SlideShare a Scribd company logo
Multilayer Modeling & Analysis of
Complex (Systems) Data
Manlio De Domenico
Complex Multilayer Networks Lab
Center for Information Technology, Bruno Kessler Foundation
Pasadena
12 February 2018
We are part of an increasingly complex world
Units are interconnected, interdependent, integrated
Real world systems: INTERCONNECTED
At any scale…
Beyond lattices
Models: INTERCONNECTED
Erdos & Renyi
(1959)
Barabasi & Albert
(1999)
Watts & Strogatz
(1998)
Homogeneous
Random
Small-world Scale-free
WWW, Airport networks, …
Models: INTERCONNECTED
Barabasi & Albert
(1999)
Scale-free
Real world systems: INTERDEPENDENT
Real world systems
Acting on complex system?
• Triggering cascade of effects on the system itself
• Triggering cascade of effects on interdependent systems
Classical complex networks failure
Not able to reproduce observed:
• Diffusion properties
• Clustering statistics
• Resilience
• …
NATURE CONSISTS OF
SYSTEMS OF SYSTEMS
Real world systems: FRAGILITY
Systems’ integration makes them more vulnerable to perturbations
Eyjafjallajökull eruption (2010)
Acting on complex system?
• Triggering cascade of effects on the system itself
• Triggering cascade of effects on interdependent systems
Worldwide air traffic delay
Our contributions
Mathematical formulation for multilayer systems
Redundancy of multilayer systems and dimensionality reduction
Spreading processes on multilayer systems
Predictive tools
MDD et al, Phys. Rev. X 3, 041022 (2013)
MDD, A. Sole-Ribalta, S. Gomez & A. Arenas, PNAS 11, 8351 (2014)
MDD, Sole, Omodei, Gomez & Arenas, Nature Comms. 6, 6868 (2015)
MDD, Nicosia, Arenas & Latora, Nature Comms. 6, 6864 (2015)
MDD, Lancichinetti, Arenas & Rosvall, Phys. Rev. X 5, 011027 (2015)
MDD, Granell, Porter & Arenas, Nature Phys., 12, 901 (2016)
Baggio, Burnsilver, Arenas, Magdanz, Kofinas & MDD, PNAS, 113, 13708 (2016)
MDD & Biamonte, Phys. Rev. X 6, 041062 (2016)
MDD, Phys. Rev. Lett. 118, 168301 (2017)
Mathematical formulation of
multilayer networks
Challenge:
Representation
MDD et al, Phys. Rev. X 3, 041022 (2013)
• Intra-layer links from data
• Inter-layer links absent
Edge-colored Interconnected
• Intra-layer links from data
• Inter-layer links from data
Basic classification
(a) (b) (c)
• Intra-layer links from data
• Inter-layer links absent
Edge-colored Interconnected
• Intra-layer links from data
• Inter-layer links from data
Basic classification
(a) (b) (c)
Basic classification
Replicas / State nodes
Basic classification
Physical node
1
23
4
5
Classical Networks
Given the canonical basis in:
W =
NX
i,j=1
wijEij =
NX
i,j=1
wijei ⌦ e†
j , W 2 RN
⌦ RN
RN
0
B
B
B
B
@
1
0
0
0
0
1
C
C
C
C
A
0
B
B
B
B
@
0
1
0
0
0
1
C
C
C
C
A1
23
4
5
0
B
B
B
B
@
0
0
0
1
0
1
C
C
C
C
A
0
B
B
B
B
@
0
0
0
0
1
1
C
C
C
C
A
0
B
B
B
B
@
0
0
1
0
0
1
C
C
C
C
A
Classical Networks
Given the canonical basis in:
W =
NX
i,j=1
wijEij =
NX
i,j=1
wijei ⌦ e†
j , W 2 RN
⌦ RN
RN
Weighted Adjacency Matrix
Equivalent to rank-2 tensor:
W⇥ =
NX
i,j=1
wijE⇥ (ij) =
NX
i,j=1
wije (i)e⇥(j)
0
B
B
B
B
@
1
0
0
0
0
1
C
C
C
C
A
0
B
B
B
B
@
0
1
0
0
0
1
C
C
C
C
A1
23
4
5
0
B
B
B
B
@
0
0
0
1
0
1
C
C
C
C
A
0
B
B
B
B
@
0
0
0
0
1
1
C
C
C
C
A
0
B
B
B
B
@
0
0
1
0
0
1
C
C
C
C
A
W =
0
B
B
B
B
@
0 w1,2 0 w1,4 0
w1,2 0 w2,3 0 0
0 w2,3 0 w3,4 w3,5
w1,4 0 w3,4 0 0
0 0 w3,5 0 0
1
C
C
C
C
A
Classical Networks
Intra-layer
adjacency
tensors:
C↵
(˜k˜k) = W↵
(˜k)
Layers are just rank-2 tensors in RN⇥N
Multilayer Networks
Inter-layer
adjacency
tensors:
Inter-connections are rank-2 tensors in RN⇥N
C↵
(˜h˜k)
Multilayer Networks
One multilayer adjacency tensor in
M ˜⇤
⇥˜⌅
=
LX
˜h,˜k=1
C⇥ (˜h˜k)E˜⇤
˜⌅
(˜h˜k)
=
LX
˜h,˜k=1
2
4
NX
i,j=1
wij(˜h˜k)E⇥ (ij)
3
5 E˜⇤
˜⌅
(˜h˜k)
=
LX
˜h,˜k=1
NX
i,j=1
wij(˜h˜k)E ˜⇤
⇥˜⌅
(ij˜h˜k)
RN⇥N⇥L⇥L
MDD et al, Phys. Rev. X 3, 041022 (2013)
Multilayer Networks
How to work with tensors?
Kolda & Bader, SIAM review 51, 455 (2009)
4 x 4
1 x 16
Matricization: change dimension
while preserving information
Gomez et al, Phys. Rev. Lett. 110, 028701 (2013)
MDD et al, Phys. Rev. X 3, 041022 (2013)
↵
Mi↵
j :
j
i
From multilayer adjacency tensor to
supra-adjacency matrix
Gomez et al, Phys. Rev. Lett. 110, 028701 (2013)
MDD et al, Phys. Rev. X 3, 041022 (2013)
From multilayer adjacency tensor to
supra-adjacency matrix
Gomez et al, Phys. Rev. Lett. 110, 028701 (2013)
MDD et al, Phys. Rev. X 3, 041022 (2013)
R(NL)⇥(NL)
Supra-adjacency matrix in
RN⇥N⇥L⇥L
Multilayer adjacency tensor in
Multilayer network model“Raw” data
From data to matrix
Trade-off between importance of
intra- and inter-layer links
Take home message
Weak coupling
Poor multilayer effects
Approx: analyze as single layers
Take home message
Strong coupling
Multilayer effects
Take home message
Is your network a multilayer?
Structural reducibility
Challenge:
Redundancy
MDD, Nicosia, Arenas & Latora, Nature Comm. 6, 6864 (2015)
MDD & Biamonte, Phys. Rev. X 6, 041062 (2016)
Node’s inter-layer out-strength:
Flow on multilayer networks
Data analysis
better/faster in a space smaller than
Understanding structure and function
easier when there are no redundant components
R(NL)⇥(NL)
Is the full multilayer the best representation in all cases?
MDD, Nicosia, Arenas & Latora, Nature Comm. 6, 6864 (2015)
“Merge until no information is lost”
MDD, Nicosia, Arenas & Latora, Nature Comm. 6, 6864 (2015)
1. How to compare complex networks, non-trivially?
2. Problem not tractable for increasing system size
Important issues
All possible combinations of M layers in groups
of any size can be prohibitive (Bell number)
B(M) =
1X
n=0
Bn
n!
Mn
= eeM
1
Bn =
nX
k=0
⇢
n
k
Exhaustive search for optimal merging of layers
is not feasible
Super-exponential scaling wrt the # layers
Which merging strategy?
Density matrix ⇢
von Neumann entropy
S(⇢) = Tr(⇢ log2 ⇢)
Diffusion
propagator
Normalizing
factor
⇢ =
e ⌧L
Z
Z = Tr e ⌧L
˙p(⌧) = Lp(⌧)
Diffusion
equation
General
solution
p(⌧) = e ⌧L
p(0)
Our quantum-inspired approach
MDD & Biamonte, Phys. Rev. X 6, 041062 (2016)
Basis for network information theory / machine learning
D1(⇢|| ) = Tr [⇢(log2 ⇢ log2 )]
Kullback-Leibler divergence Gain
J1(⇢|| ) = S1
✓
⇢ +
2
◆
1
2
[S1(⇢) + S1( )]
Jensen-Shannon divergence
p
J1(⇢|| )
Jensen-Shannon distance Distance
MDD & Biamonte, Phys. Rev. X 6, 041062 (2016)
Properties:
• Bounded in [0,1]
• Symmetric
• is a metric distance
p
DJS
• Hierarchical clustering
• Suggest a greedy (and fast) way to merge
Jensen-Shannon: DJS(⇢|| ) = h(µ)
1
2
[h(⇢) + h( )]
Mixture: µ =
1
2
(⇢ + )
Similarity between layers
(Convex linear combination)
MDD, Nicosia, Arenas & Latora, Nature Comm. 6, 6864 (2015)
• Merging “different” layers causes information loss and entropy increases
• Merging “similar” layers causes no information loss and entropy ~
unchanged
The main idea
MDD, Nicosia, Arenas & Latora, Nature Comm. 6, 6864 (2015)
London Tube
Only Circle Line is “redundant”
London Tube
Multilayer Gene-Protein Interaction Networks
Layers are different types of Physical & Genetic interactions
Plasmodium
Falciparum
Mus MusculusGallus Gallus
Drosophila
Melanogaster
Caenorhabditis
Elegans
Candida
Albicans
Bos TaurusArabidopsis
Thaliana
Rattus
Norvegicus
Saccharomyces
Cerevisiae
Schizosacch.
Pombe
Homo Sapiens Oryctolagus
Cuniculus
Xenopus Laevis
Danio Rerio
Epstein–Barr VirusHIV Virus Hepatitis C Virus
TransportHumanGene-Protein
50%
MDD, Nicosia, Arenas & Latora, Nature Comm. 6, 6864 (2015)
Multilayer Functional Brain Networks
• Resting state fMRI
• Layers are functional networks per
frequency band
• 0.01 Hz to 0.25 Hz in step of 0.02 Hz
MDD, Sasai & Arenas, Frontiers in Neuroscience 10, 326 (2016)
MDD, Gigscience 6, 1 (2017)
A
B
Structurally
Irreducible
Diffusion on
multilayer networks
Challenge:
From Structure to
Dynamics
MDD, C. Granell, M. Porter, A. Arenas, Nature Physics 12, 901 (2016)
A. Lima, MDD, V. Pejovic, M. Musolesi, Nature Sci. Rep. 5, 10650 (2015)
Layer switching
MDD, C. Granell, M. Porter, A. Arenas, Nature Physics 12, 901 (2016)
Types of dynamics
Single dynamics Coupled dynamics
(a) (b)
Layer switching
Nodejumping
pj,⇥(t + 1) = T⇥⇥
jj pj,⇥(t) +
LX
=1
6=⇥
T ⇥
jj pj, (t) +
NX
i=1
i6=j
T⇥⇥
ij pi,⇥(t) +
LX
=1
6=⇥
NX
i=1
i6=j
T ⇥
ij pi, (t)
MDD, A. Sole-Ribalta, S. Gomez, A. Arenas, PNAS (2014)
Single dynamics
Layer switching
Nodejumping
pj,⇥(t + 1) = T⇥⇥
jj pj,⇥(t) +
LX
=1
6=⇥
T ⇥
jj pj, (t) +
NX
i=1
i6=j
T⇥⇥
ij pi,⇥(t) +
LX
=1
6=⇥
NX
i=1
i6=j
T ⇥
ij pi, (t)
MDD, A. Sole-Ribalta, S. Gomez, A. Arenas, PNAS (2014)
Transition dynamics
Layer switching
Nodejumping
pj,⇥(t + 1) = T⇥⇥
jj pj,⇥(t) +
LX
=1
6=⇥
T ⇥
jj pj, (t) +
NX
i=1
i6=j
T⇥⇥
ij pi,⇥(t) +
LX
=1
6=⇥
NX
i=1
i6=j
T ⇥
ij pi, (t)
MDD, A. Sole-Ribalta, S. Gomez, A. Arenas, PNAS (2014)
Transition dynamics
Layer switching
Nodejumping
pj,⇥(t + 1) = T⇥⇥
jj pj,⇥(t) +
LX
=1
6=⇥
T ⇥
jj pj, (t) +
NX
i=1
i6=j
T⇥⇥
ij pi,⇥(t) +
LX
=1
6=⇥
NX
i=1
i6=j
T ⇥
ij pi, (t)
MDD, A. Sole-Ribalta, S. Gomez, A. Arenas, PNAS (2014)
Transition dynamics
Layer switching
Nodejumping
pj,⇥(t + 1) = T⇥⇥
jj pj,⇥(t) +
LX
=1
6=⇥
T ⇥
jj pj, (t) +
NX
i=1
i6=j
T⇥⇥
ij pi,⇥(t) +
LX
=1
6=⇥
NX
i=1
i6=j
T ⇥
ij pi, (t)
MDD, A. Sole-Ribalta, S. Gomez, A. Arenas, PNAS (2014)
Transition dynamics
MDD, A. Sole-Ribalta, S. Gomez, A. Arenas, PNAS (2014)
p (t + 1) = T↵
p↵(t)
Master equation
Single-layer: ˙p (t) = L
↵
p↵(t)
Transition matrix between nodes/layers
Probability to find the walker in a node/layer
Multi-layer:
Normalized Laplacian matrix
p ˜(t + 1) = T↵˜
˜ p↵˜(t)
p ˜(t)
T↵˜
˜
˙p ˜(t) = L
↵˜
˜ p↵˜(t)
L
↵˜
˜ = ↵˜
˜ T↵˜
˜
Probability rate evolution
Transition dynamics
Gomez et al, Phys. Rev. Lett. 110, 028701 (2013)
MDD, C. Granell, M. Porter, A. Arenas, Nature Physics 12, 901 (2016)
Layer 1
Layer 2
Aggregated
1
10
100
1 100
Inter−layer coupling
Smallestpositiveeigenvalue(Λ2)
Layer 1
Layer 2
Aggregated
1
1 100
Inter−layer coupling
Smallestpositiveeigenvalue(Λ2)
0.00
0.25
0.50
0.75
1.00
0.00 0.25 0.50 0.75 1.00
Connection probability in Layer 1
ConnectionprobabilityinLayer2
Regime 1 Regime 2 Regime 1 Regime 2
Unexpected phenomena: enhanced diffusion
Diffusion in coupled networks might be
faster than each layer separately
Using Structure & Dynamics
to identify key units
Challenge:
Prediction
MDD, Sole, Omodei, Gomez & Arenas, Nature Comms. 6, 6868 (2015)
Classical Multilayer
In-degreek = W↵
u↵
Out-degreek↵
= W↵
u K↵
= M↵˜
˜ U
˜
˜ u
K = M↵˜
˜ U
˜
˜ u↵
F⇢
= U⇢ ⇢U⇢ ⇢
“Ones” tensors Kroneker tensor
F
˜
✏˜⌘ = U
˜
✏˜⌘
˜
✏˜⌘
u↵
Cotrace Tensor
In-degreek = W↵
u↵
Out-degreek↵
= W↵
u
i-th node in-
degree
k(i) = k e (i)
K↵
= M↵˜
˜ U
˜
˜ u
K = M↵˜
˜ U
˜
˜ u↵
k(i) = K e (i)
F⇢
= U⇢ ⇢U⇢ ⇢
“Ones” tensors Kroneker tensor
F
˜
✏˜⌘ = U
˜
✏˜⌘
˜
✏˜⌘
u↵
Cotrace Tensor
Classical Multilayer
In-degreek = W↵
u↵
Out-degreek↵
= W↵
u
i-th node in-
degree
k(i) = k e (i)
K↵
= M↵˜
˜ U
˜
˜ u
K = M↵˜
˜ U
˜
˜ u↵
k(i) = K e (i)
F⇢
= U⇢ ⇢U⇢ ⇢
“Ones” tensors Kroneker tensor
F
˜
✏˜⌘ = U
˜
✏˜⌘
˜
✏˜⌘
u↵
Cotrace Tensor
c(W↵
) =
W↵
⇢ W⇢
W↵
W↵
⇢ F⇢
W↵
Global
clustering
C(M↵˜
˜ ) = N 1
M↵˜
˜ M
˜
✏˜⌘ M✏˜⌘
↵˜
M↵˜
˜ F
˜
✏˜⌘ M✏˜⌘
↵˜
Classical Multilayer
EigenvectorW↵
v↵ = 1v
Classical Multilayer
Mi↵
j ⇥i↵ = 1⇥j
Eigenvector
PageRank
“Google” tensor:
W↵
v↵ = 1v
Ri
j⇡i = ⇡j
Classical Multilayer
Mi↵
j ⇥i↵ = 1⇥j
Ri↵
j ⇧i↵ = 1⇧j
Eigenvector
PageRank
HITS
W↵
v↵ = 1v
(W†
W)i
j⌥i = 1⌥j
(WW†
)i
j i = 1 j
Ri
j⇡i = ⇡j
Classical Multilayer
Mi↵
j ⇥i↵ = 1⇥j
Ri↵
j ⇧i↵ = 1⇧j
(MM†
)i↵
j i↵ = 1 j
(M†
M)i↵
j ⌥i↵ = 1⌥j
Eigenvector
PageRank
HITS
W↵
v↵ = 1v
v = ( ↵
aW↵
) 1
u↵
(W†
W)i
j⌥i = 1⌥j
(WW†
)i
j i = 1 j
Katz j = [( aM) 1
]i↵
j Ui↵
Ri
j⇡i = ⇡j
Classical Multilayer
MDD, Sole, Omodei, Gomez & Arenas, Nature Comms. 6, 6868 (2015)
Mi↵
j ⇥i↵ = 1⇥j
Ri↵
j ⇧i↵ = 1⇧j
(MM†
)i↵
j i↵ = 1 j
(M†
M)i↵
j ⌥i↵ = 1⌥j
Healthy Schizophrenia
Mux
Mux & Aggr.
Discriminative
Diagnostic accuracy
Multilayer Aggregatevs
85% 70%
MDD, Sasai & Arenas,
Frontiers in Neuroscience 10, 326 (2016)
Take home messages
Systems of systems: integration requires a new
framework
Our finding: multilayer networks are more predictive
Take home messages
Aggregating complex data might lead to misunderstanding
Systems of systems: integration requires a new
framework
Our finding: multilayer networks are more predictive
Take home messages
Aggregating complex data might lead to misunderstanding
New mathematical formulation & network information
theory as natural frameworks for data analytics of
complex systems
Systems of systems: integration requires a new
framework
Multilayer Theory of Data Systems?
Network: the architecture of a data system
Multilayer Network a natural framework for:
• Structure: integrated data systems
• Dynamics: information flow and integration
Layers: software/methodology/…?
@manlius84

mdedomenico@fbk.eu

THANK YOU!
MDD et al, Phys. Rev. X 3, 041022 (2013)
MDD, A. Sole-Ribalta, S. Gomez, A. Arenas, PNAS 11, 8351 (2014)
MDD, Sole, Omodei, Gomez & Arenas, Nature Comms. 6, 6868 (2015)
MDD, Nicosia, Arenas & Latora, Nature Comms. 6, 6864 (2015)
MDD, Lancichinetti, Arenas & Rosvall, Phys. Rev. X 5, 011027 (2015)
MDD, Granell, Porter & Arenas, Nature Phys., 12, 901 (2016)
Baggio, Burnsilver, Arenas, Magdanz, Kofinas & MDD, PNAS, 113, 13708 (2016)
MDD & Biamonte, Phys. Rev. X 6, 041062 (2016)
MDD, Phys. Rev. Lett. 118, 168301 (2017)
Methodology and theoretical background
https://comunelab.fbk.eu/

MDD, Porter & Arenas, J. Complex Networks 3, 159 (2015)
Computational tools
http://muxviz.net

More Related Content

PDF
On Continuum Limits of Markov Chains and Network Modeling
PDF
PhD Defense
PDF
Bayesian network structure estimation based on the Bayesian/MDL criteria when...
PDF
Functional Brain Networks - Javier M. Buldù
PDF
Paper id 71201906
PDF
Evolution of Deep Learning and new advancements
PDF
Properties of field induced Josephson junction(s)
On Continuum Limits of Markov Chains and Network Modeling
PhD Defense
Bayesian network structure estimation based on the Bayesian/MDL criteria when...
Functional Brain Networks - Javier M. Buldù
Paper id 71201906
Evolution of Deep Learning and new advancements
Properties of field induced Josephson junction(s)

What's hot (19)

DOCX
Methods of Preventing Decoherence in Quantum Bits
PDF
Convolutional Neural Networks - Xavier Giro - UPC TelecomBCN Barcelona 2020
PDF
Fractals in Small-World Networks With Time Delay
PDF
The Perceptron (D1L1 Insight@DCU Machine Learning Workshop 2017)
PDF
Cs229 notes-deep learning
PDF
Pixel RNN to Pixel CNN++
PDF
Lecture 5: Neural Networks II
PDF
Sparse inverse covariance estimation using skggm
PDF
Q-Learning with a Neural Network - Xavier Giró - UPC Barcelona 2020
PDF
Deleting to Structured Trees
PDF
Lecture 6: Convolutional Neural Networks
PDF
Cy33602608
PPT
Multilayer perceptron
PDF
Neural Networks: Multilayer Perceptron
PPTX
Artificial neural network
PDF
Rough K Means - Numerical Example
PDF
Cs36565569
PPTX
Social Network Analysis application in formation of students' groups
PDF
Math refresher
Methods of Preventing Decoherence in Quantum Bits
Convolutional Neural Networks - Xavier Giro - UPC TelecomBCN Barcelona 2020
Fractals in Small-World Networks With Time Delay
The Perceptron (D1L1 Insight@DCU Machine Learning Workshop 2017)
Cs229 notes-deep learning
Pixel RNN to Pixel CNN++
Lecture 5: Neural Networks II
Sparse inverse covariance estimation using skggm
Q-Learning with a Neural Network - Xavier Giró - UPC Barcelona 2020
Deleting to Structured Trees
Lecture 6: Convolutional Neural Networks
Cy33602608
Multilayer perceptron
Neural Networks: Multilayer Perceptron
Artificial neural network
Rough K Means - Numerical Example
Cs36565569
Social Network Analysis application in formation of students' groups
Math refresher
Ad

Similar to CLIM Program: Remote Sensing Workshop, Multilayer Modeling and Analysis of Complex (Systems) Data - Manlio De Domenico, Feb 12, 2018 (20)

PDF
The Hidden Geometry of Multiplex Networks @ Next Generation Network Analytics
PPTX
Higher-order clustering coefficients at Purdue CSoI
PDF
ICPSR - Complex Systems Models in the Social Sciences - Lecture 3 - Professor...
PDF
Higher-order clustering coefficients
PPTX
Elastic path2path (International Conference on Image Processing'18)
PDF
1 dorogovtsev
PDF
1 dorogovtsev
PDF
Continuum Modeling and Control of Large Nonuniform Networks
PDF
Spatial patterns in evolutionary games on scale-free networks and multiplexes
PDF
An Introduction to Networks
PDF
Higher-order organization of complex networks
PPT
Oral Defence
PDF
Spectral clustering with motifs and higher-order structures
PDF
Nonequilibrium Network Dynamics_Inference, Fluctuation-Respones & Tipping Poi...
PDF
Information transfer in dynamical models implemented on the brain structural ...
PDF
Spacey random walks and higher-order data analysis
PDF
Multiscale Granger Causality and Information Decomposition
PDF
Participation costs dismiss the advantage of heterogeneous networks in evolut...
PDF
Lausanne 2019 #4
PPT
Microsoft Research, India Social Networks And Their Applications To Web (Ti...
The Hidden Geometry of Multiplex Networks @ Next Generation Network Analytics
Higher-order clustering coefficients at Purdue CSoI
ICPSR - Complex Systems Models in the Social Sciences - Lecture 3 - Professor...
Higher-order clustering coefficients
Elastic path2path (International Conference on Image Processing'18)
1 dorogovtsev
1 dorogovtsev
Continuum Modeling and Control of Large Nonuniform Networks
Spatial patterns in evolutionary games on scale-free networks and multiplexes
An Introduction to Networks
Higher-order organization of complex networks
Oral Defence
Spectral clustering with motifs and higher-order structures
Nonequilibrium Network Dynamics_Inference, Fluctuation-Respones & Tipping Poi...
Information transfer in dynamical models implemented on the brain structural ...
Spacey random walks and higher-order data analysis
Multiscale Granger Causality and Information Decomposition
Participation costs dismiss the advantage of heterogeneous networks in evolut...
Lausanne 2019 #4
Microsoft Research, India Social Networks And Their Applications To Web (Ti...
Ad

More from The Statistical and Applied Mathematical Sciences Institute (20)

PDF
Causal Inference Opening Workshop - Latent Variable Models, Causal Inference,...
PDF
2019 Fall Series: Special Guest Lecture - 0-1 Phase Transitions in High Dimen...
PDF
Causal Inference Opening Workshop - Causal Discovery in Neuroimaging Data - F...
PDF
Causal Inference Opening Workshop - Smooth Extensions to BART for Heterogeneo...
PDF
Causal Inference Opening Workshop - A Bracketing Relationship between Differe...
PDF
Causal Inference Opening Workshop - Testing Weak Nulls in Matched Observation...
PPTX
Causal Inference Opening Workshop - Difference-in-differences: more than meet...
PDF
Causal Inference Opening Workshop - New Statistical Learning Methods for Esti...
PDF
Causal Inference Opening Workshop - Bipartite Causal Inference with Interfere...
PPTX
Causal Inference Opening Workshop - Bridging the Gap Between Causal Literatur...
PDF
Causal Inference Opening Workshop - Some Applications of Reinforcement Learni...
PDF
Causal Inference Opening Workshop - Bracketing Bounds for Differences-in-Diff...
PDF
Causal Inference Opening Workshop - Assisting the Impact of State Polcies: Br...
PDF
Causal Inference Opening Workshop - Experimenting in Equilibrium - Stefan Wag...
PDF
Causal Inference Opening Workshop - Targeted Learning for Causal Inference Ba...
PDF
Causal Inference Opening Workshop - Bayesian Nonparametric Models for Treatme...
PPTX
2019 Fall Series: Special Guest Lecture - Adversarial Risk Analysis of the Ge...
PPTX
2019 Fall Series: Professional Development, Writing Academic Papers…What Work...
PDF
2019 GDRR: Blockchain Data Analytics - Machine Learning in/for Blockchain: Fu...
PDF
2019 GDRR: Blockchain Data Analytics - QuTrack: Model Life Cycle Management f...
Causal Inference Opening Workshop - Latent Variable Models, Causal Inference,...
2019 Fall Series: Special Guest Lecture - 0-1 Phase Transitions in High Dimen...
Causal Inference Opening Workshop - Causal Discovery in Neuroimaging Data - F...
Causal Inference Opening Workshop - Smooth Extensions to BART for Heterogeneo...
Causal Inference Opening Workshop - A Bracketing Relationship between Differe...
Causal Inference Opening Workshop - Testing Weak Nulls in Matched Observation...
Causal Inference Opening Workshop - Difference-in-differences: more than meet...
Causal Inference Opening Workshop - New Statistical Learning Methods for Esti...
Causal Inference Opening Workshop - Bipartite Causal Inference with Interfere...
Causal Inference Opening Workshop - Bridging the Gap Between Causal Literatur...
Causal Inference Opening Workshop - Some Applications of Reinforcement Learni...
Causal Inference Opening Workshop - Bracketing Bounds for Differences-in-Diff...
Causal Inference Opening Workshop - Assisting the Impact of State Polcies: Br...
Causal Inference Opening Workshop - Experimenting in Equilibrium - Stefan Wag...
Causal Inference Opening Workshop - Targeted Learning for Causal Inference Ba...
Causal Inference Opening Workshop - Bayesian Nonparametric Models for Treatme...
2019 Fall Series: Special Guest Lecture - Adversarial Risk Analysis of the Ge...
2019 Fall Series: Professional Development, Writing Academic Papers…What Work...
2019 GDRR: Blockchain Data Analytics - Machine Learning in/for Blockchain: Fu...
2019 GDRR: Blockchain Data Analytics - QuTrack: Model Life Cycle Management f...

Recently uploaded (20)

PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PDF
Microbial disease of the cardiovascular and lymphatic systems
PPTX
PPH.pptx obstetrics and gynecology in nursing
PPTX
Lesson notes of climatology university.
PDF
O5-L3 Freight Transport Ops (International) V1.pdf
PDF
Computing-Curriculum for Schools in Ghana
PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
PDF
Basic Mud Logging Guide for educational purpose
PPTX
Microbial diseases, their pathogenesis and prophylaxis
PPTX
master seminar digital applications in india
PDF
RMMM.pdf make it easy to upload and study
PPTX
Renaissance Architecture: A Journey from Faith to Humanism
PPTX
GDM (1) (1).pptx small presentation for students
PPTX
Cell Types and Its function , kingdom of life
PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
PDF
STATICS OF THE RIGID BODIES Hibbelers.pdf
PPTX
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
PDF
TR - Agricultural Crops Production NC III.pdf
PDF
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
Microbial disease of the cardiovascular and lymphatic systems
PPH.pptx obstetrics and gynecology in nursing
Lesson notes of climatology university.
O5-L3 Freight Transport Ops (International) V1.pdf
Computing-Curriculum for Schools in Ghana
2.FourierTransform-ShortQuestionswithAnswers.pdf
Basic Mud Logging Guide for educational purpose
Microbial diseases, their pathogenesis and prophylaxis
master seminar digital applications in india
RMMM.pdf make it easy to upload and study
Renaissance Architecture: A Journey from Faith to Humanism
GDM (1) (1).pptx small presentation for students
Cell Types and Its function , kingdom of life
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
STATICS OF THE RIGID BODIES Hibbelers.pdf
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
TR - Agricultural Crops Production NC III.pdf
3rd Neelam Sanjeevareddy Memorial Lecture.pdf

CLIM Program: Remote Sensing Workshop, Multilayer Modeling and Analysis of Complex (Systems) Data - Manlio De Domenico, Feb 12, 2018

  • 1. Multilayer Modeling & Analysis of Complex (Systems) Data Manlio De Domenico Complex Multilayer Networks Lab Center for Information Technology, Bruno Kessler Foundation Pasadena 12 February 2018
  • 2. We are part of an increasingly complex world Units are interconnected, interdependent, integrated
  • 3. Real world systems: INTERCONNECTED
  • 5. Beyond lattices Models: INTERCONNECTED Erdos & Renyi (1959) Barabasi & Albert (1999) Watts & Strogatz (1998) Homogeneous Random Small-world Scale-free
  • 6. WWW, Airport networks, … Models: INTERCONNECTED Barabasi & Albert (1999) Scale-free
  • 7. Real world systems: INTERDEPENDENT
  • 8. Real world systems Acting on complex system? • Triggering cascade of effects on the system itself • Triggering cascade of effects on interdependent systems Classical complex networks failure Not able to reproduce observed: • Diffusion properties • Clustering statistics • Resilience • … NATURE CONSISTS OF SYSTEMS OF SYSTEMS
  • 9. Real world systems: FRAGILITY Systems’ integration makes them more vulnerable to perturbations Eyjafjallajökull eruption (2010) Acting on complex system? • Triggering cascade of effects on the system itself • Triggering cascade of effects on interdependent systems Worldwide air traffic delay
  • 10. Our contributions Mathematical formulation for multilayer systems Redundancy of multilayer systems and dimensionality reduction Spreading processes on multilayer systems Predictive tools MDD et al, Phys. Rev. X 3, 041022 (2013) MDD, A. Sole-Ribalta, S. Gomez & A. Arenas, PNAS 11, 8351 (2014) MDD, Sole, Omodei, Gomez & Arenas, Nature Comms. 6, 6868 (2015) MDD, Nicosia, Arenas & Latora, Nature Comms. 6, 6864 (2015) MDD, Lancichinetti, Arenas & Rosvall, Phys. Rev. X 5, 011027 (2015) MDD, Granell, Porter & Arenas, Nature Phys., 12, 901 (2016) Baggio, Burnsilver, Arenas, Magdanz, Kofinas & MDD, PNAS, 113, 13708 (2016) MDD & Biamonte, Phys. Rev. X 6, 041062 (2016) MDD, Phys. Rev. Lett. 118, 168301 (2017)
  • 11. Mathematical formulation of multilayer networks Challenge: Representation MDD et al, Phys. Rev. X 3, 041022 (2013)
  • 12. • Intra-layer links from data • Inter-layer links absent Edge-colored Interconnected • Intra-layer links from data • Inter-layer links from data Basic classification (a) (b) (c)
  • 13. • Intra-layer links from data • Inter-layer links absent Edge-colored Interconnected • Intra-layer links from data • Inter-layer links from data Basic classification (a) (b) (c)
  • 17. Given the canonical basis in: W = NX i,j=1 wijEij = NX i,j=1 wijei ⌦ e† j , W 2 RN ⌦ RN RN 0 B B B B @ 1 0 0 0 0 1 C C C C A 0 B B B B @ 0 1 0 0 0 1 C C C C A1 23 4 5 0 B B B B @ 0 0 0 1 0 1 C C C C A 0 B B B B @ 0 0 0 0 1 1 C C C C A 0 B B B B @ 0 0 1 0 0 1 C C C C A Classical Networks
  • 18. Given the canonical basis in: W = NX i,j=1 wijEij = NX i,j=1 wijei ⌦ e† j , W 2 RN ⌦ RN RN Weighted Adjacency Matrix Equivalent to rank-2 tensor: W⇥ = NX i,j=1 wijE⇥ (ij) = NX i,j=1 wije (i)e⇥(j) 0 B B B B @ 1 0 0 0 0 1 C C C C A 0 B B B B @ 0 1 0 0 0 1 C C C C A1 23 4 5 0 B B B B @ 0 0 0 1 0 1 C C C C A 0 B B B B @ 0 0 0 0 1 1 C C C C A 0 B B B B @ 0 0 1 0 0 1 C C C C A W = 0 B B B B @ 0 w1,2 0 w1,4 0 w1,2 0 w2,3 0 0 0 w2,3 0 w3,4 w3,5 w1,4 0 w3,4 0 0 0 0 w3,5 0 0 1 C C C C A Classical Networks
  • 19. Intra-layer adjacency tensors: C↵ (˜k˜k) = W↵ (˜k) Layers are just rank-2 tensors in RN⇥N Multilayer Networks
  • 20. Inter-layer adjacency tensors: Inter-connections are rank-2 tensors in RN⇥N C↵ (˜h˜k) Multilayer Networks
  • 21. One multilayer adjacency tensor in M ˜⇤ ⇥˜⌅ = LX ˜h,˜k=1 C⇥ (˜h˜k)E˜⇤ ˜⌅ (˜h˜k) = LX ˜h,˜k=1 2 4 NX i,j=1 wij(˜h˜k)E⇥ (ij) 3 5 E˜⇤ ˜⌅ (˜h˜k) = LX ˜h,˜k=1 NX i,j=1 wij(˜h˜k)E ˜⇤ ⇥˜⌅ (ij˜h˜k) RN⇥N⇥L⇥L MDD et al, Phys. Rev. X 3, 041022 (2013) Multilayer Networks
  • 22. How to work with tensors?
  • 23. Kolda & Bader, SIAM review 51, 455 (2009) 4 x 4 1 x 16 Matricization: change dimension while preserving information
  • 24. Gomez et al, Phys. Rev. Lett. 110, 028701 (2013) MDD et al, Phys. Rev. X 3, 041022 (2013) ↵ Mi↵ j : j i From multilayer adjacency tensor to supra-adjacency matrix
  • 25. Gomez et al, Phys. Rev. Lett. 110, 028701 (2013) MDD et al, Phys. Rev. X 3, 041022 (2013) From multilayer adjacency tensor to supra-adjacency matrix
  • 26. Gomez et al, Phys. Rev. Lett. 110, 028701 (2013) MDD et al, Phys. Rev. X 3, 041022 (2013) R(NL)⇥(NL) Supra-adjacency matrix in RN⇥N⇥L⇥L Multilayer adjacency tensor in Multilayer network model“Raw” data From data to matrix
  • 27. Trade-off between importance of intra- and inter-layer links Take home message
  • 28. Weak coupling Poor multilayer effects Approx: analyze as single layers Take home message
  • 30. Is your network a multilayer? Structural reducibility Challenge: Redundancy MDD, Nicosia, Arenas & Latora, Nature Comm. 6, 6864 (2015) MDD & Biamonte, Phys. Rev. X 6, 041062 (2016)
  • 31. Node’s inter-layer out-strength: Flow on multilayer networks Data analysis better/faster in a space smaller than Understanding structure and function easier when there are no redundant components R(NL)⇥(NL) Is the full multilayer the best representation in all cases? MDD, Nicosia, Arenas & Latora, Nature Comm. 6, 6864 (2015)
  • 32. “Merge until no information is lost” MDD, Nicosia, Arenas & Latora, Nature Comm. 6, 6864 (2015)
  • 33. 1. How to compare complex networks, non-trivially? 2. Problem not tractable for increasing system size Important issues
  • 34. All possible combinations of M layers in groups of any size can be prohibitive (Bell number) B(M) = 1X n=0 Bn n! Mn = eeM 1 Bn = nX k=0 ⇢ n k Exhaustive search for optimal merging of layers is not feasible Super-exponential scaling wrt the # layers Which merging strategy?
  • 35. Density matrix ⇢ von Neumann entropy S(⇢) = Tr(⇢ log2 ⇢) Diffusion propagator Normalizing factor ⇢ = e ⌧L Z Z = Tr e ⌧L ˙p(⌧) = Lp(⌧) Diffusion equation General solution p(⌧) = e ⌧L p(0) Our quantum-inspired approach MDD & Biamonte, Phys. Rev. X 6, 041062 (2016)
  • 36. Basis for network information theory / machine learning D1(⇢|| ) = Tr [⇢(log2 ⇢ log2 )] Kullback-Leibler divergence Gain J1(⇢|| ) = S1 ✓ ⇢ + 2 ◆ 1 2 [S1(⇢) + S1( )] Jensen-Shannon divergence p J1(⇢|| ) Jensen-Shannon distance Distance MDD & Biamonte, Phys. Rev. X 6, 041062 (2016)
  • 37. Properties: • Bounded in [0,1] • Symmetric • is a metric distance p DJS • Hierarchical clustering • Suggest a greedy (and fast) way to merge Jensen-Shannon: DJS(⇢|| ) = h(µ) 1 2 [h(⇢) + h( )] Mixture: µ = 1 2 (⇢ + ) Similarity between layers (Convex linear combination) MDD, Nicosia, Arenas & Latora, Nature Comm. 6, 6864 (2015)
  • 38. • Merging “different” layers causes information loss and entropy increases • Merging “similar” layers causes no information loss and entropy ~ unchanged The main idea MDD, Nicosia, Arenas & Latora, Nature Comm. 6, 6864 (2015)
  • 40. Only Circle Line is “redundant” London Tube
  • 41. Multilayer Gene-Protein Interaction Networks Layers are different types of Physical & Genetic interactions
  • 42. Plasmodium Falciparum Mus MusculusGallus Gallus Drosophila Melanogaster Caenorhabditis Elegans Candida Albicans Bos TaurusArabidopsis Thaliana Rattus Norvegicus Saccharomyces Cerevisiae Schizosacch. Pombe Homo Sapiens Oryctolagus Cuniculus Xenopus Laevis Danio Rerio Epstein–Barr VirusHIV Virus Hepatitis C Virus
  • 43. TransportHumanGene-Protein 50% MDD, Nicosia, Arenas & Latora, Nature Comm. 6, 6864 (2015)
  • 44. Multilayer Functional Brain Networks • Resting state fMRI • Layers are functional networks per frequency band • 0.01 Hz to 0.25 Hz in step of 0.02 Hz MDD, Sasai & Arenas, Frontiers in Neuroscience 10, 326 (2016) MDD, Gigscience 6, 1 (2017)
  • 45. A B
  • 47. Diffusion on multilayer networks Challenge: From Structure to Dynamics MDD, C. Granell, M. Porter, A. Arenas, Nature Physics 12, 901 (2016) A. Lima, MDD, V. Pejovic, M. Musolesi, Nature Sci. Rep. 5, 10650 (2015)
  • 48. Layer switching MDD, C. Granell, M. Porter, A. Arenas, Nature Physics 12, 901 (2016) Types of dynamics Single dynamics Coupled dynamics (a) (b)
  • 49. Layer switching Nodejumping pj,⇥(t + 1) = T⇥⇥ jj pj,⇥(t) + LX =1 6=⇥ T ⇥ jj pj, (t) + NX i=1 i6=j T⇥⇥ ij pi,⇥(t) + LX =1 6=⇥ NX i=1 i6=j T ⇥ ij pi, (t) MDD, A. Sole-Ribalta, S. Gomez, A. Arenas, PNAS (2014) Single dynamics
  • 50. Layer switching Nodejumping pj,⇥(t + 1) = T⇥⇥ jj pj,⇥(t) + LX =1 6=⇥ T ⇥ jj pj, (t) + NX i=1 i6=j T⇥⇥ ij pi,⇥(t) + LX =1 6=⇥ NX i=1 i6=j T ⇥ ij pi, (t) MDD, A. Sole-Ribalta, S. Gomez, A. Arenas, PNAS (2014) Transition dynamics
  • 51. Layer switching Nodejumping pj,⇥(t + 1) = T⇥⇥ jj pj,⇥(t) + LX =1 6=⇥ T ⇥ jj pj, (t) + NX i=1 i6=j T⇥⇥ ij pi,⇥(t) + LX =1 6=⇥ NX i=1 i6=j T ⇥ ij pi, (t) MDD, A. Sole-Ribalta, S. Gomez, A. Arenas, PNAS (2014) Transition dynamics
  • 52. Layer switching Nodejumping pj,⇥(t + 1) = T⇥⇥ jj pj,⇥(t) + LX =1 6=⇥ T ⇥ jj pj, (t) + NX i=1 i6=j T⇥⇥ ij pi,⇥(t) + LX =1 6=⇥ NX i=1 i6=j T ⇥ ij pi, (t) MDD, A. Sole-Ribalta, S. Gomez, A. Arenas, PNAS (2014) Transition dynamics
  • 53. Layer switching Nodejumping pj,⇥(t + 1) = T⇥⇥ jj pj,⇥(t) + LX =1 6=⇥ T ⇥ jj pj, (t) + NX i=1 i6=j T⇥⇥ ij pi,⇥(t) + LX =1 6=⇥ NX i=1 i6=j T ⇥ ij pi, (t) MDD, A. Sole-Ribalta, S. Gomez, A. Arenas, PNAS (2014) Transition dynamics
  • 54. MDD, A. Sole-Ribalta, S. Gomez, A. Arenas, PNAS (2014) p (t + 1) = T↵ p↵(t) Master equation Single-layer: ˙p (t) = L ↵ p↵(t) Transition matrix between nodes/layers Probability to find the walker in a node/layer Multi-layer: Normalized Laplacian matrix p ˜(t + 1) = T↵˜ ˜ p↵˜(t) p ˜(t) T↵˜ ˜ ˙p ˜(t) = L ↵˜ ˜ p↵˜(t) L ↵˜ ˜ = ↵˜ ˜ T↵˜ ˜ Probability rate evolution Transition dynamics
  • 55. Gomez et al, Phys. Rev. Lett. 110, 028701 (2013) MDD, C. Granell, M. Porter, A. Arenas, Nature Physics 12, 901 (2016) Layer 1 Layer 2 Aggregated 1 10 100 1 100 Inter−layer coupling Smallestpositiveeigenvalue(Λ2) Layer 1 Layer 2 Aggregated 1 1 100 Inter−layer coupling Smallestpositiveeigenvalue(Λ2) 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 Connection probability in Layer 1 ConnectionprobabilityinLayer2 Regime 1 Regime 2 Regime 1 Regime 2 Unexpected phenomena: enhanced diffusion Diffusion in coupled networks might be faster than each layer separately
  • 56. Using Structure & Dynamics to identify key units Challenge: Prediction MDD, Sole, Omodei, Gomez & Arenas, Nature Comms. 6, 6868 (2015)
  • 57. Classical Multilayer In-degreek = W↵ u↵ Out-degreek↵ = W↵ u K↵ = M↵˜ ˜ U ˜ ˜ u K = M↵˜ ˜ U ˜ ˜ u↵ F⇢ = U⇢ ⇢U⇢ ⇢ “Ones” tensors Kroneker tensor F ˜ ✏˜⌘ = U ˜ ✏˜⌘ ˜ ✏˜⌘ u↵ Cotrace Tensor
  • 58. In-degreek = W↵ u↵ Out-degreek↵ = W↵ u i-th node in- degree k(i) = k e (i) K↵ = M↵˜ ˜ U ˜ ˜ u K = M↵˜ ˜ U ˜ ˜ u↵ k(i) = K e (i) F⇢ = U⇢ ⇢U⇢ ⇢ “Ones” tensors Kroneker tensor F ˜ ✏˜⌘ = U ˜ ✏˜⌘ ˜ ✏˜⌘ u↵ Cotrace Tensor Classical Multilayer
  • 59. In-degreek = W↵ u↵ Out-degreek↵ = W↵ u i-th node in- degree k(i) = k e (i) K↵ = M↵˜ ˜ U ˜ ˜ u K = M↵˜ ˜ U ˜ ˜ u↵ k(i) = K e (i) F⇢ = U⇢ ⇢U⇢ ⇢ “Ones” tensors Kroneker tensor F ˜ ✏˜⌘ = U ˜ ✏˜⌘ ˜ ✏˜⌘ u↵ Cotrace Tensor c(W↵ ) = W↵ ⇢ W⇢ W↵ W↵ ⇢ F⇢ W↵ Global clustering C(M↵˜ ˜ ) = N 1 M↵˜ ˜ M ˜ ✏˜⌘ M✏˜⌘ ↵˜ M↵˜ ˜ F ˜ ✏˜⌘ M✏˜⌘ ↵˜ Classical Multilayer
  • 60. EigenvectorW↵ v↵ = 1v Classical Multilayer Mi↵ j ⇥i↵ = 1⇥j
  • 61. Eigenvector PageRank “Google” tensor: W↵ v↵ = 1v Ri j⇡i = ⇡j Classical Multilayer Mi↵ j ⇥i↵ = 1⇥j Ri↵ j ⇧i↵ = 1⇧j
  • 62. Eigenvector PageRank HITS W↵ v↵ = 1v (W† W)i j⌥i = 1⌥j (WW† )i j i = 1 j Ri j⇡i = ⇡j Classical Multilayer Mi↵ j ⇥i↵ = 1⇥j Ri↵ j ⇧i↵ = 1⇧j (MM† )i↵ j i↵ = 1 j (M† M)i↵ j ⌥i↵ = 1⌥j
  • 63. Eigenvector PageRank HITS W↵ v↵ = 1v v = ( ↵ aW↵ ) 1 u↵ (W† W)i j⌥i = 1⌥j (WW† )i j i = 1 j Katz j = [( aM) 1 ]i↵ j Ui↵ Ri j⇡i = ⇡j Classical Multilayer MDD, Sole, Omodei, Gomez & Arenas, Nature Comms. 6, 6868 (2015) Mi↵ j ⇥i↵ = 1⇥j Ri↵ j ⇧i↵ = 1⇧j (MM† )i↵ j i↵ = 1 j (M† M)i↵ j ⌥i↵ = 1⌥j
  • 64. Healthy Schizophrenia Mux Mux & Aggr. Discriminative Diagnostic accuracy Multilayer Aggregatevs 85% 70% MDD, Sasai & Arenas, Frontiers in Neuroscience 10, 326 (2016)
  • 65. Take home messages Systems of systems: integration requires a new framework
  • 66. Our finding: multilayer networks are more predictive Take home messages Aggregating complex data might lead to misunderstanding Systems of systems: integration requires a new framework
  • 67. Our finding: multilayer networks are more predictive Take home messages Aggregating complex data might lead to misunderstanding New mathematical formulation & network information theory as natural frameworks for data analytics of complex systems Systems of systems: integration requires a new framework
  • 68. Multilayer Theory of Data Systems? Network: the architecture of a data system Multilayer Network a natural framework for: • Structure: integrated data systems • Dynamics: information flow and integration Layers: software/methodology/…?
  • 69. @manlius84 mdedomenico@fbk.eu THANK YOU! MDD et al, Phys. Rev. X 3, 041022 (2013) MDD, A. Sole-Ribalta, S. Gomez, A. Arenas, PNAS 11, 8351 (2014) MDD, Sole, Omodei, Gomez & Arenas, Nature Comms. 6, 6868 (2015) MDD, Nicosia, Arenas & Latora, Nature Comms. 6, 6864 (2015) MDD, Lancichinetti, Arenas & Rosvall, Phys. Rev. X 5, 011027 (2015) MDD, Granell, Porter & Arenas, Nature Phys., 12, 901 (2016) Baggio, Burnsilver, Arenas, Magdanz, Kofinas & MDD, PNAS, 113, 13708 (2016) MDD & Biamonte, Phys. Rev. X 6, 041062 (2016) MDD, Phys. Rev. Lett. 118, 168301 (2017) Methodology and theoretical background https://comunelab.fbk.eu/ MDD, Porter & Arenas, J. Complex Networks 3, 159 (2015) Computational tools http://muxviz.net