SlideShare a Scribd company logo
Chapter 13: Biology of Learning and Memory
Learning, Memory, Amnesia, and Brain Functioning An early influential idea regarding localized representations of memory in the brain suggested physical changes occur when we learn something new. One popular idea was that connections grow between areas of the brain.
Learning, Memory, Amnesia, and Brain Functioning Ivan Pavlov researched  classical conditioning  in which pairing of two stimuli changes the response to one of them. Presentation of a  conditioned stimulus (CS)  is paired with an  unconditioned stimulus (UCS). Automatically results in an  unconditioned response (UCR ). After several pairings, response can be elicited by the CS without the UCS, which is known as a  conditioned response (CR ).
Learning, Memory, Amnesia, and Brain Functioning In  operant conditioning ,   responses are followed by reinforcement or punishment that either strengthen or weaken a behavior. Reinforcers  are events that increase the probability that the response will occur again. Punishment  are events that decrease the probability that the response will occur again.
Fig. 13-1, p. 385
Learning, Memory, Amnesia, and Brain Functioning Pavlov believed that conditioning strengthened connections between the CS center and UCS center in the brain.  Karl Lashley set out to prove this by searching for such  engrams , or physical representations of what had been learned. Believed that a knife cut should abolish the newly learned response.
Fig. 13-2, p. 386
Learning, Memory, Amnesia, and Brain Functioning Lashley’s studies attempted to see if disrupting certain connections between cortical brain areas would disrupt abilities to learn associations. Found that learning and memory did not depend on connections across the cortex Also found that learning did not depend on a single area of the cortex.
Learning, Memory, Amnesia, and Brain Functioning Lashley proposed two key principles about the nervous system: Equipotentiality  – all parts of the cortex contribute equally to complex functioning behaviors (e.g. learning) Mass action  – the cortex works as a whole, not as solitary isolated units.
Learning, Memory, Amnesia, and Brain Functioning Modern day research by Richard F. Thompson and colleagues has suggested that the engram for classical conditioning is located in the cerebellum, not the cortex. During conditioning, changes occur in cells of one nucleus of the cerebellum called the  lateral interpositus nucleus (LIP) . However, a change in a brain area does not necessarily mean that learning necessarily took place in that area.
Fig. 13-4, p. 388
Learning, Memory, Amnesia, and Brain Functioning Suppression of activity in the LIP led to a condition in which the subject displayed no previous learning. As suppression wore off, the animal began to learn at the same speed as animals that had no previous training. But suppression of the red nucleus also led to a similar condition.  Later assumed that the learning did occur in the LIP, as it was the last structure that needed to be awake for learning to occur.
Learning, Memory, Amnesia, and Brain Functioning Hebb (1949) differentiated between two types of memory: Short-term memory  – memory of events that have just occurred. Long-term memory  –   memory of events from previous times.
Learning, Memory, Amnesia, and Brain Functioning Differences between STM and LTM Short-term memory has a limited capacity; long-term memory does not. Short-term memory fades quickly without rehearsal; long-term memories persist. Memories from long-term memory can be stimulated with a cue/ hint; retrieval of memories lost from STM do not benefit from the presence of a cue.
Learning, Memory, Amnesia, and Brain Functioning Later research has weakened the distinction between STM and LTM. Some memories do not qualify as distinctly short-term or long-term. Working Memory Proposed by Baddeley & Hitch as an alternative to short-term memory. Emphasis on temporary storage of information to actively attend to it and work on it for a period of time.
Learning, Memory, Amnesia, and Brain Functioning Three major components of working memory include: Phonological loop  – Stores auditory input Visuospatial sketchpad  – Stores visual input. Central Executive  – Directs attention and determines which items to store.
Learning, Memory, Amnesia, and Brain Functioning The  delayed response task  is a test of working memory which requires responding to a stimulus that one heard or saw a short while earlier. Increased activity in the prefrontal cortex during the delay indicates storing of the memory. The stronger the activation, the better the performance.
Fig. 13-7, p. 394
Learning, Memory, Amnesia, and Brain Functioning Older people often have impairments in working memory. Changes in the prefrontal cortex assumed to be the cause. Declining activity of the prefrontal cortex in the elderly is associated with decreasing memory. Increased activity is indicative of compensation for other regions in the brain.
Learning, Memory, Amnesia, and Brain Functioning Amnesia  is the loss of memory. Studies on amnesia help to clarify the distinctions between and among different kinds of memories and their mechanisms. Different areas of the hippocampus are active during memory formation and retrieval. Damage results in amnesia.
Learning, Memory, Amnesia, and Brain Functioning Patient HM is a famous case study in psychology who had his hippocampus removed to prevent epileptic seizures. Afterwards Patient HM had great difficulty forming new long-term memories. STM or working memory remained intact. Suggested that the hippocampus is vital for the formation of new long-term memories.
Fig. 13-5ab, p. 391
Learning, Memory, Amnesia, and Brain Functioning Patient HM showed massive anterograde amnesia after the surgery.  Two major types of amnesia include: Anterograde amnesia  – the loss of the ability to form new memory after the brain damage occurred. Retrograde amnesia  – the loss of memory events prior to the occurrence of the brain damage.
Learning, Memory, Amnesia, and Brain Functioning Patient HM had difficulty with declarative and episodic memory. Episodic memory:  ability to recall single events. Declarative memory:  ability to put a memory into words. Patient HM’s procedural memory remained intact. Procedural memory : ability to develop motor skills (remembering or learning how to do things).
Learning, Memory, Amnesia, and Brain Functioning Patient HM also displayed greater “implicit” than “explicit” memory. Explicit memory  – deliberate recall of information that one recognizes as a memory. Implicit memory  – the influence of recent experience on behavior without realizing one is using memory.
Learning, Memory, Amnesia, and Brain Functioning Research in differences in hippocampus size has revealed conflicting results. Some evidence suggests that a smaller hippocampus is associated with better memory performance. Hypothesis is that apoptosis improves hippocampus functioning. Generally, hippocampus activity is more associated with memory performance than is the size.
Learning, Memory, Amnesia, and Brain Functioning Research of the function of the hippocampus suggests the following: The hippocampus is critical for declarative (especially episodic) memory functioning. The hippocampus is especially important for spatial memory. The hippocampus is especially important for configural learning and binding.
Learning, Memory, Amnesia, and Brain Functioning Research in the role of the hippocampus in episodic memory shows damage impairs abilities on two types of tasks:  Delayed matching-to-sample tasks  –   a subject sees an object and must later choose the  object that matches. Delayed non-matching-to-sample tasks – subject sees an object and must later choose the object that is different than the sample.
Fig. 13-7, p. 394
Learning, Memory, Amnesia, and Brain Functioning Damage to the hippocampus also impairs abilities on spatial tasks such as: Radial mazes  – a subject must navigate a maze that has eight or more arms with a reinforcer at the end. Morris search task  – a rat must swim through murky water to find a rest platform just underneath the surface.
Learning, Memory, Amnesia, and Brain Functioning Hippocampus damage also impairs configural learning and binding. Configural learning  – learning in which the meaning of a stimulus depends on what other stimuli are paired with it. Animals with damage can learn configural tasks but learning is slow. Indicates hippocampus is not necessary for configural learning, but is involved.
Learning, Memory, Amnesia, and Brain Functioning Evidence suggests that the hippocampus is important in the process of “consolidation”. Consolidation  is the process of strengthening short-term memories into long-term memories. Damage to the hippocampus impairs recent learning more than older learning. The more consolidated a memory becomes, the less it depends on the hippocampus.
Learning, Memory, Amnesia, and Brain Functioning Reverberating circuits of neuronal activity were thought to be the mechanisms of consolidation. Consolidation is also influenced by the passage of time and emotions. Small to moderate amounts of cortisol activate the amygdala and hippocampus where they enhance storage and consolidation of recent experiences. Prolonged stress impairs memory.
Fig. 13-11, p. 398
Learning, Memory, Amnesia, and Brain Functioning Different kinds of brain damage result in different types of amnesia. Two common types of brain damage include: Korsakoff’s syndrome Alzheimer’s disease
Learning, Memory, Amnesia, and Brain Functioning Korsakoff’s syndrome  – prolonged thiamine (vitamin B1) deficiency impedes the ability of the brain to metabolize glucose. Leads to a loss of or shrinkage of neurons in the brain. Often due to chronic alcoholism. Symptoms include apathy, confusion, and forgetting and  confabulation  (taking guesses to fill in gaps in memory).
Learning, Memory, Amnesia, and Brain Functioning Alzheimer’s disease  is associated with a   gradually progressive loss of memory often occurring in old age. Affects 50% of people over 85. Early onset seems to be influenced by genes, but 99% of cases are late onset. About half of all patients with late onset have no known relative with the disease.
Fig. 13-13, p. 401
Learning, Memory, Amnesia, and Brain Functioning Alzheimer’s disease is associated with an accumulation and clumping of the following brain proteins: Amyloid beta protein 42  which produces widespread atrophy of the cerebral cortex, hippocampus and other areas. An abnormal form of the  tau  protein, part of the intracellular support system of neurons.
Learning, Memory, Amnesia, and Brain Functioning Accumulation of the tau protein results in: Plaques  – structures formed from degenerating neurons. Tangles  –   structures formed from degenerating structures within a neuronal body.
Learning, Memory, Amnesia, and Brain Functioning A major area of damage is the basal forebrain and treatment includes enhancing acetylcholine activity. One experimental treatment includes the stimulation of cannabinoid receptors that limits overstimulation by glutamate. Research with mice suggests the possibility of immunizing against Alzheimer’s by stimulating the production of antibodies against amyloid beta protein.
Learning, Memory, Amnesia, and Brain Functioning Lessons from studying amnesiac patients include: There can be deficiencies of very different aspects of memory. There are independent kinds of memory. Various kinds of memory depend on different brain areas.
Storing Information in the Nervous System (con’t) Activity in the brain results in physical changes. Patterns of activity leave a path of physical changes. Not every change is a specific memory as was once originally believed.
Storing Information in the Nervous System A  Hebbian synapse  occurs when the successful stimulation of a cell by an axon leads to the enhanced ability to stimulate that cell in the future. Increases in effectiveness occur because of simultaneous activity in the presynaptic and postsynaptic neurons. Such synapses may be critical for many kinds of  associative learning.
Storing Information in the Nervous System Studies of how physiology relates to learning often focus on invertebrates and try to generalize to vertebrates.  The aplysia is a slug-like invertebrate that is often studied due to its large neurons. This allows researchers to study basic processes such as: Habituation. Sensitization.
Storing Information in the Nervous System Habituation  is a decrease in response to a  stimulus that is presented repeatedly and accompanied by no change in other stimuli. Results in a change in the synapse between the sensory neurons and the motor neurons. Sensory neurons fail to excite motor neurons as they did previously.
Storing Information in the Nervous System Sensitization  is an increase in response to a mild stimulus as a result to previous exposure to a more intense stimulus. Changes at identified synapses include: Serotonin released from a facilitating neuron blocks potassium channels in a presynaptic neuron. Prolonged release of transmitter from that neuron results in prolonged sensitization.
Storing Information in the Nervous System Long-term Potentiation (LTP)  occurs when one or more axons bombard a dendrite with stimulation. Leaves the synapse “potentiated” for a period of time and the neuron is more responsive.
Storing Information in the Nervous System Properties of LTP that suggest it as a cellular basis of learning and memory include: Specificity Cooperativity Associativity
Storing Information in the Nervous System Specificity –  only synapses onto a cell that have been highly active become strengthened. Cooperativity –  simultaneous stimulation by two or more axons produces LTP much more strongly than does repeated stimulation by a single axon. Associativity –  pairing a weak input with a strong input enhances later responses to a weak input.
Storing Information in the Nervous System Long-term depression (LTD ) is a prolonged decrease in response at a synapse that occurs when axons have been active at a low frequency. The opposite of LTP
Storing Information in the Nervous System Biochemical mechanisms of LTP are known to depend on changes in glutamate synapses primarily in the postsynaptic neuron This occurs at several types of receptor sites including the ionotropic receptors:  AMPA receptors. NMDA receptors.
Fig. 13-21, p. 409
Storing Information in the Nervous System LTP in hippocampal neurons occurs as follows: Repeated glutamate excitation of AMPA receptors depolarizes the membrane. The depolarization removes magnesium ions that had been blocking NMDA receptors. Glutamate is then able to excite the NMDA receptors, opening a channel for calcium ions to enter the neuron.
Storing Information in the Nervous System Entry of calcium through the NMDA channel triggers further changes. Activation of a protein that sets in motion a series of events occurs. More AMPA receptors are built and dendritic branching is increased. These changes increase the later responsiveness of the dendrite to incoming glutamate.
Storing Information in the Nervous System Changes in presynaptic neuron can also cause LTP. Extensive stimulation of a postsynaptic cell causes the release of a  retrograde transmitter  that travels back to the presynaptic cell to cause the following changes: Decrease in action potential threshold Increase neurotransmitter release of  Expansion of the axons. Transmitter release from additional sites.
Storing Information in the Nervous System LTP changes behavior by creating changes in multiple synapses and complex networks of neurons. Understanding the mechanisms of changes that enhance or impair LTP may lead to drugs that improve memory. Example: Mice with genes that cause abnormalities in the NMDA receptor learn slowly and extra NMDA receptors result in faster learning.

More Related Content

PPTX
Cerebral lateralisation
PPT
Chapter14 Power Point Lecture
PPTX
The neural correlates of executive function
PPT
Introductory Psychology: Biopsychology
ODP
Cognitive Neuropsychology and Functional Brain Imaging: Implications for func...
PPTX
Hormones & sex
PPSX
Frontal lobe dr. arpit
PPTX
Frontal lobe
Cerebral lateralisation
Chapter14 Power Point Lecture
The neural correlates of executive function
Introductory Psychology: Biopsychology
Cognitive Neuropsychology and Functional Brain Imaging: Implications for func...
Hormones & sex
Frontal lobe dr. arpit
Frontal lobe

What's hot (20)

PPTX
Frontal lobe functions and assessmeny 20th july 2013
PPTX
Luria Nebraska battery brain damage
PPTX
Frontal lobe syndromes
PPT
Neurobiology of Memory
PPT
Sex And The Brain
PPT
Neurobiology of memory
PPTX
Frontal lobe relation to psychiatry
PPTX
Neurobiology of emotion
PPTX
Cerebellum its function and releveance in psychiatry
PPTX
PPTX
Declarative memory
PPTX
Frontal lobe and its functions
PPTX
Attention
 
PPT
qeeg Neuroshow
PPT
Chapter 2 Ap Psych- Brain & Behavior
PPT
Neuropsychology
PPTX
Sleep in psychiatry
PPT
Chapter 09: Wakefulness & Sleep
PPTX
Sleep Physiology and Disorders Arpit
Frontal lobe functions and assessmeny 20th july 2013
Luria Nebraska battery brain damage
Frontal lobe syndromes
Neurobiology of Memory
Sex And The Brain
Neurobiology of memory
Frontal lobe relation to psychiatry
Neurobiology of emotion
Cerebellum its function and releveance in psychiatry
Declarative memory
Frontal lobe and its functions
Attention
 
qeeg Neuroshow
Chapter 2 Ap Psych- Brain & Behavior
Neuropsychology
Sleep in psychiatry
Chapter 09: Wakefulness & Sleep
Sleep Physiology and Disorders Arpit
Ad

Viewers also liked (16)

PPTX
Is it Forgetfulness or Dementia?
PPTX
Overcoming forgetfulness
PPTX
Forgetting Theory
PPTX
psychology of forgetting
PPT
Theories of forgetting
PPT
Forgetting and Remembering
PPT
2. Forgetting
PPSX
Memory and Forgetting - Psychology
PPTX
Forgetting and theories of forgetting
PPT
Basic psychological process ---learning
PPTX
Memory and its types and Causes of Forgetting - PPT
PPTX
Psychology Memory and Learning Power Point
PPTX
Human Memory (Psychology)
PPT
Human Memory - Psychology
PPTX
Psychology- Memory
 
Is it Forgetfulness or Dementia?
Overcoming forgetfulness
Forgetting Theory
psychology of forgetting
Theories of forgetting
Forgetting and Remembering
2. Forgetting
Memory and Forgetting - Psychology
Forgetting and theories of forgetting
Basic psychological process ---learning
Memory and its types and Causes of Forgetting - PPT
Psychology Memory and Learning Power Point
Human Memory (Psychology)
Human Memory - Psychology
Psychology- Memory
 
Ad

Similar to Chapter13 Power Point Lecture (20)

PPT
learning and memory lecture.ppt
PPTX
MEMORY AND learning Doc Ayomide 2025 unizik school of pharmacy Agulu
PPT
learning,memory and amnesia
PPT
Memory
PPT
Chapter 8 pwrpt
DOCX
Glossary
PPT
Pinel basics ch09
DOCX
Disorders memory
PPTX
Occupational Therapy Orientation and Memory
PPTX
memory information for mphil clinical psychology
PPTX
Final biopsyCHOLOGY REPORT
PPT
LEARNING & MEMORY (2).ppt
PPT
Memory presentation ehlana robinson (no animation)
PPT
Y2 s1 memory
PPTX
Physiology of memory & learning.
PPTX
MEMORY AND LEARNING 3_101937.pptx Doc Ayomide, School of pharmacy Agulu
PDF
Memory.pdf..............................
PPT
Memory
PPT
Memory
PPT
Memory
learning and memory lecture.ppt
MEMORY AND learning Doc Ayomide 2025 unizik school of pharmacy Agulu
learning,memory and amnesia
Memory
Chapter 8 pwrpt
Glossary
Pinel basics ch09
Disorders memory
Occupational Therapy Orientation and Memory
memory information for mphil clinical psychology
Final biopsyCHOLOGY REPORT
LEARNING & MEMORY (2).ppt
Memory presentation ehlana robinson (no animation)
Y2 s1 memory
Physiology of memory & learning.
MEMORY AND LEARNING 3_101937.pptx Doc Ayomide, School of pharmacy Agulu
Memory.pdf..............................
Memory
Memory
Memory

More from Gladys Escalante (20)

PDF
Community food resource center proposal (1)
PPT
Goldstein chapter 1
PPTX
Couple therapy and treatment of sexual dysfunction
PPT
Narrative psychotherapy with couples 121614
PPTX
Issues and ethics chapter 11
PPT
Goldstein chapter 8
PPT
Chapter 8 power point presentation
PPT
Chapter2 Power Point Presentation
PPT
Chapter1 Power Point Presentation
PPT
Chapter15 Power Point Presentation
PPT
Chapter12 Power Point Lecture
PPT
Chapter11 Power Point Lecture
PPT
Chapter10 Power Point Lecture
PPT
Chapter9 Power Point Lecture
PPT
Chapter8 Power Point Lecture
PPT
Chapter7 Power Point Lecture
PPT
Chapter6 Power Point Lecture
PPT
Chapter5 Power Point Lecture
PPT
Chapter3 Power Point Lecture
PPT
Chapter2 Power Point Lecture
Community food resource center proposal (1)
Goldstein chapter 1
Couple therapy and treatment of sexual dysfunction
Narrative psychotherapy with couples 121614
Issues and ethics chapter 11
Goldstein chapter 8
Chapter 8 power point presentation
Chapter2 Power Point Presentation
Chapter1 Power Point Presentation
Chapter15 Power Point Presentation
Chapter12 Power Point Lecture
Chapter11 Power Point Lecture
Chapter10 Power Point Lecture
Chapter9 Power Point Lecture
Chapter8 Power Point Lecture
Chapter7 Power Point Lecture
Chapter6 Power Point Lecture
Chapter5 Power Point Lecture
Chapter3 Power Point Lecture
Chapter2 Power Point Lecture

Recently uploaded (20)

PPTX
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
PPTX
ACSFv1EN-58255 AWS Academy Cloud Security Foundations.pptx
PDF
Building Integrated photovoltaic BIPV_UPV.pdf
PPT
“AI and Expert System Decision Support & Business Intelligence Systems”
PDF
Encapsulation_ Review paper, used for researhc scholars
PDF
Agricultural_Statistics_at_a_Glance_2022_0.pdf
PDF
Network Security Unit 5.pdf for BCA BBA.
PDF
cuic standard and advanced reporting.pdf
PPTX
Understanding_Digital_Forensics_Presentation.pptx
PDF
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
PDF
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
 
PDF
Chapter 3 Spatial Domain Image Processing.pdf
PDF
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
PDF
The Rise and Fall of 3GPP – Time for a Sabbatical?
 
PDF
Empathic Computing: Creating Shared Understanding
PDF
Machine learning based COVID-19 study performance prediction
PDF
Reach Out and Touch Someone: Haptics and Empathic Computing
DOCX
The AUB Centre for AI in Media Proposal.docx
 
PDF
MIND Revenue Release Quarter 2 2025 Press Release
PPTX
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
ACSFv1EN-58255 AWS Academy Cloud Security Foundations.pptx
Building Integrated photovoltaic BIPV_UPV.pdf
“AI and Expert System Decision Support & Business Intelligence Systems”
Encapsulation_ Review paper, used for researhc scholars
Agricultural_Statistics_at_a_Glance_2022_0.pdf
Network Security Unit 5.pdf for BCA BBA.
cuic standard and advanced reporting.pdf
Understanding_Digital_Forensics_Presentation.pptx
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
 
Chapter 3 Spatial Domain Image Processing.pdf
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
The Rise and Fall of 3GPP – Time for a Sabbatical?
 
Empathic Computing: Creating Shared Understanding
Machine learning based COVID-19 study performance prediction
Reach Out and Touch Someone: Haptics and Empathic Computing
The AUB Centre for AI in Media Proposal.docx
 
MIND Revenue Release Quarter 2 2025 Press Release
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx

Chapter13 Power Point Lecture

  • 1. Chapter 13: Biology of Learning and Memory
  • 2. Learning, Memory, Amnesia, and Brain Functioning An early influential idea regarding localized representations of memory in the brain suggested physical changes occur when we learn something new. One popular idea was that connections grow between areas of the brain.
  • 3. Learning, Memory, Amnesia, and Brain Functioning Ivan Pavlov researched classical conditioning in which pairing of two stimuli changes the response to one of them. Presentation of a conditioned stimulus (CS) is paired with an unconditioned stimulus (UCS). Automatically results in an unconditioned response (UCR ). After several pairings, response can be elicited by the CS without the UCS, which is known as a conditioned response (CR ).
  • 4. Learning, Memory, Amnesia, and Brain Functioning In operant conditioning , responses are followed by reinforcement or punishment that either strengthen or weaken a behavior. Reinforcers are events that increase the probability that the response will occur again. Punishment are events that decrease the probability that the response will occur again.
  • 6. Learning, Memory, Amnesia, and Brain Functioning Pavlov believed that conditioning strengthened connections between the CS center and UCS center in the brain. Karl Lashley set out to prove this by searching for such engrams , or physical representations of what had been learned. Believed that a knife cut should abolish the newly learned response.
  • 8. Learning, Memory, Amnesia, and Brain Functioning Lashley’s studies attempted to see if disrupting certain connections between cortical brain areas would disrupt abilities to learn associations. Found that learning and memory did not depend on connections across the cortex Also found that learning did not depend on a single area of the cortex.
  • 9. Learning, Memory, Amnesia, and Brain Functioning Lashley proposed two key principles about the nervous system: Equipotentiality – all parts of the cortex contribute equally to complex functioning behaviors (e.g. learning) Mass action – the cortex works as a whole, not as solitary isolated units.
  • 10. Learning, Memory, Amnesia, and Brain Functioning Modern day research by Richard F. Thompson and colleagues has suggested that the engram for classical conditioning is located in the cerebellum, not the cortex. During conditioning, changes occur in cells of one nucleus of the cerebellum called the lateral interpositus nucleus (LIP) . However, a change in a brain area does not necessarily mean that learning necessarily took place in that area.
  • 12. Learning, Memory, Amnesia, and Brain Functioning Suppression of activity in the LIP led to a condition in which the subject displayed no previous learning. As suppression wore off, the animal began to learn at the same speed as animals that had no previous training. But suppression of the red nucleus also led to a similar condition. Later assumed that the learning did occur in the LIP, as it was the last structure that needed to be awake for learning to occur.
  • 13. Learning, Memory, Amnesia, and Brain Functioning Hebb (1949) differentiated between two types of memory: Short-term memory – memory of events that have just occurred. Long-term memory – memory of events from previous times.
  • 14. Learning, Memory, Amnesia, and Brain Functioning Differences between STM and LTM Short-term memory has a limited capacity; long-term memory does not. Short-term memory fades quickly without rehearsal; long-term memories persist. Memories from long-term memory can be stimulated with a cue/ hint; retrieval of memories lost from STM do not benefit from the presence of a cue.
  • 15. Learning, Memory, Amnesia, and Brain Functioning Later research has weakened the distinction between STM and LTM. Some memories do not qualify as distinctly short-term or long-term. Working Memory Proposed by Baddeley & Hitch as an alternative to short-term memory. Emphasis on temporary storage of information to actively attend to it and work on it for a period of time.
  • 16. Learning, Memory, Amnesia, and Brain Functioning Three major components of working memory include: Phonological loop – Stores auditory input Visuospatial sketchpad – Stores visual input. Central Executive – Directs attention and determines which items to store.
  • 17. Learning, Memory, Amnesia, and Brain Functioning The delayed response task is a test of working memory which requires responding to a stimulus that one heard or saw a short while earlier. Increased activity in the prefrontal cortex during the delay indicates storing of the memory. The stronger the activation, the better the performance.
  • 19. Learning, Memory, Amnesia, and Brain Functioning Older people often have impairments in working memory. Changes in the prefrontal cortex assumed to be the cause. Declining activity of the prefrontal cortex in the elderly is associated with decreasing memory. Increased activity is indicative of compensation for other regions in the brain.
  • 20. Learning, Memory, Amnesia, and Brain Functioning Amnesia is the loss of memory. Studies on amnesia help to clarify the distinctions between and among different kinds of memories and their mechanisms. Different areas of the hippocampus are active during memory formation and retrieval. Damage results in amnesia.
  • 21. Learning, Memory, Amnesia, and Brain Functioning Patient HM is a famous case study in psychology who had his hippocampus removed to prevent epileptic seizures. Afterwards Patient HM had great difficulty forming new long-term memories. STM or working memory remained intact. Suggested that the hippocampus is vital for the formation of new long-term memories.
  • 23. Learning, Memory, Amnesia, and Brain Functioning Patient HM showed massive anterograde amnesia after the surgery. Two major types of amnesia include: Anterograde amnesia – the loss of the ability to form new memory after the brain damage occurred. Retrograde amnesia – the loss of memory events prior to the occurrence of the brain damage.
  • 24. Learning, Memory, Amnesia, and Brain Functioning Patient HM had difficulty with declarative and episodic memory. Episodic memory: ability to recall single events. Declarative memory: ability to put a memory into words. Patient HM’s procedural memory remained intact. Procedural memory : ability to develop motor skills (remembering or learning how to do things).
  • 25. Learning, Memory, Amnesia, and Brain Functioning Patient HM also displayed greater “implicit” than “explicit” memory. Explicit memory – deliberate recall of information that one recognizes as a memory. Implicit memory – the influence of recent experience on behavior without realizing one is using memory.
  • 26. Learning, Memory, Amnesia, and Brain Functioning Research in differences in hippocampus size has revealed conflicting results. Some evidence suggests that a smaller hippocampus is associated with better memory performance. Hypothesis is that apoptosis improves hippocampus functioning. Generally, hippocampus activity is more associated with memory performance than is the size.
  • 27. Learning, Memory, Amnesia, and Brain Functioning Research of the function of the hippocampus suggests the following: The hippocampus is critical for declarative (especially episodic) memory functioning. The hippocampus is especially important for spatial memory. The hippocampus is especially important for configural learning and binding.
  • 28. Learning, Memory, Amnesia, and Brain Functioning Research in the role of the hippocampus in episodic memory shows damage impairs abilities on two types of tasks: Delayed matching-to-sample tasks – a subject sees an object and must later choose the object that matches. Delayed non-matching-to-sample tasks – subject sees an object and must later choose the object that is different than the sample.
  • 30. Learning, Memory, Amnesia, and Brain Functioning Damage to the hippocampus also impairs abilities on spatial tasks such as: Radial mazes – a subject must navigate a maze that has eight or more arms with a reinforcer at the end. Morris search task – a rat must swim through murky water to find a rest platform just underneath the surface.
  • 31. Learning, Memory, Amnesia, and Brain Functioning Hippocampus damage also impairs configural learning and binding. Configural learning – learning in which the meaning of a stimulus depends on what other stimuli are paired with it. Animals with damage can learn configural tasks but learning is slow. Indicates hippocampus is not necessary for configural learning, but is involved.
  • 32. Learning, Memory, Amnesia, and Brain Functioning Evidence suggests that the hippocampus is important in the process of “consolidation”. Consolidation is the process of strengthening short-term memories into long-term memories. Damage to the hippocampus impairs recent learning more than older learning. The more consolidated a memory becomes, the less it depends on the hippocampus.
  • 33. Learning, Memory, Amnesia, and Brain Functioning Reverberating circuits of neuronal activity were thought to be the mechanisms of consolidation. Consolidation is also influenced by the passage of time and emotions. Small to moderate amounts of cortisol activate the amygdala and hippocampus where they enhance storage and consolidation of recent experiences. Prolonged stress impairs memory.
  • 35. Learning, Memory, Amnesia, and Brain Functioning Different kinds of brain damage result in different types of amnesia. Two common types of brain damage include: Korsakoff’s syndrome Alzheimer’s disease
  • 36. Learning, Memory, Amnesia, and Brain Functioning Korsakoff’s syndrome – prolonged thiamine (vitamin B1) deficiency impedes the ability of the brain to metabolize glucose. Leads to a loss of or shrinkage of neurons in the brain. Often due to chronic alcoholism. Symptoms include apathy, confusion, and forgetting and confabulation (taking guesses to fill in gaps in memory).
  • 37. Learning, Memory, Amnesia, and Brain Functioning Alzheimer’s disease is associated with a gradually progressive loss of memory often occurring in old age. Affects 50% of people over 85. Early onset seems to be influenced by genes, but 99% of cases are late onset. About half of all patients with late onset have no known relative with the disease.
  • 39. Learning, Memory, Amnesia, and Brain Functioning Alzheimer’s disease is associated with an accumulation and clumping of the following brain proteins: Amyloid beta protein 42 which produces widespread atrophy of the cerebral cortex, hippocampus and other areas. An abnormal form of the tau protein, part of the intracellular support system of neurons.
  • 40. Learning, Memory, Amnesia, and Brain Functioning Accumulation of the tau protein results in: Plaques – structures formed from degenerating neurons. Tangles – structures formed from degenerating structures within a neuronal body.
  • 41. Learning, Memory, Amnesia, and Brain Functioning A major area of damage is the basal forebrain and treatment includes enhancing acetylcholine activity. One experimental treatment includes the stimulation of cannabinoid receptors that limits overstimulation by glutamate. Research with mice suggests the possibility of immunizing against Alzheimer’s by stimulating the production of antibodies against amyloid beta protein.
  • 42. Learning, Memory, Amnesia, and Brain Functioning Lessons from studying amnesiac patients include: There can be deficiencies of very different aspects of memory. There are independent kinds of memory. Various kinds of memory depend on different brain areas.
  • 43. Storing Information in the Nervous System (con’t) Activity in the brain results in physical changes. Patterns of activity leave a path of physical changes. Not every change is a specific memory as was once originally believed.
  • 44. Storing Information in the Nervous System A Hebbian synapse occurs when the successful stimulation of a cell by an axon leads to the enhanced ability to stimulate that cell in the future. Increases in effectiveness occur because of simultaneous activity in the presynaptic and postsynaptic neurons. Such synapses may be critical for many kinds of associative learning.
  • 45. Storing Information in the Nervous System Studies of how physiology relates to learning often focus on invertebrates and try to generalize to vertebrates. The aplysia is a slug-like invertebrate that is often studied due to its large neurons. This allows researchers to study basic processes such as: Habituation. Sensitization.
  • 46. Storing Information in the Nervous System Habituation is a decrease in response to a stimulus that is presented repeatedly and accompanied by no change in other stimuli. Results in a change in the synapse between the sensory neurons and the motor neurons. Sensory neurons fail to excite motor neurons as they did previously.
  • 47. Storing Information in the Nervous System Sensitization is an increase in response to a mild stimulus as a result to previous exposure to a more intense stimulus. Changes at identified synapses include: Serotonin released from a facilitating neuron blocks potassium channels in a presynaptic neuron. Prolonged release of transmitter from that neuron results in prolonged sensitization.
  • 48. Storing Information in the Nervous System Long-term Potentiation (LTP) occurs when one or more axons bombard a dendrite with stimulation. Leaves the synapse “potentiated” for a period of time and the neuron is more responsive.
  • 49. Storing Information in the Nervous System Properties of LTP that suggest it as a cellular basis of learning and memory include: Specificity Cooperativity Associativity
  • 50. Storing Information in the Nervous System Specificity – only synapses onto a cell that have been highly active become strengthened. Cooperativity – simultaneous stimulation by two or more axons produces LTP much more strongly than does repeated stimulation by a single axon. Associativity – pairing a weak input with a strong input enhances later responses to a weak input.
  • 51. Storing Information in the Nervous System Long-term depression (LTD ) is a prolonged decrease in response at a synapse that occurs when axons have been active at a low frequency. The opposite of LTP
  • 52. Storing Information in the Nervous System Biochemical mechanisms of LTP are known to depend on changes in glutamate synapses primarily in the postsynaptic neuron This occurs at several types of receptor sites including the ionotropic receptors: AMPA receptors. NMDA receptors.
  • 54. Storing Information in the Nervous System LTP in hippocampal neurons occurs as follows: Repeated glutamate excitation of AMPA receptors depolarizes the membrane. The depolarization removes magnesium ions that had been blocking NMDA receptors. Glutamate is then able to excite the NMDA receptors, opening a channel for calcium ions to enter the neuron.
  • 55. Storing Information in the Nervous System Entry of calcium through the NMDA channel triggers further changes. Activation of a protein that sets in motion a series of events occurs. More AMPA receptors are built and dendritic branching is increased. These changes increase the later responsiveness of the dendrite to incoming glutamate.
  • 56. Storing Information in the Nervous System Changes in presynaptic neuron can also cause LTP. Extensive stimulation of a postsynaptic cell causes the release of a retrograde transmitter that travels back to the presynaptic cell to cause the following changes: Decrease in action potential threshold Increase neurotransmitter release of Expansion of the axons. Transmitter release from additional sites.
  • 57. Storing Information in the Nervous System LTP changes behavior by creating changes in multiple synapses and complex networks of neurons. Understanding the mechanisms of changes that enhance or impair LTP may lead to drugs that improve memory. Example: Mice with genes that cause abnormalities in the NMDA receptor learn slowly and extra NMDA receptors result in faster learning.