Computer Design lecture notes
introduction to datamining and warehousing
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
Foundation to blockchain - A guide to Blockchain Tech
Project quality management in manufacturing
Artificial Intelligence
UNIT 4 Total Quality Management .pptx
web development for engineering and engineering
573137875-Attendance-Management-System-original
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
Automation-in-Manufacturing-Chapter-Introduction.pdf
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
Model Code of Practice - Construction Work - 21102022 .pdf
Safety Seminar civil to be ensured for safe working.
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
composite construction of structures.pdf

4WCSCM_PRESENTATION.ppt

  • 1. On line selection of poles of controlled structure based on frequency content of applied dynamic loading National Technical University of Athens School of Civil Engineering Metal Structures Laboratory Nikos Pnevmatikos, Charis Gantes Fourth World Conference on Structural Control and Monitoring (4WCSCM) 11-13 July, 2006 San Diego, California, U.S.A.
  • 2. Fourth World Conference on Structural Control and Monitoring, San Diego 2006 N.T.U.A. 2 Contents • Control strategy based on Pole Assignment algorithm • Numerical Examples • Selection of poles based on the frequency content of the incoming dynamic load signal
  • 3. Fourth World Conference on Structural Control and Monitoring, San Diego 2006 N.T.U.A. 3 Structural control PC Data manipulation Control algorithm Pole placement sensors Hybrid Actuator Active Tendons AVSD MR DAMPERS Semi-Active Control is a multidisciplinary research area
  • 4. Fourth World Conference on Structural Control and Monitoring, San Diego 2006 N.T.U.A. 5 Structural control sensors Real time Fourier or Wavelet analysis ω1 ωl ωh ω2 ω3 ω ω ω ωo,1 ωo,2 ξc ωc λc ξc ωc λc Tendons Actuator AVSD MR DAMPERS Data manipulation control algorithm Pole assignment Wire or wireless sensors
  • 5. Fourth World Conference on Structural Control and Monitoring, San Diego 2006 N.T.U.A. 12 Selection of poles of the controlled structure based on dynamic signal From structure to the complex plane 2 i i i i i λ =ζ ω jω 1-ζ  ωi ζi=Cosφi λi ωci ζci=Cosφci λci 2 ci ci ci ci ci λ =ζ ω jω 1-ζ  Re Im
  • 6. Fourth World Conference on Structural Control and Monitoring, San Diego 2006 N.T.U.A. 13  e o o ξ ω t Im Re ωq 2 c c c c c λ =ζ ω jω 1-ζ   e c c ξ ω t Selection of poles of the controlled structure based on dynamic signal e ci ci ξ ω t λc ωq=ωο ω q1…. ωqi ap% ωqi ω q1 λo ζοωο 2 o o ω 1-ζ 2 o o o o o λ =ζ ω jω 1-ζ  ωc λc λc λc  e c c ξ ω t λc From loading to the complex plane Requirement: Equivalent control force from the device
  • 7. Fourth World Conference on Structural Control and Monitoring, San Diego 2006 N.T.U.A. 14 ωl ωh Im Re Selection of poles of the controlled structure based on dynamic signal ω1 0 λ c λc,1 C B A λο,3 λο,2 λo,1 Β’ C’ A’ ω1 ω2 ω3 ω2 ω3 ωs ωs ap % G F ap?, ωs or AB ?, ζc or BC ? λc,3
  • 8. Fourth World Conference on Structural Control and Monitoring, San Diego 2006 N.T.U.A. 16 Selection of poles of the controlled structure based on earthquake signal p p p p a a I a 2 1.669 86.11 12580 125      Selection of ap 2 s x x+0.9641 ω x+0.01857 1.232 0.30    Selection of ωs 2 c 3385x x+4300 ζ x+1342 7625   Selection of ζc
  • 9. Fourth World Conference on Structural Control and Monitoring, San Diego 2006 N.T.U.A. 17 Selection of poles of the controlled structure based on earthquake signal 10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90 100 ap Ip average Aigio Athens Elcentro Kobe Lomaprieta Mex Northridge Northridge near Pulse Sanfernanto Tabas Virginia p p p p a a I a 2 1.669 86.11 12580 125      Ag(f) f fi max[Ag(f)] apmax[Ag(f)] Ip Ag(f) f fi max[Ag(f)] apmax[Ag(f)] Ip Selection of ap
  • 10. Fourth World Conference on Structural Control and Monitoring, San Diego 2006 N.T.U.A. 18 3 5 7 9 11 13 15 17 19 21 23 25 25 0 1000 2000 3000 4000 5000 6000 ωi (rad/sec) Fmax ωo ωmin ωs1 ωs2 ωi 3 5 7 9 11 13 15 17 19 21 23 25 0 0.2 0.4 0.6 0.8 1 1.2 1.4 ωi (rad/sec) Umax/U o,max ωmin ωo ωi Selection of poles of the controlled structure based on earthquake signal 2 s x x+0.9641 ω x+0.01857 1.232 0.30    Im Re ωs2 ωs1 λο ωmin Umax ζ ωi λοi Umax,i ωs1 ωs2 ωο Selection of ωs
  • 11. Fourth World Conference on Structural Control and Monitoring, San Diego 2006 N.T.U.A. 19 ξ ωi λοi Im Re ωs2 ωs1 λo, ωο ωq umax/uo,max ωi ω m i n 1 x
  • 12. Fourth World Conference on Structural Control and Monitoring, San Diego 2006 N.T.U.A. 20 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.5 0.6 0.7 0.8 0.9 1 1.1 Fmax /Fmax,i 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.5 0.6 0.7 0.8 0.9 1 1.1 ζi Selection of poles of the controlled structure based on earthquake signal Im Re ωs2 ωs1 λο ωmin ζ ωi λοi Umax Umax,i ωο 2 3385x x+4300 ξ x+1342 7625   ζi Selection of ζc
  • 13. Fourth World Conference on Structural Control and Monitoring, San Diego 2006 N.T.U.A. 21 Flow chart of control program pole_place_mdof_on_line.mdl Load System Response Kfm Saturation Time delay Selection of poles.m • FFT • Selection of frequencies based on ap and Ιp • Design of cycles of quake and the unsafe zone in the complex plane • Placement of poles of the uncontrolled structure • Selection of poles of the controlled structure base on the rules:  If pole inside the unsafe zone put them out.  If pole outside of the unsafe zone leave them temporarilly  If you want more reduction give artificial damping  If signal too small no control • Calculate the new values of poles based on the above new position ni =α+βi. Control on line.m • M, C, K • State space formulation A, B • Ti, ωi, ξi • Define parameters: ap Ιp, x, No of parts of signal. • Define load signal • Initial conditions • For ith part of signal: • Kfm=poles(A,B, n). • Sim(pole_place_mdof_on_line) • Keep the response and force for this part of load. • Update the initial conditions with the final of the previous part. • Continue to the next part of load
  • 14. Fourth World Conference on Structural Control and Monitoring, San Diego 2006 N.T.U.A. 22 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 0 5 10 15 20 25 30 35 40 45 50 Re Im A 0 5 10 15 0 0.05 0.1 0.15 0.2 0.25 Frequency, Hz Abs acceleration, m/sec 2 First part of signal 0 50 100 150 200 250 300 350 -4 -3 -2 -1 0 1 2 3 4 x 10 -3 time Displacement 0 0.5 1 1.5 2 2.5 3 3.5 -5 -4 -3 -2 -1 0 1 2 3 4 5 Time, sec Acc. m/sec 2 Numerical examples System: Sdof: T=0.2s, ζ=0.05, n=2±31.35 Load: T=0.2s , f1=5 Hz, amplitude=0.3g , 5 parts Control algorithm: Pole place w_secure=10 rad/s, amplification factor=1.1 Controlled system damping, ζ=0.95 Β C
  • 15. Fourth World Conference on Structural Control and Monitoring, San Diego 2006 N.T.U.A. 23 0 200 400 600 800 1000 1200 -8 -6 -4 -2 0 2 4 6 8 x 10 -4 time Displacement -80 -70 -60 -50 -40 -30 -20 -10 0 0 10 20 30 40 50 60 70 80 Re Im A -80 -70 -60 -50 -40 -30 -20 -10 0 0 10 20 30 40 50 60 70 80 Re Im A -80 -70 -60 -50 -40 -30 -20 -10 0 0 10 20 30 40 50 60 70 80 Re Im 0 1 2 3 4 5 6 -4 -3 -2 -1 0 1 2 3 4 time part of quake 0 5 10 15 20 25 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 Frequency, Hz Abs acceleration m/sec 2 Numerical examples 0 1 2 3 4 5 6 -5 -4 -3 -2 -1 0 1 2 3 4 5 Time, sec Acc. m/se 2 0 1 2 3 4 5 6 -4 -3 -2 -1 0 1 2 3 4 time part of quake 0 5 10 15 20 25 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Frequency, Hz Abs acceleration m/sec 2 0 200 400 600 800 1000 1200 -1.5 -1 -0.5 0 0.5 1 1.5 x 10 -3 time Displacement 0 200 400 600 800 1000 1200 -10 -5 0 5 x 10 -4 time Displacement 0 1 2 3 4 5 6 -4 -3 -2 -1 0 1 2 3 4 time part of quake 0 5 10 15 20 25 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Frequency, Hz Abs acceleration m/sec 2 Β C A Β C C
  • 16. Fourth World Conference on Structural Control and Monitoring, San Diego 2006 N.T.U.A. 24 0 5 10 15 20 25 30 0 0.005 0.01 0.015 0.02 0.025 Frequency, Hz Abs acceleration m/sec 2 0 50 100 150 200 250 300 350 400 450 500 -8 -6 -4 -2 0 2 4 x 10 -5 Time steps Displacement (m) 0 50 100 150 200 250 300 350 400 450 500 -1.5 -1 -0.5 0 0.5 1 1.5 x 10 -3 Time steps Displacement (m) 0 50 100 150 200 250 300 350 400 450 500 -3 -2 -1 0 1 2 3 x 10 -4 Time steps Displacement (m) 0 1000 2000 3000 4000 5000 6000 7000 8000 -4 -3 -2 -1 0 1 2 3 Time steps Acc. (m/sec 2 ) 0 5 10 15 20 25 30 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 Frequency, Hz Abs acceleration m/sec 2 0 5 10 15 20 25 30 0 0.005 0.01 0.015 0.02 0.025 Frequency, Hz Abs acceleration m/sec 2 -70 -60 -50 -40 -30 -20 -10 0 0 10 20 30 40 50 60 70 Re Im A C -35 -30 -25 -20 -15 -10 -5 0 0 5 10 15 20 25 30 35 Re Im A -45 -40 -35 -30 -25 -20 -15 -10 -5 0 0 5 10 15 20 25 30 35 40 45 Re Im A C B C
  • 17. Fourth World Conference on Structural Control and Monitoring, San Diego 2006 N.T.U.A. 25 0 500 1000 1500 2000 2500 3000 -0.025 -0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02 0.025 time Displacement 0 500 1000 1500 2000 2500 3000 -25 -20 -15 -10 -5 0 5 10 15 20 25 time Acceleration 0 500 1000 1500 2000 2500 3000 -0.025 -0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02 0.025 Time steps Displacement (m) 0 500 1000 1500 2000 2500 3000 -25 -20 -15 -10 -5 0 5 10 15 20 25 Time steps Acceleration (m/sec 2 0 1000 2000 3000 4000 5000 6000 7000 8000 -6 -4 -2 0 2 4 6 x 10 -3 Time steps Displacement (m) Numerical examples Sinusoidal u1 F mm m/sec2 kN Controlled 1.00 3.08 1002 Uncontrolled 23.90 23.81 Two Sinusoidal u1 F mm m/sec2 kN Controlled 1.10 5.04 1079 Uncontrolled 23.80 25.06 Athens 99 quake u1 F mm m/sec2 kN Controlled 1.30 3.63 787 Uncontrolled 5.70 7.41 1 u 1 u 1 u 0 1000 2000 3000 4000 5000 6000 7000 8000 -6 -4 -2 0 2 4 6 8 Time steps Acceleration (m/sec 2 )
  • 18. Fourth World Conference on Structural Control and Monitoring, San Diego 2006 N.T.U.A. 26 -60 -50 -40 -30 -20 -10 0 0 10 20 30 40 50 60 Re Im -60 -50 -40 -30 -20 -10 0 0 10 20 30 40 50 60 Re -70 -60 -50 -40 -30 -20 -10 0 0 10 20 30 40 50 60 70 Re Im Numerical examples System: 3 dof: mi= 50 t, ki=39000 kN/m Load: Athens 99, PGA=0.3g 16 parts 80% of max amplitude freq Control algorithm: Pole place w_secure=25 rad/s, Controlled and no controlled, system damping, ζi={0.90, 0.95,0.97} 0 1000 2000 3000 4000 5000 6000 7000 8000 -4 -3 -2 -1 0 1 2 3 4 Time steps Acc. (m/sec 2 )
  • 19. Fourth World Conference on Structural Control and Monitoring, San Diego 2006 N.T.U.A. 27 Numerical examples 1 u 2 u 3 u u1 u2 u3 F1 F2 F3 mm m/sec2 kN Controlled 0.70 0.90 0.8 3.30 3.48 3.39 152 162 170 Uncontrolled 22.50 26.20 31.90 6.72 7.89 10.33 0 1000 2000 3000 4000 5000 6000 7000 8000 -0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05 Time steps Displacement 3rd (m) 0 1000 2000 3000 4000 5000 6000 7000 8000 -8 -6 -4 -2 0 2 4 6 8 10 12 Time steps Acceleration 3rd (m/sec 2 ) 0 1000 2000 3000 4000 5000 6000 7000 8000 -200 -150 -100 -50 0 50 100 150 200 Time steps Force (kN)
  • 20. Fourth World Conference on Structural Control and Monitoring, San Diego 2006 N.T.U.A. 28 Conclusions • On line procedure of selection of poles of the controlled structure were proposed. • The procedure is based on the frequency content from the specific incoming dynamic signal and the control face wide range of the applied signals. • The numerical examples shows reduction to both the displacement and the acceleration with adequate control force. • Pole Assignment algorithm adequate for active or semi- active control were used.