SlideShare a Scribd company logo
Introduction to
volume rendering
perim
(@hi2p_perim)
http://nukeation.deviantart.com/art/Vue-7-5-Experiment-52-121086230
[Křiánek et al. 2014]
Participating media
w/o volume w/ volume
Focuses
• Stochastic techniques
• General techniques
– i.e., not focus on solving specific
phenomina, e.g., subsurface
scattering
• Participating media with constant
IOR
– For non-constant cases, e.g.,
see [Ament et al. 2014]
• Rendering of steady state
– For rendering of transient state,
see [Jarabo et al. 2014]
[Frisvad et al. 2015]
[Ament et al. 2014]
[Jarabo et al. 2014]
Early history
• See
– Cerezo et al., “A survey on participating media
rendering techniques”, The Visual Computer,
2005.
– PBRT
Interaction to volume
[Dutre et al. 2006]
Absorption
𝑥 𝐿(𝑥 + Δ𝑥)𝐿(𝑥)
Δ𝑥
𝐿 𝑥 + Δ𝑥 − 𝐿 𝑥 = −𝜎 𝑎 𝑥 𝐿 𝑥 Δ𝑥
Absorption coefficient
Out-scattering
𝑥 𝐿(𝑥 + Δ𝑥)𝐿(𝑥)
Δ𝑥
𝐿 𝑥 + Δ𝑥 − 𝐿 𝑥 = −𝜎𝑠 𝑥 𝐿 𝑥 Δ𝑥
Scattering coefficient
Attenuation coefficient
• Absorption + out-scattering
• Taking Δ𝑥 → 0, we obtain
𝐿 𝑥 + Δ𝑥 − 𝐿 𝑥 = −𝜎𝑡(𝑥)𝐿 𝑥 Δ𝑥
𝜎𝑡 𝑥 ≡ 𝜎 𝑎 𝑥 + 𝜎𝑠 𝑥
Attenuation coefficient
𝑑𝐿 𝑥
𝑑𝑥
= −𝜎𝑡(𝑥)𝐿 𝑥
Transmittance
• Solving the equation, we obtain
𝐿 𝑥 + 𝑡 = exp −
0
𝑡
𝜎𝑡 𝑥 + 𝑠 𝑑𝑠 𝐿(𝑥)
Transmittance 𝑇𝑟
Emission
𝑥 𝐿(𝑥 + Δ𝑥)𝐿(𝑥)
Δ𝑥
𝑑𝐿(𝑥)
𝑑𝑥
= 𝐿 𝑒 𝑥
In-scattering
𝑥 𝐿(𝑥 + Δ𝑥, 𝜔𝑖)𝐿(𝑥, 𝜔𝑖)
Δ𝑥
𝑑𝐿(𝑥)
𝑑𝑥
= 𝜎𝑠(𝑥)
𝒮
𝑝(𝜔𝑖, 𝜔) 𝐿 𝑥, 𝜔 𝑑𝜔
𝜔
Phase function
Radiance transfer equation
a.k.a. Volume rendering equation
𝐿 𝑥, 𝜔𝑖 = 𝑇𝑟 𝑥, 𝑥 + 𝑡𝜔𝑖 𝐿 𝑥 + 𝑡𝜔𝑖, 𝜔𝑖
+
0
𝑡
𝑇𝑟 𝑥, 𝑥 + 𝑠𝜔𝑖 𝜎𝑠 𝑥 + 𝑠𝜔𝑖 𝐿 𝑠 𝑥 + 𝑠𝜔𝑖, 𝜔𝑖 𝑑𝑠
𝐿 𝑠 𝑥, 𝜔𝑖 ≡ 𝐿 𝑒 𝑥, 𝜔𝑖 +
𝒮
𝑝(𝜔𝑖, 𝜔) 𝐿 𝑥, 𝜔 𝑑𝜔
Absorption + Out-scattering
Emission In-scattering
Rendering participating media
𝐿 𝑥, 𝜔𝑖 = 𝑇𝑟 𝑥, 𝑥 + 𝑡𝜔𝑖 𝐿 𝑥 + 𝑡𝜔𝑖, 𝜔𝑖
+
0
𝑡
𝑇𝑟 𝑥, 𝑥 + 𝑠𝜔𝑖 𝜎𝑠 𝑥 + 𝑠𝜔𝑖 𝐿 𝑠 𝑥 + 𝑠𝜔𝑖, 𝜔𝑖 𝑑𝑠
𝐿 𝑠 𝑥, 𝜔𝑖 ≡ 𝐿 𝑒 𝑥, 𝜔𝑖 +
𝒮
𝑝(𝜔𝑖, 𝜔) 𝐿 𝑥, 𝜔 𝑑𝜔
Integration w.r.t. distance
Integration w.r.t. solid angle
Sampling distance:
Homogeneous media
• Attenuation coefficient is constant
• Transmittance
• Sample distance from exp. dist
𝐿 𝑥 + 𝑡 = 𝑒−𝜎𝑡 𝑡
𝐿(𝑥)
𝜎𝑡 𝑥 ≡ 𝜎𝑡
𝑝 𝑡 = 𝜎𝑡 𝑒−𝜎𝑡 𝑡
[Mitsuba renderer]
[Mitsuba renderer]
Deterministic distance sampling:
Ray marching
• Perlin & Hoffert, “Hypertexture”, SIGGRAPH, 1989.
Deterministic distance sampling:
Ray marching
• Perlin & Hoffert, “Hypertexture”, SIGGRAPH, 1989.
Unbiased distance sampling:
Woodcock tracking
• Woodcock et al., “Techniques used in the GEM code for
Monte Carlo neutronics calculations in reactors and
other systems of complex geometry”, 1965.
• Raab et al., “Unbiased global illumination with
participating media”, MCQMC, 2006.
Unbiased distance sampling:
Woodcock tracking
Maximum extinction 𝜎𝑡
𝑡 = −
log(𝑈)
𝜎𝑡
𝑥0 𝑥0 + 𝑡𝜔
𝜔
Unbiased distance sampling:
Woodcock tracking
Maximum extinction 𝜎𝑡
𝑥0
𝜔
𝜎𝑡 (𝑥0 + 𝑡𝜔)
𝜎𝑡
< 𝑈
Unbiased distance sampling:
Acceleration
• Kd-tree
– Yue et al., “Unbiased, adaptive stochastic sampling
for rendering inhomogeneous participating media”,
SIGGRAPH Asia, 2010.
• Uniform grid
– Szirmay-Kalos et al., “Free path sampling in high
resolution inhomogeneous participating media”, CGF,
2011.
[Yue et al. 2010]
Extension to BDPT
• Larfortune & Willems, “Rendering participating
media with bidirectional path tracing”, EGSR, 1996.
Extension to BDPT
Extension to MLT
• Pauly et al. “Metropolis light transport for
participating Media”, EGSR, 1996.
Recall..
Perturbation in MLT
Extension to MLT:
Perturbations
Extension to MLT:
Perturbations
𝑝(𝑡 →⋅)
Extension to MLT:
Perturbations
Importance sampling:
Equi-angular sampling
• Kulla & Fajardo, “Importance sampling techniques
for path tracing in participating media”, EGSR, 2012.
Importance sampling:
Equi-angular sampling
Importance sampling:
Equi-angular sampling
• Assumption: single scattering, point light source
Point light source
𝐿 𝑥, 𝜔 =
𝑎
𝑏
𝜎𝑠 𝑒−𝜎𝑡(𝑡+Δ+ 𝐷2+𝑡2)
Φ
𝐷2 + 𝑡2
𝑑𝑡
Introduces weak singurality
Importance sampling:
Equi-angular sampling
• Sample a distance 𝑡 from
𝑝 𝑡 ≡
𝐷
(𝜃 𝑏 − 𝜃 𝑎)(𝐷2 + 𝑡2)
𝑡 𝑈 = 𝐷 tan 1 − 𝑈 𝜃 𝑎 + 𝑈𝜃 𝑏
Sample angle uniformly
between 𝜃 𝑎 and 𝜃 𝑏
Importance sampling:
Joint importance sampling
• Georgiev et al., “Joint importance sampling of low-
order volumetric scattering”, SIGGRAPH Asia, 2013.
Importance sampling:
Joint importance sampling
𝐺
𝐺
𝐺
Importance sampling:
Joint importance sampling
Density estimation
• Jensen & Christensen, “Efficient simulation of light
transport in scenes with participating media using
photon maps”, SIGGRAPH, 1998.
Density estimation
Density estimation
Eye ray
Photons
Density estimation with beam:
Beam radiance estimation
• Jarosz et al., “The beam radiance estimate for
volumetric photon mapping”, EG, 2008.
Density estimation with beam:
Beam radiance estimation
Photons
Eye ray
Density estimation with beam:
Photon beam
• Jarosz et al., “Progressive photon beams”, SIGGRAPH
Asia, 2011.
Density estimation with beam
Eye ray
Photon beams
Beam formulation
Beam formulation
• Jarosz et al., “A comprehensive theory of volumetric
radiance estimation using photon points and
beams”, TOG, 2011.
[Křiánek et al. 2014]
Beam formulation:
many-light technique
• Novak et al., “Virtual ray lights for rendering scenes with
participating media”, SIGGRAPH, 2012.
• Novak et al., “Progressive virtual beam lights”, EGSR,
2012.
Density estimation:
Unified framework
• Křiánek et al., “Unifying Points, Beams, and Paths in
Volumetric Light Transport Simulation”, SIGGRAPH,
2014.
ボリュームレンダリング入門
Density estimation:
Unified framework
• Extended MIS
Regular sampling
technique
Extended sampling
technique
Density estimation:
Unified framework
• Extended balance heuristics
ボリュームレンダリング入門

More Related Content

PDF
AIシステム開発のプロジェクトマネジメント
PPTX
Output primitives computer graphics c version
PPTX
Camera calibration
PDF
【DL輪読会】Monocular real time volumetric performance capture
PDF
RAFT: Recurrent All-Pairs Field Transforms for Optical Flow
PPTX
3D Display
PDF
CV分野での最近の脱○○系3選
PPTX
Graphics pipeline and rendering
AIシステム開発のプロジェクトマネジメント
Output primitives computer graphics c version
Camera calibration
【DL輪読会】Monocular real time volumetric performance capture
RAFT: Recurrent All-Pairs Field Transforms for Optical Flow
3D Display
CV分野での最近の脱○○系3選
Graphics pipeline and rendering

What's hot (20)

PDF
SSII2019TS: プロジェクタ・カメラシステムが変わる! ~時間同期の制御で広がる応用~
PDF
Taking Killzone Shadow Fall Image Quality Into The Next Generation
PPTX
多チャンネルバイラテラルフィルタの高速化
PDF
HDR Theory and practicce (JP)
PDF
国際会議 interspeech 2020 報告
PDF
Introduction to Prioritized Experience Replay
PDF
A Walk in the GAN Zoo
PPTX
[DL輪読会]A closer look at few shot classification
PPT
Chapter 5 : ANIMATION
PPSX
CG03 Random Raster Scan displays and Color CRTs.ppsx
PPTX
【DL輪読会】SDEdit: Guided Image Synthesis and Editing with Stochastic Differentia...
PDF
GAN-based statistical speech synthesis (in Japanese)
PDF
[DL輪読会]DisCo RL: Distribution-Conditioned Reinforcement Learning for General...
PDF
CG 論文講読会 2013/5/20 "Clustered deferred and forward shading"
PDF
[DL輪読会]High-Quality Self-Supervised Deep Image Denoising
PDF
文献紹介:Simple Copy-Paste Is a Strong Data Augmentation Method for Instance Segm...
PPTX
Introduction to Computer Graphics
PPT
03.Scan Conversion.ppt
PPTX
Computer graphics presentation
PPTX
近年のHierarchical Vision Transformer
SSII2019TS: プロジェクタ・カメラシステムが変わる! ~時間同期の制御で広がる応用~
Taking Killzone Shadow Fall Image Quality Into The Next Generation
多チャンネルバイラテラルフィルタの高速化
HDR Theory and practicce (JP)
国際会議 interspeech 2020 報告
Introduction to Prioritized Experience Replay
A Walk in the GAN Zoo
[DL輪読会]A closer look at few shot classification
Chapter 5 : ANIMATION
CG03 Random Raster Scan displays and Color CRTs.ppsx
【DL輪読会】SDEdit: Guided Image Synthesis and Editing with Stochastic Differentia...
GAN-based statistical speech synthesis (in Japanese)
[DL輪読会]DisCo RL: Distribution-Conditioned Reinforcement Learning for General...
CG 論文講読会 2013/5/20 "Clustered deferred and forward shading"
[DL輪読会]High-Quality Self-Supervised Deep Image Denoising
文献紹介:Simple Copy-Paste Is a Strong Data Augmentation Method for Instance Segm...
Introduction to Computer Graphics
03.Scan Conversion.ppt
Computer graphics presentation
近年のHierarchical Vision Transformer

Viewers also liked (6)

PPT
曲面レイトレ入門
PDF
実践QBVH
PPT
レイトレ空間構造入門
PPTX
MCMCベースレンダリング入門
PDF
フォトンマッピング入門
PDF
【Unity道場スペシャル 2017札幌】最適化をする前に覚えておきたい技術 -札幌編-
曲面レイトレ入門
実践QBVH
レイトレ空間構造入門
MCMCベースレンダリング入門
フォトンマッピング入門
【Unity道場スペシャル 2017札幌】最適化をする前に覚えておきたい技術 -札幌編-

Similar to ボリュームレンダリング入門 (20)

PDF
Lecture 2
PDF
DIVP_Aniruddha_24130322038_PE-EC702B_CA1.pdf
PDF
matdid950092.pdf
PDF
Digital Image Fundamentals
PPTX
Unit-1Chapter-1Lecture-2.pptxkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk...
PPT
M.sc. m hassan
DOC
Paper on image processing
PDF
A Testbed for Image Synthesis
PPT
Raskar Keynote at Stereoscopic Display Jan 2011
PDF
imge Enhancement unit 1 jfcygvlugfoutc.pdf
PDF
272_Digital-Image-Processing.pdf
PDF
K147897
PDF
Volumetric Lighting for Many Lights in Lords of the Fallen
DOCX
Module 1
PDF
On the scattering of light : various models and methods used in computer grap...
PPT
Direct Volume Rendering (DVR): Ray-casting
PDF
Development of optical tomography methods with discretized path integral
PPTX
COM2304: Digital Image Fundamentals - I
PDF
Next Gen Computational Ophthalmic Imaging for Neurodegenerative Diseases and ...
Lecture 2
DIVP_Aniruddha_24130322038_PE-EC702B_CA1.pdf
matdid950092.pdf
Digital Image Fundamentals
Unit-1Chapter-1Lecture-2.pptxkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk...
M.sc. m hassan
Paper on image processing
A Testbed for Image Synthesis
Raskar Keynote at Stereoscopic Display Jan 2011
imge Enhancement unit 1 jfcygvlugfoutc.pdf
272_Digital-Image-Processing.pdf
K147897
Volumetric Lighting for Many Lights in Lords of the Fallen
Module 1
On the scattering of light : various models and methods used in computer grap...
Direct Volume Rendering (DVR): Ray-casting
Development of optical tomography methods with discretized path integral
COM2304: Digital Image Fundamentals - I
Next Gen Computational Ophthalmic Imaging for Neurodegenerative Diseases and ...

Recently uploaded (20)

PPTX
ognitive-behavioral therapy, mindfulness-based approaches, coping skills trai...
PPTX
TOTAL hIP ARTHROPLASTY Presentation.pptx
PDF
The scientific heritage No 166 (166) (2025)
PPT
veterinary parasitology ````````````.ppt
PPTX
Application of enzymes in medicine (2).pptx
PDF
ELS_Q1_Module-11_Formation-of-Rock-Layers_v2.pdf
PDF
Cosmic Outliers: Low-spin Halos Explain the Abundance, Compactness, and Redsh...
PDF
Unveiling a 36 billion solar mass black hole at the centre of the Cosmic Hors...
PPTX
Fluid dynamics vivavoce presentation of prakash
PPTX
Overview of calcium in human muscles.pptx
PDF
Assessment of environmental effects of quarrying in Kitengela subcountyof Kaj...
PPTX
POULTRY PRODUCTION AND MANAGEMENTNNN.pptx
PDF
Looking into the jet cone of the neutrino-associated very high-energy blazar ...
PPTX
Microbes in human welfare class 12 .pptx
PDF
BET Eukaryotic signal Transduction BET Eukaryotic signal Transduction.pdf
PPTX
Pharmacology of Autonomic nervous system
PPTX
The Minerals for Earth and Life Science SHS.pptx
PPTX
C1 cut-Methane and it's Derivatives.pptx
PDF
Biophysics 2.pdffffffffffffffffffffffffff
PDF
Sciences of Europe No 170 (2025)
ognitive-behavioral therapy, mindfulness-based approaches, coping skills trai...
TOTAL hIP ARTHROPLASTY Presentation.pptx
The scientific heritage No 166 (166) (2025)
veterinary parasitology ````````````.ppt
Application of enzymes in medicine (2).pptx
ELS_Q1_Module-11_Formation-of-Rock-Layers_v2.pdf
Cosmic Outliers: Low-spin Halos Explain the Abundance, Compactness, and Redsh...
Unveiling a 36 billion solar mass black hole at the centre of the Cosmic Hors...
Fluid dynamics vivavoce presentation of prakash
Overview of calcium in human muscles.pptx
Assessment of environmental effects of quarrying in Kitengela subcountyof Kaj...
POULTRY PRODUCTION AND MANAGEMENTNNN.pptx
Looking into the jet cone of the neutrino-associated very high-energy blazar ...
Microbes in human welfare class 12 .pptx
BET Eukaryotic signal Transduction BET Eukaryotic signal Transduction.pdf
Pharmacology of Autonomic nervous system
The Minerals for Earth and Life Science SHS.pptx
C1 cut-Methane and it's Derivatives.pptx
Biophysics 2.pdffffffffffffffffffffffffff
Sciences of Europe No 170 (2025)

ボリュームレンダリング入門

Editor's Notes

  • #25: Efficiency heavily depends on maximum extension
  • #32: And, compute transition probability with correct measure conversion
  • #35: Importance sampling, distance sampling