SlideShare a Scribd company logo
7.1 Sample space, events,
7.1 Sample space, events,
probability
probability
• In this chapter, we will study the
topic of probability which is used in
many different areas including
insurance, science, marketing,
government and many other areas.
Blaise
Blaise Pascal
Pascal-
-father of modern
father of modern
probability
probability http://www
http://www-
-gap.dcs.st
gap.dcs.st-
-
and.ac.uk/~history/Mathematicians/Pascal.html
and.ac.uk/~history/Mathematicians/Pascal.html
• Blaise Pascal
• Born: 19 June 1623 in Clermont (now Clermont-Ferrand),
Auvergne, France
Died: 19 Aug 1662 in Paris, France
• In correspondence with Fermat he laid the foundation for
the theory of probability. This correspondence consisted of
five letters and occurred in the summer of 1654. They
considered the dice problem, already studied by Cardan,
and the problem of points also considered by Cardan and,
around the same time, Pacioli and Tartaglia. The dice
problem asks how many times one must throw a pair of
dice before one expects a double six while the problem of
points asks how to divide the stakes if a game of dice is
incomplete. They solved the problem of points for a two
player game but did not develop powerful enough
mathematical methods to solve it for three or more players.
Pascal
Pascal
Probability
Probability
• 1. Important in inferential
statistics, a branch of statistics that
relies on sample information to make
decisions about a population.
• 2. Used to make decisions in the face
of uncertainty.
Terminology
Terminology
• 1. Random experiment
: is a process or activity
which produces a number
of possible outcomes. The
outcomes which result
cannot be predicted with
absolute certainty.
• Example 1: Flip two coins
and observe the possible
outcomes of heads and
tails
Examples
Examples
• 2. Select two marbles
without replacement from a
bag containing 1 white, 1 red
and 2 green marbles.
• 3. Roll two die and observe
the sum of the points on the
top faces of each die.
• All of the above are
considered experiments.
Terminology
Terminology
• Sample space: is a list of all possible
outcomes of the experiment. The
outcomes must be mutually exclusive and
exhaustive. Mutually exclusive means
they are distinct and non-overlapping.
Exhaustive means complete.
• Event: is a subset of the sample space.
An event can be classified as a simple
event or compound event.
Terminology
Terminology
• 1. Select two marbles in succession
without replacement from a bag
containing 1 red, 1 blue and two
green marbles.
• 2. Observe the possible sums of
points on the top faces of two dice.
• 3. Select a card from an ordinary deck of playing cards (no jokers)
• The sample space would consist of the 52 cards, 13 of each suit. We
have 13 clubs, 13 spades, 13 hearts and 13 diamonds.
• A simple event: the selected card is the two of clubs. A compound
event is the selected card is red (there are 26 red cards and so there
are 26 simple events comprising the compound event)
4. Select a driver randomly from all drivers in the age category of 18-25.
(Identify the sample space, give an example of a simple event and a
compound event)
More examples
More examples
• Roll two dice.
• Describe the sample space of this
event.
• You can use a tree diagram to
determine the sample space
of this experiment. There are
six outcomes on the first die
{1,2,3,4,5,6} and those
outcomes are represented by
six branches of the tree
starting from the “tree trunk”.
For each of these six
outcomes, there are six
outcomes, represented by the
brown branches. By the
fundamental counting
principle, there are 6*6=36
outcomes. They are listed on
the next slide.
Sample space of all possible outcomes
Sample space of all possible outcomes
when two dice are tossed.
when two dice are tossed.
• (1,1), (1,2), (1,3), (1,4), (1,5) (1,6)
• (2,1), (2,2), (2,3), (2,4), (2,5), (2,6)
• (3,1), (3,2), (3,3), (3,4), (3,5), (3,6)
• (4,1), (4,2), (4,3), (4,4), (4,5), (4,6)
• (5,1), (5,2), (5,3), (5,4), (5,5), (5,6)
• (6,1), (6,2), (6,3), (6,4), (6,5), (6,6)
• Quite a tedious project !!
Probability of an event
Probability of an event
• Definition: sum of the probabilities of the simple events
that constitute the event. The theoretical probability of
an event is defined as the number of ways the event can
occur divided by the number of events of the sample
space. Using mathematical notation, we have
• P(E) = n(E) is the number of ways the event
• can occur and n(S) represents the total number of events in
the sample space.
( )
( )
n E
n S
Examples
Examples
• Example: Probability of a sum of 7 when two dice are
rolled. First we must calculate the number of events of the
sample space. From our previous example, we know that
there are 36 possible sums that can occur when two dice
are rolled. Of these 36 possibilities, how many ways can a
sum of seven occur? Looking back at the slide that gives
the sample space we find that we can obtain a sum of
seven by the outcomes { (1,6), (6,1), (2,5), (5,2), (4,3)
• (3,4)} There are six ways two obtain a sum of seven. The
outcome (1,6) is different from (6,1) in that (1,6) means a
one on the first die and a six on the second die, while a
(6,1) outcome represents a six on the first die and one on
the second die. The answer is P(E)=
• =
( )
( )
n E
n S
6 1
36 6
=
Meaning of probability
Meaning of probability
• How do we interpret this result? What does it mean to say
that the probability that a sum of seven occurs upon rolling
two dice is 1/6? This is what we call the long-range
probability or theoretical probability. If you rolled two
dice a great number of times, in the long run the proportion
of times a sum of seven came up would be approximately
• one-sixth. The theoretical probability uses mathematical
principles to calculate this probability without doing an
experiment. The theoretical probability of an event
should be close to the experimental probability is the
experiment is repeated a great number of times.
Some properties of
Some properties of
probability
probability
• 1
• 2.
• The first property states that
the probability of any event
will always be a decimal or
fraction that is between 0 and
1 (inclusive). If P(E) is 0, we
say that event E is an
impossible event. If p(E) =
1, we call event E a certain
event. Some have said that
there are two certainties in
life: death and taxes.
• The second property states
that the sum of all the
individual probabilities of each
event of the sample space
must equal one.
0 ( ) 1
p E
≤ ≤
1 2 3
( ) ( ) ( ) ... 1
P E P E P E
+ + + =
Examples
Examples
A quiz contains a multiple-choice question with five
possible answers, only one of which is correct.
A student plans to guess the answer.
a) What is sample space?
b) Assign probabilities to the simple events
c) Probability student guesses the wrong answer
d) Probability student guesses the correct answer.
Three approaches to
Three approaches to
assigning probabilities
assigning probabilities
• 1. Classical approach. This type of probability
relies upon mathematical laws. Assumes all
simple events are equally likely.
• Probability of an event E = p(E) = (number of
favorable outcomes of E)/(number of total
outcomes in the sample space) This approach is
also called theoretical probability. The example
of finding the probability of a sum of seven when
two dice are tossed is an example of the classical
approach.
Example of classical
Example of classical
probability
probability
• Example: Toss two coins. Find the probability of at least
one head appearing.
• Solution: At least one head is interpreted as one head or
two heads.
• Step 1: Find the sample space:{ HH, HT, TH, TT} There are
four possible outcomes.
• Step 2: How many outcomes of the event “at least one
head” Answer: 3 : { HH, HT, TH}
• Step 3: Use PE)= = ¾ = 0.75 = 75%
( )
( )
n E
n S
Relative Frequency
Relative Frequency
• Also called Empirical probability.
• Relies upon the long run relative frequency of an
event. For example, out of the last 1000 statistics
students, 15 % of the students received an A.
Thus, the empirical probability that a student
receives an A is 0.15.
• Example 2: Batting average of a major league
ball player can be interpreted as the probability
that he gets a hit on a given at bat.
Subjective Approach
Subjective Approach
• 1. Classical approach not reasonable
• 2. No history of outcomes.
• Subjective approach: The degree of belief
we hold in the occurrence of an event. Example
in sports: Probability that San Antonio Spurs will
win the NBA title.
• Example 2: Probability of a nuclear meltdown in
a certain reactor.
Example
Example
• The manager of a records store has kept track of
the number of CD’s sold of a particular type per
day. On the basis of this information, the
manager produced the following list of the
number of daily sales:
• Number of CDs Probability
• 0 0.08
• 1 0.17
• 2 0.26
• 3 0.21
• 4 0.18
• 5 0.10
Example continued
Example continued
• 1. define the experiment as the number of CD’s
sold tomorrow. Define the sample space
• 2. Prob( number of CD’s sold > 3)
• 3. Prob of selling five CD’s
• 4. Prob that number of CD’s sold is between 1
and 5?
• 5. probability of selling 6 CD’s
7.2 Union, intersection,
7.2 Union, intersection,
complement of an event, odds
complement of an event, odds
• In this section, we will develop the
rules of probability for compound
events (more than one event) and
will discuss probabilities involving the
union of events as well as
intersection of two events.
The number of events in the union of A and B is equal to the
The number of events in the union of A and B is equal to the
number in A plus the number in B minus the number of events
number in A plus the number in B minus the number of events
that are in both A and B.
that are in both A and B.
Event B
Event A
Sample
space S N(A UB) = n(A) + n(B) – n(A B)
∩
Addition Rule
Addition Rule
• If you divide both sides of the equation by n(S), the
number in the sample space, we can convert the equation
to an equation of probabilities:
( ) ( ) ( ) ( )
P A B P A P B P A B
∪ = + − ∩
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
n A B n A n B n A B
n S n S n S n S
∩
= + − →
∪
Addition Rule
Addition Rule
• A single card is
drawn from a deck
of cards. Find the
probability that
• the card is a jack or club.
• P(J or C) = p(J)+p(C)-
P(J andC)
Set of jacks
Set of
clubs
Jack and
club (jack
of clubs)
4 13 1 16 4
52 52 52 52 13
+ − = =
The events King and Queen are mutually exclusive. They
The events King and Queen are mutually exclusive. They
cannot occur at the same time. So the probability of a king
cannot occur at the same time. So the probability of a king
and queen
and queen is zero.
is zero.
• the card is king or
queen
• =4/52+4/52 – 0=
• 8/52= 2/13
Kings Queens
Kings and
queens
( ) ( ) ( ) ( )
P K Q p K P Q p K Q
∪ = + − ∩
Mutually exclusive events
Mutually exclusive events
If A and B are mutually
exclusive then
The intersection of A and B is the empty
set
( ) ( ) ( )
P A B p A p B
∪ = +
A
B
Use a table to list outcomes of an experiment
Use a table to list outcomes of an experiment
• Three coins are tossed. Assume they are fair
coins. Give the sample space. Tossing three coins
is the same experiment as tossing one coin three
times. There are two outcomes on the first toss,
two outcomes on the second toss and two
outcomes on toss three. Use the multiplication
principle to calculate the total number of
outcomes: (2)(2)(2)=8 We can list the outcomes
using a little “trick” In the far left hand column,
write four H’s followed by four T’s. In the middle
column, we write 2 H’s, then two T’s, two H’s ,
then 2 T’s. In the right column, write
T,H,T,H,T,H,T,H . Each row of the table consists of
a simple event of the sample space. The indicated
row, for instance, illustrates the outcome {heads,
heads, tails} in that order.
t
t
t
h
t
t
t
h
t
h
h
t
t
t
h
h
t
h
t
h
h
h
h
h
To find the probability of at least two tails, we mark each row
To find the probability of at least two tails, we mark each row
(outcome) that contains two tails or three tails and divide the
(outcome) that contains two tails or three tails and divide the
number of marked rows by 8 (number in the sample space) Since
number of marked rows by 8 (number in the sample space) Since
there are four outcomes that have at least two tails, the probab
there are four outcomes that have at least two tails, the probability is
ility is
4/8 or
4/8 or ½
½ .
.
t
t
t
h
t
t
t
h
t
h
h
t
t
t
h
h
t
h
t
h
h
h
h
h
Two dice are tossed. What is the probability of a sum greater th
Two dice are tossed. What is the probability of a sum greater than 8
an 8
or doubles?
or doubles?
P(S>8 or doubles)=
P(S>8 or doubles)=p(S
p(S>8) +
>8) + p(doubles)
p(doubles)-
-p(S
p(S>8
>8 and
and doubles) =
doubles) =
10/36+6/36
10/36+6/36-
-2/36=14/36=7/18.
2/36=14/36=7/18.
• (1,1), (1,2), (1,3), (1,4), (1,5) (1,6)
• (2,1), (2,2), (2,3), (2,4), (2,5), (2,6)
• (3,1), (3,2), (3,3), (3,4), (3,5), (3,6)
• (4,1), (4,2), (4,3), (4,4), (4,5), (4,6)
• (5,1), (5,2), (5,3), (5,4), (5,5), (5,6)
• (6,1), (6,2), (6,3), (6,4), (6,5), (6,6)
Circled elements
belong to the
intersection of the
two events.
Complement Rule
Complement Rule
Many times it is easier to compute the probability that A won
Many times it is easier to compute the probability that A won’
’t occur
t occur
then the probability of event A.
then the probability of event A.
• Example: What is the probability
that when two dice are tossed,
the number of points on each die
will not be the same?
• This is the same as saying that
doubles will not occur. Since the
probability of doubles is 6/36 =
1/6, then the probability that
doubles will not occur is 1 –
6/36 = 30/36 = 5/6.
( ) 1 ( )
P not A P A
= −
( ) ( ) 1
P A p not A
+ = →
Odds
Odds
• In certain situations, such as the gaming industry, it is
customary to speak of the odds in favor of an event E and
the odds against E.
• Definition: Odds in favor of event E =
• Odds against E =
• Example: Find the odds in favor of rolling a seven when two
dice are tossed.
• Solution: The probability of a sum of seven is 6/36. So
'
( )
( )
P E
p E
=
'
( )
( )
P E
p E
'
( )
( )
p E
P E
6
6 1
36
30 30 5
36
= =
7.3 Conditional Probability,
7.3 Conditional Probability,
Intersection and Independence
Intersection and Independence
• Consider the following problem:
• Find the probability that a randomly chosen person in the
U.S. has lung cancer.
• We want : p(C) . To determine the answer, we must know
how many individuals are in the sample space, n(S). Of
those, how many have lung cancer, n(C) and find the ratio
of n( c) to n(S). ( )
( )
( )
n C
P C
n S
=
Conditional Probability
Conditional Probability
• Now, we will modify the problem: Find the probability that
a person has lung cancer, given that the person smokes.
• Do we expect the probability of cancer to be the same?
• Probably not, although the cigarette manufacturers may
disagree.
• What we now have is called conditional probability. It is
symbolized by
• and means the probability of lung cancer assuming or
given that the person smokes.
( )
P C S
The probability of having lung cancer given that the person smok
The probability of having lung cancer given that the person smokes is
es is
found by determining the number of people who have lung cancer
found by determining the number of people who have lung cancer
and smoke
and smoke and dividing that number by the number of smokers.
and dividing that number by the number of smokers.
People who smoke
People with lung cancer
people who smoke and
have lung cancer.
( )
( )
( )
n L S
p L S
n S
∩
=
Formula for Conditional probability
Formula for Conditional probability
• Derivation: • Dividing numerator and
denominator by the total
number , n(T) , of the
sample space allows us to
express the conditional
probability of L given S as
the quotient of the
probability of L and S
divided by the probability
of smoker.
( )
( )
( )
n L S
p L S
n S
∩
= →
( )
( )
( )
( )
( )
n L S
n T
p L S
n S
n T
∩
= →
( )
( )
( )
p L S
p L S
p S
∩
=
The probability of event A given that event B has already
The probability of event A given that event B has already
occurred is equal to the probability of the intersection of
occurred is equal to the probability of the intersection of
events A and B divided by the probability of event B alone.
events A and B divided by the probability of event B alone.
( )
( )
( )
p A B
P A B
p B
∩
=
Example
Example
• There are two majors of a particular college:
Nursing and Engineering. The number of students
enrolled in each program is given in the table
Find the following probabilities by using the
following table. The row total gives the total
number of each category and the number in the
bottom-right cell gives the total number of
students. A single student is selected at random
from this college. Assuming that each student is
equally likely to be chosen, find :
Joint and Marginal
Joint and Marginal
Probability
Probability
• Table • 1. Prob(Nurse) =
100/150=2/3
• 2. Prob(Graduate student)=
• 60/150=2/5
• 3. Probability (Nurse and
Graduate student) = 47/150
• 4. Probability ( Engineering
and Grad Student) 13/150
150
50
100
60
90
13
37
Engineers
47
53
Nursing
Grads
Unde
r-
grads
Joint, Marginal and
Joint, Marginal and
Conditional Probability
Conditional Probability
• Combinations of simple events
• A and B : symbolism
• Probability of intersection is joint
probability.
• The symbolism represents the
probability of the intersection of events
A and B.
( )
P A B
∩ =
Conditional probability
Conditional probability
• Given that a under-graduate
student is selected at random,
what is the probability that
this student is a nurse?
• Restricting our attention on
the column representing
undergrads, we find that of
the 90 undergrad students,
53 are nursing majors.
Therefore, P(N/U)=53/90 150
50
100
60
90
13
37
Engineers
47
53
Nursing
Grads
Under
-grads
Using the table
Using the table
• Given that an engineering
student is selected, find the
probability that the student is
a under-graduate student.
Restricting the sample space
to the 50 engineering
students, 37 of the 50 are
undergrads, indicated by the
red cell. Therefore,
P(U/E)=37/50 = 0.74
150
50
100
60
90
13
37
Engineers
47
53
Nursing
Grads
Under-
grads
Derivation of general formulas for P( A and B) using
Derivation of general formulas for P( A and B) using
basic algebra
basic algebra
• Algebra: • Since
• We have
∩
= →
( )
( | )
( )
P B A
P
P
A
A
B
( )
( )
( )
p A
P
B
B
A
p
B
∩
=
= ∩
( | ) ( ) ( )
A A
P B P p B A
( ) ( ) ( )
P A p P
B A B
B = ∩
∩ = ∩
( ) ( )
P A B p B A
∩ = ∩
= =
( ) ( )
( ) ( ) ( ) ( )
P A B p B A
P A p B A p B p A B
Two cards are drawn without replacement from an ordinary
Two cards are drawn without replacement from an ordinary
deck of cards . Find
deck of cards . Find
• Probability (two clubs are
drawn in succession).
• Symbolize mathematically:
means draw a club on the first
draw and then a second club.
=
• Because the selection is done
without replacement, we have
one less card in the sample
space and one less club since
we assume that the first card
drawn is a club, there are 12
remaining clubs and 51 total
remaining cards.
∩
1 2
( )
P C C
∩ = ⋅
1 2 1 2 1
( ) ( ) ( )
P C C p C p C C
⋅ = ⋅ =
13 12 1 4 1
52 51 4 17 17
• Two machines are in operation. Machine A produces 60% of the
items whereas machine B produces the remaining 40%. Machine
A produces 4% defective items whereas machine B produces 5%
defective items. An item is chosen at random.
•
• a) P (item is defective) =
• P(D and machine A) or P(D and Machine B)
•
• p(D) = + =
• = 0.60(0.04)+0.40(0.05)= 0.044
A
B
60%
40%
0.04
Def
0.05 def
0.95
good
0.96
good
∩
( )
P A D ∩
( )
p B D +
( ) ( ) ( ) ( )
p A p D A p B p D B
Independence
Independence
• If two events are independent, then
( | ) ( )
( | ) ( )
p A B p A
P B A p B
=
=
A coin is tossed and a die is rolled. Find the probability that
A coin is tossed and a die is rolled. Find the probability that
the coin comes up heads and the die comes up three.
the coin comes up heads and the die comes up three.
• The number of outcomes for the coin is 2: { H , T}. The
number of outcomes for the die is 6: {1,2,3,4,5,6} . Using
the fundamental principle of counting, we find that there
are 2(6)=12 total outcomes of the sample space.
•
• p(H and 3) = 1/12
1
2
3
4
5
6
1
2
3
4
5
6
H
T
Now, let
Now, let’
’s look at the same problem in a slightly different way
s look at the same problem in a slightly different way
• To find the probability of Heads and then a three on a dice,
we have
• using the rule for conditional probability. However, the
probability of getting a three on the die does not depend
upon the outcome of the coin toss. We say that these
two events are independent, since the outcome of
either one of them does not affect the outcome of the
remaining event.
∩ = ⋅
( 3) ( ) (3 )
p H p H p H
∩ = ⋅ = ⋅
( 3) ( ) (3 ) ( ) (3)
p H p H p H p H p
Joint Probability Rule
Joint Probability Rule
• If events A and B are independent:
• If events A and B are dependent:
( ) ( ) ( )
P A B P A P B
∩ = ⋅
( ) ( ) ( | )
p A B p A p B A
∩ = i
Examples of Independence
Examples of Independence
•1. Two cards are drawn in succession with
replacement from a standard deck of cards. What is the
probability that two kings are drawn?
• 2. Two marbles are drawn with replacement from a bag
containing 7 blue and 3 red marbles. What is the
probability of getting a blue on the first draw and a red on
the second draw?
∩ = ⋅
= ⋅ =
1 2 1 2
( ) ( ) ( )
4 4 1
52 52 169
P K K p K p K
∩ = ⋅
= ⋅ = =
( ) ( ) ( )
7 3 21
0.21
10 10 100
p B R p B p R
Dependent Events
Dependent Events
• Two events are dependent when the outcome of one event
affects the outcome of the second event.
•
• Example: Draw two cards in succession without
replacement from a standard deck. Find the probability of a
king on the first draw and a king on the second draw.
• Answer: ∩ = ⋅
= ⋅ =
1 2 1 2 1
( ) ( ) ( )
4 3 1
52 51 221
P K K p K p K K
• Are smoking and lung
disease related?
• 1. Find the probability of
lung disease.
• P(L) = 0.15 (row total)
• 2. Find p(L/S) , probability
of lung disease given
smoker.
• P(L/S)=0.12/0.19= 0.63.
The probability of having lung
disease given that you are a
smoker is considerably
higher than the probability
of lung disease in the
general population, so we
cannot say that smoking
and lung disease are
independent events.
0.66
0.19
No lung
Disease
0.03
0.12
Has
Lung
Disease
Non-
smoker
Smoker
7.4
7.4 Baye
Baye’
’s
s Formula
Formula
In this section, we will find the probability of
In this section, we will find the probability of
an earlier event conditioned on the
an earlier event conditioned on the
occurrence of a later event.
occurrence of a later event.
Probability of an Earlier Event Given a Later Event
Probability of an Earlier Event Given a Later Event
The procedures used in this example can be employed for
The procedures used in this example can be employed for
other problems using Bayesian probability.
other problems using Bayesian probability.
• A survey of middle-aged men
reveals that 28% of them are
balding at the crown of their
head. Moreover, it is known
that such men have an 18%
probability of suffering a heart
attack in the next 10 years.
Men who are not balding in
this way have an 11%
probability of a heart attack.
If a middle-aged man is
randomly chosen, what is the
probability that he is balding
given that he suffered a heart
attack? See tree diagram-
next slide.
We want P(B/H) (probability that he is balding given that he
We want P(B/H) (probability that he is balding given that he
suffered a heart attack.
suffered a heart attack.
• Tree diagram:
Balding
(0.28)
Not
balding
0.72
Heart
attack 0.18
Heart
attack
0.11
0.82 no heart
attack
0.89 no
heart
attack
Using the rule for conditional probability, we derive the
Using the rule for conditional probability, we derive the
general formula to solve the problem:
general formula to solve the problem:
• P(H) can be found by
finding the union of
• P(B and H) and
• p(NB and H)
• Rule for conditional
probability
• Substitution for p(H)
∩
=
( )
( )
( )
p B H
P
p
H
H
B
= ∩ + ∩
( ) (
( ) )
p B H p NB
p H
H
= + ⋅
( ) ( ) ( ) ( ) ( )
p H p B p H B p NB p H NB
∩
+ ⋅
=
( ) ( ) ( ) (
( )
( )
)
p B H
P B H
p B p H B p NB p H NB
Using the tree diagram, substitute the probabilities in the form
Using the tree diagram, substitute the probabilities in the formula .
ula .
The answer reveals that the probability that a middle
The answer reveals that the probability that a middle-
-aged man is
aged man is
balding given he suffered a heart attack is 0.389.
balding given he suffered a heart attack is 0.389.
1.
2.
3.
4. = 0.389
=
+ ⋅
⋅
( )
( ) ( )
(
)
)
( ( ) ( )
p B p H
p B p H B
B p NB p
p H
H NB
B
∩
+ ⋅
=
( ) ( ) ( ) (
( )
( )
)
p B H
P B H
p B p H B p NB p H NB
⋅
+ ⋅
=
0.28(0.18)
0.28 (0.
0.72
18)
(
(0
)
.11)
p B H

More Related Content

PPT
Probability
PPTX
History of probability CHAPTER 5 Engineering
PPTX
Theory of Probability and markov chain.pptx
PPTX
random variable and distribution
PDF
Notes 7-1
PDF
Probability
PPTX
Probability Theory for Data Scientists
PPT
Probability By Ms Aarti
Probability
History of probability CHAPTER 5 Engineering
Theory of Probability and markov chain.pptx
random variable and distribution
Notes 7-1
Probability
Probability Theory for Data Scientists
Probability By Ms Aarti

Similar to Chapter7ppt.pdf (20)

PPTX
Presentation1.pptx... Learn and understand everything
PDF
group4-randomvariableanddistribution-151014015655-lva1-app6891.pdf
PDF
group4-randomvariableanddistribution-151014015655-lva1-app6891 (1).pdf
PPTX
Introduction to probability
PPTX
Intro to probability
PPTX
lesson4-intrduction to probability grade10
PPTX
Basic probability with simple example.pptx
PDF
Probability and Statistics - Week 1
PPTX
Presentation1 probability
PPTX
SAMPLE SPACES and PROBABILITY (3).pptx
PPTX
Stat.pptx
PPTX
Lecture Biostatistics and general concept about probability
PDF
Probability.pdf
PDF
vinayjoshi-131204045346-phpapp02.pdf
PDF
Introduction to probability
PDF
Topic 1 __basic_probability_concepts
PDF
Lecture-1-Probability-Theory-Part-1.pdf
PPT
Chapter 12 Probability and Statistics.ppt
PPTX
4.1-4.2 Sample Spaces and Probability
PPT
1 - Probabilty Introduction .ppt
Presentation1.pptx... Learn and understand everything
group4-randomvariableanddistribution-151014015655-lva1-app6891.pdf
group4-randomvariableanddistribution-151014015655-lva1-app6891 (1).pdf
Introduction to probability
Intro to probability
lesson4-intrduction to probability grade10
Basic probability with simple example.pptx
Probability and Statistics - Week 1
Presentation1 probability
SAMPLE SPACES and PROBABILITY (3).pptx
Stat.pptx
Lecture Biostatistics and general concept about probability
Probability.pdf
vinayjoshi-131204045346-phpapp02.pdf
Introduction to probability
Topic 1 __basic_probability_concepts
Lecture-1-Probability-Theory-Part-1.pdf
Chapter 12 Probability and Statistics.ppt
4.1-4.2 Sample Spaces and Probability
1 - Probabilty Introduction .ppt
Ad

Recently uploaded (20)

PDF
STATICS OF THE RIGID BODIES Hibbelers.pdf
PPTX
The Healthy Child – Unit II | Child Health Nursing I | B.Sc Nursing 5th Semester
PDF
O7-L3 Supply Chain Operations - ICLT Program
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PDF
RMMM.pdf make it easy to upload and study
PDF
TR - Agricultural Crops Production NC III.pdf
PPTX
Pharmacology of Heart Failure /Pharmacotherapy of CHF
PDF
Classroom Observation Tools for Teachers
PDF
Basic Mud Logging Guide for educational purpose
PPTX
Week 4 Term 3 Study Techniques revisited.pptx
PDF
FourierSeries-QuestionsWithAnswers(Part-A).pdf
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
PPTX
Renaissance Architecture: A Journey from Faith to Humanism
PDF
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
PDF
Pre independence Education in Inndia.pdf
PDF
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
PDF
Origin of periodic table-Mendeleev’s Periodic-Modern Periodic table
PPTX
PPH.pptx obstetrics and gynecology in nursing
PPTX
Cell Types and Its function , kingdom of life
STATICS OF THE RIGID BODIES Hibbelers.pdf
The Healthy Child – Unit II | Child Health Nursing I | B.Sc Nursing 5th Semester
O7-L3 Supply Chain Operations - ICLT Program
Module 4: Burden of Disease Tutorial Slides S2 2025
RMMM.pdf make it easy to upload and study
TR - Agricultural Crops Production NC III.pdf
Pharmacology of Heart Failure /Pharmacotherapy of CHF
Classroom Observation Tools for Teachers
Basic Mud Logging Guide for educational purpose
Week 4 Term 3 Study Techniques revisited.pptx
FourierSeries-QuestionsWithAnswers(Part-A).pdf
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
Renaissance Architecture: A Journey from Faith to Humanism
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
Pre independence Education in Inndia.pdf
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
Origin of periodic table-Mendeleev’s Periodic-Modern Periodic table
PPH.pptx obstetrics and gynecology in nursing
Cell Types and Its function , kingdom of life
Ad

Chapter7ppt.pdf

  • 1. 7.1 Sample space, events, 7.1 Sample space, events, probability probability • In this chapter, we will study the topic of probability which is used in many different areas including insurance, science, marketing, government and many other areas.
  • 2. Blaise Blaise Pascal Pascal- -father of modern father of modern probability probability http://www http://www- -gap.dcs.st gap.dcs.st- - and.ac.uk/~history/Mathematicians/Pascal.html and.ac.uk/~history/Mathematicians/Pascal.html • Blaise Pascal • Born: 19 June 1623 in Clermont (now Clermont-Ferrand), Auvergne, France Died: 19 Aug 1662 in Paris, France • In correspondence with Fermat he laid the foundation for the theory of probability. This correspondence consisted of five letters and occurred in the summer of 1654. They considered the dice problem, already studied by Cardan, and the problem of points also considered by Cardan and, around the same time, Pacioli and Tartaglia. The dice problem asks how many times one must throw a pair of dice before one expects a double six while the problem of points asks how to divide the stakes if a game of dice is incomplete. They solved the problem of points for a two player game but did not develop powerful enough mathematical methods to solve it for three or more players.
  • 4. Probability Probability • 1. Important in inferential statistics, a branch of statistics that relies on sample information to make decisions about a population. • 2. Used to make decisions in the face of uncertainty.
  • 5. Terminology Terminology • 1. Random experiment : is a process or activity which produces a number of possible outcomes. The outcomes which result cannot be predicted with absolute certainty. • Example 1: Flip two coins and observe the possible outcomes of heads and tails
  • 6. Examples Examples • 2. Select two marbles without replacement from a bag containing 1 white, 1 red and 2 green marbles. • 3. Roll two die and observe the sum of the points on the top faces of each die. • All of the above are considered experiments.
  • 7. Terminology Terminology • Sample space: is a list of all possible outcomes of the experiment. The outcomes must be mutually exclusive and exhaustive. Mutually exclusive means they are distinct and non-overlapping. Exhaustive means complete. • Event: is a subset of the sample space. An event can be classified as a simple event or compound event.
  • 8. Terminology Terminology • 1. Select two marbles in succession without replacement from a bag containing 1 red, 1 blue and two green marbles. • 2. Observe the possible sums of points on the top faces of two dice.
  • 9. • 3. Select a card from an ordinary deck of playing cards (no jokers) • The sample space would consist of the 52 cards, 13 of each suit. We have 13 clubs, 13 spades, 13 hearts and 13 diamonds. • A simple event: the selected card is the two of clubs. A compound event is the selected card is red (there are 26 red cards and so there are 26 simple events comprising the compound event) 4. Select a driver randomly from all drivers in the age category of 18-25. (Identify the sample space, give an example of a simple event and a compound event)
  • 10. More examples More examples • Roll two dice. • Describe the sample space of this event. • You can use a tree diagram to determine the sample space of this experiment. There are six outcomes on the first die {1,2,3,4,5,6} and those outcomes are represented by six branches of the tree starting from the “tree trunk”. For each of these six outcomes, there are six outcomes, represented by the brown branches. By the fundamental counting principle, there are 6*6=36 outcomes. They are listed on the next slide.
  • 11. Sample space of all possible outcomes Sample space of all possible outcomes when two dice are tossed. when two dice are tossed. • (1,1), (1,2), (1,3), (1,4), (1,5) (1,6) • (2,1), (2,2), (2,3), (2,4), (2,5), (2,6) • (3,1), (3,2), (3,3), (3,4), (3,5), (3,6) • (4,1), (4,2), (4,3), (4,4), (4,5), (4,6) • (5,1), (5,2), (5,3), (5,4), (5,5), (5,6) • (6,1), (6,2), (6,3), (6,4), (6,5), (6,6) • Quite a tedious project !!
  • 12. Probability of an event Probability of an event • Definition: sum of the probabilities of the simple events that constitute the event. The theoretical probability of an event is defined as the number of ways the event can occur divided by the number of events of the sample space. Using mathematical notation, we have • P(E) = n(E) is the number of ways the event • can occur and n(S) represents the total number of events in the sample space. ( ) ( ) n E n S
  • 13. Examples Examples • Example: Probability of a sum of 7 when two dice are rolled. First we must calculate the number of events of the sample space. From our previous example, we know that there are 36 possible sums that can occur when two dice are rolled. Of these 36 possibilities, how many ways can a sum of seven occur? Looking back at the slide that gives the sample space we find that we can obtain a sum of seven by the outcomes { (1,6), (6,1), (2,5), (5,2), (4,3) • (3,4)} There are six ways two obtain a sum of seven. The outcome (1,6) is different from (6,1) in that (1,6) means a one on the first die and a six on the second die, while a (6,1) outcome represents a six on the first die and one on the second die. The answer is P(E)= • = ( ) ( ) n E n S 6 1 36 6 =
  • 14. Meaning of probability Meaning of probability • How do we interpret this result? What does it mean to say that the probability that a sum of seven occurs upon rolling two dice is 1/6? This is what we call the long-range probability or theoretical probability. If you rolled two dice a great number of times, in the long run the proportion of times a sum of seven came up would be approximately • one-sixth. The theoretical probability uses mathematical principles to calculate this probability without doing an experiment. The theoretical probability of an event should be close to the experimental probability is the experiment is repeated a great number of times.
  • 15. Some properties of Some properties of probability probability • 1 • 2. • The first property states that the probability of any event will always be a decimal or fraction that is between 0 and 1 (inclusive). If P(E) is 0, we say that event E is an impossible event. If p(E) = 1, we call event E a certain event. Some have said that there are two certainties in life: death and taxes. • The second property states that the sum of all the individual probabilities of each event of the sample space must equal one. 0 ( ) 1 p E ≤ ≤ 1 2 3 ( ) ( ) ( ) ... 1 P E P E P E + + + =
  • 16. Examples Examples A quiz contains a multiple-choice question with five possible answers, only one of which is correct. A student plans to guess the answer. a) What is sample space? b) Assign probabilities to the simple events c) Probability student guesses the wrong answer d) Probability student guesses the correct answer.
  • 17. Three approaches to Three approaches to assigning probabilities assigning probabilities • 1. Classical approach. This type of probability relies upon mathematical laws. Assumes all simple events are equally likely. • Probability of an event E = p(E) = (number of favorable outcomes of E)/(number of total outcomes in the sample space) This approach is also called theoretical probability. The example of finding the probability of a sum of seven when two dice are tossed is an example of the classical approach.
  • 18. Example of classical Example of classical probability probability • Example: Toss two coins. Find the probability of at least one head appearing. • Solution: At least one head is interpreted as one head or two heads. • Step 1: Find the sample space:{ HH, HT, TH, TT} There are four possible outcomes. • Step 2: How many outcomes of the event “at least one head” Answer: 3 : { HH, HT, TH} • Step 3: Use PE)= = ¾ = 0.75 = 75% ( ) ( ) n E n S
  • 19. Relative Frequency Relative Frequency • Also called Empirical probability. • Relies upon the long run relative frequency of an event. For example, out of the last 1000 statistics students, 15 % of the students received an A. Thus, the empirical probability that a student receives an A is 0.15. • Example 2: Batting average of a major league ball player can be interpreted as the probability that he gets a hit on a given at bat.
  • 20. Subjective Approach Subjective Approach • 1. Classical approach not reasonable • 2. No history of outcomes. • Subjective approach: The degree of belief we hold in the occurrence of an event. Example in sports: Probability that San Antonio Spurs will win the NBA title. • Example 2: Probability of a nuclear meltdown in a certain reactor.
  • 21. Example Example • The manager of a records store has kept track of the number of CD’s sold of a particular type per day. On the basis of this information, the manager produced the following list of the number of daily sales: • Number of CDs Probability • 0 0.08 • 1 0.17 • 2 0.26 • 3 0.21 • 4 0.18 • 5 0.10
  • 22. Example continued Example continued • 1. define the experiment as the number of CD’s sold tomorrow. Define the sample space • 2. Prob( number of CD’s sold > 3) • 3. Prob of selling five CD’s • 4. Prob that number of CD’s sold is between 1 and 5? • 5. probability of selling 6 CD’s
  • 23. 7.2 Union, intersection, 7.2 Union, intersection, complement of an event, odds complement of an event, odds • In this section, we will develop the rules of probability for compound events (more than one event) and will discuss probabilities involving the union of events as well as intersection of two events.
  • 24. The number of events in the union of A and B is equal to the The number of events in the union of A and B is equal to the number in A plus the number in B minus the number of events number in A plus the number in B minus the number of events that are in both A and B. that are in both A and B. Event B Event A Sample space S N(A UB) = n(A) + n(B) – n(A B) ∩
  • 25. Addition Rule Addition Rule • If you divide both sides of the equation by n(S), the number in the sample space, we can convert the equation to an equation of probabilities: ( ) ( ) ( ) ( ) P A B P A P B P A B ∪ = + − ∩ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) n A B n A n B n A B n S n S n S n S ∩ = + − → ∪
  • 26. Addition Rule Addition Rule • A single card is drawn from a deck of cards. Find the probability that • the card is a jack or club. • P(J or C) = p(J)+p(C)- P(J andC) Set of jacks Set of clubs Jack and club (jack of clubs) 4 13 1 16 4 52 52 52 52 13 + − = =
  • 27. The events King and Queen are mutually exclusive. They The events King and Queen are mutually exclusive. They cannot occur at the same time. So the probability of a king cannot occur at the same time. So the probability of a king and queen and queen is zero. is zero. • the card is king or queen • =4/52+4/52 – 0= • 8/52= 2/13 Kings Queens Kings and queens ( ) ( ) ( ) ( ) P K Q p K P Q p K Q ∪ = + − ∩
  • 28. Mutually exclusive events Mutually exclusive events If A and B are mutually exclusive then The intersection of A and B is the empty set ( ) ( ) ( ) P A B p A p B ∪ = + A B
  • 29. Use a table to list outcomes of an experiment Use a table to list outcomes of an experiment • Three coins are tossed. Assume they are fair coins. Give the sample space. Tossing three coins is the same experiment as tossing one coin three times. There are two outcomes on the first toss, two outcomes on the second toss and two outcomes on toss three. Use the multiplication principle to calculate the total number of outcomes: (2)(2)(2)=8 We can list the outcomes using a little “trick” In the far left hand column, write four H’s followed by four T’s. In the middle column, we write 2 H’s, then two T’s, two H’s , then 2 T’s. In the right column, write T,H,T,H,T,H,T,H . Each row of the table consists of a simple event of the sample space. The indicated row, for instance, illustrates the outcome {heads, heads, tails} in that order. t t t h t t t h t h h t t t h h t h t h h h h h
  • 30. To find the probability of at least two tails, we mark each row To find the probability of at least two tails, we mark each row (outcome) that contains two tails or three tails and divide the (outcome) that contains two tails or three tails and divide the number of marked rows by 8 (number in the sample space) Since number of marked rows by 8 (number in the sample space) Since there are four outcomes that have at least two tails, the probab there are four outcomes that have at least two tails, the probability is ility is 4/8 or 4/8 or ½ ½ . . t t t h t t t h t h h t t t h h t h t h h h h h
  • 31. Two dice are tossed. What is the probability of a sum greater th Two dice are tossed. What is the probability of a sum greater than 8 an 8 or doubles? or doubles? P(S>8 or doubles)= P(S>8 or doubles)=p(S p(S>8) + >8) + p(doubles) p(doubles)- -p(S p(S>8 >8 and and doubles) = doubles) = 10/36+6/36 10/36+6/36- -2/36=14/36=7/18. 2/36=14/36=7/18. • (1,1), (1,2), (1,3), (1,4), (1,5) (1,6) • (2,1), (2,2), (2,3), (2,4), (2,5), (2,6) • (3,1), (3,2), (3,3), (3,4), (3,5), (3,6) • (4,1), (4,2), (4,3), (4,4), (4,5), (4,6) • (5,1), (5,2), (5,3), (5,4), (5,5), (5,6) • (6,1), (6,2), (6,3), (6,4), (6,5), (6,6) Circled elements belong to the intersection of the two events.
  • 32. Complement Rule Complement Rule Many times it is easier to compute the probability that A won Many times it is easier to compute the probability that A won’ ’t occur t occur then the probability of event A. then the probability of event A. • Example: What is the probability that when two dice are tossed, the number of points on each die will not be the same? • This is the same as saying that doubles will not occur. Since the probability of doubles is 6/36 = 1/6, then the probability that doubles will not occur is 1 – 6/36 = 30/36 = 5/6. ( ) 1 ( ) P not A P A = − ( ) ( ) 1 P A p not A + = →
  • 33. Odds Odds • In certain situations, such as the gaming industry, it is customary to speak of the odds in favor of an event E and the odds against E. • Definition: Odds in favor of event E = • Odds against E = • Example: Find the odds in favor of rolling a seven when two dice are tossed. • Solution: The probability of a sum of seven is 6/36. So ' ( ) ( ) P E p E = ' ( ) ( ) P E p E ' ( ) ( ) p E P E 6 6 1 36 30 30 5 36 = =
  • 34. 7.3 Conditional Probability, 7.3 Conditional Probability, Intersection and Independence Intersection and Independence • Consider the following problem: • Find the probability that a randomly chosen person in the U.S. has lung cancer. • We want : p(C) . To determine the answer, we must know how many individuals are in the sample space, n(S). Of those, how many have lung cancer, n(C) and find the ratio of n( c) to n(S). ( ) ( ) ( ) n C P C n S =
  • 35. Conditional Probability Conditional Probability • Now, we will modify the problem: Find the probability that a person has lung cancer, given that the person smokes. • Do we expect the probability of cancer to be the same? • Probably not, although the cigarette manufacturers may disagree. • What we now have is called conditional probability. It is symbolized by • and means the probability of lung cancer assuming or given that the person smokes. ( ) P C S
  • 36. The probability of having lung cancer given that the person smok The probability of having lung cancer given that the person smokes is es is found by determining the number of people who have lung cancer found by determining the number of people who have lung cancer and smoke and smoke and dividing that number by the number of smokers. and dividing that number by the number of smokers. People who smoke People with lung cancer people who smoke and have lung cancer. ( ) ( ) ( ) n L S p L S n S ∩ =
  • 37. Formula for Conditional probability Formula for Conditional probability • Derivation: • Dividing numerator and denominator by the total number , n(T) , of the sample space allows us to express the conditional probability of L given S as the quotient of the probability of L and S divided by the probability of smoker. ( ) ( ) ( ) n L S p L S n S ∩ = → ( ) ( ) ( ) ( ) ( ) n L S n T p L S n S n T ∩ = → ( ) ( ) ( ) p L S p L S p S ∩ =
  • 38. The probability of event A given that event B has already The probability of event A given that event B has already occurred is equal to the probability of the intersection of occurred is equal to the probability of the intersection of events A and B divided by the probability of event B alone. events A and B divided by the probability of event B alone. ( ) ( ) ( ) p A B P A B p B ∩ =
  • 39. Example Example • There are two majors of a particular college: Nursing and Engineering. The number of students enrolled in each program is given in the table Find the following probabilities by using the following table. The row total gives the total number of each category and the number in the bottom-right cell gives the total number of students. A single student is selected at random from this college. Assuming that each student is equally likely to be chosen, find :
  • 40. Joint and Marginal Joint and Marginal Probability Probability • Table • 1. Prob(Nurse) = 100/150=2/3 • 2. Prob(Graduate student)= • 60/150=2/5 • 3. Probability (Nurse and Graduate student) = 47/150 • 4. Probability ( Engineering and Grad Student) 13/150 150 50 100 60 90 13 37 Engineers 47 53 Nursing Grads Unde r- grads
  • 41. Joint, Marginal and Joint, Marginal and Conditional Probability Conditional Probability • Combinations of simple events • A and B : symbolism • Probability of intersection is joint probability. • The symbolism represents the probability of the intersection of events A and B. ( ) P A B ∩ =
  • 42. Conditional probability Conditional probability • Given that a under-graduate student is selected at random, what is the probability that this student is a nurse? • Restricting our attention on the column representing undergrads, we find that of the 90 undergrad students, 53 are nursing majors. Therefore, P(N/U)=53/90 150 50 100 60 90 13 37 Engineers 47 53 Nursing Grads Under -grads
  • 43. Using the table Using the table • Given that an engineering student is selected, find the probability that the student is a under-graduate student. Restricting the sample space to the 50 engineering students, 37 of the 50 are undergrads, indicated by the red cell. Therefore, P(U/E)=37/50 = 0.74 150 50 100 60 90 13 37 Engineers 47 53 Nursing Grads Under- grads
  • 44. Derivation of general formulas for P( A and B) using Derivation of general formulas for P( A and B) using basic algebra basic algebra • Algebra: • Since • We have ∩ = → ( ) ( | ) ( ) P B A P P A A B ( ) ( ) ( ) p A P B B A p B ∩ = = ∩ ( | ) ( ) ( ) A A P B P p B A ( ) ( ) ( ) P A p P B A B B = ∩ ∩ = ∩ ( ) ( ) P A B p B A ∩ = ∩ = = ( ) ( ) ( ) ( ) ( ) ( ) P A B p B A P A p B A p B p A B
  • 45. Two cards are drawn without replacement from an ordinary Two cards are drawn without replacement from an ordinary deck of cards . Find deck of cards . Find • Probability (two clubs are drawn in succession). • Symbolize mathematically: means draw a club on the first draw and then a second club. = • Because the selection is done without replacement, we have one less card in the sample space and one less club since we assume that the first card drawn is a club, there are 12 remaining clubs and 51 total remaining cards. ∩ 1 2 ( ) P C C ∩ = ⋅ 1 2 1 2 1 ( ) ( ) ( ) P C C p C p C C ⋅ = ⋅ = 13 12 1 4 1 52 51 4 17 17
  • 46. • Two machines are in operation. Machine A produces 60% of the items whereas machine B produces the remaining 40%. Machine A produces 4% defective items whereas machine B produces 5% defective items. An item is chosen at random. • • a) P (item is defective) = • P(D and machine A) or P(D and Machine B) • • p(D) = + = • = 0.60(0.04)+0.40(0.05)= 0.044 A B 60% 40% 0.04 Def 0.05 def 0.95 good 0.96 good ∩ ( ) P A D ∩ ( ) p B D + ( ) ( ) ( ) ( ) p A p D A p B p D B
  • 47. Independence Independence • If two events are independent, then ( | ) ( ) ( | ) ( ) p A B p A P B A p B = =
  • 48. A coin is tossed and a die is rolled. Find the probability that A coin is tossed and a die is rolled. Find the probability that the coin comes up heads and the die comes up three. the coin comes up heads and the die comes up three. • The number of outcomes for the coin is 2: { H , T}. The number of outcomes for the die is 6: {1,2,3,4,5,6} . Using the fundamental principle of counting, we find that there are 2(6)=12 total outcomes of the sample space. • • p(H and 3) = 1/12 1 2 3 4 5 6 1 2 3 4 5 6 H T
  • 49. Now, let Now, let’ ’s look at the same problem in a slightly different way s look at the same problem in a slightly different way • To find the probability of Heads and then a three on a dice, we have • using the rule for conditional probability. However, the probability of getting a three on the die does not depend upon the outcome of the coin toss. We say that these two events are independent, since the outcome of either one of them does not affect the outcome of the remaining event. ∩ = ⋅ ( 3) ( ) (3 ) p H p H p H ∩ = ⋅ = ⋅ ( 3) ( ) (3 ) ( ) (3) p H p H p H p H p
  • 50. Joint Probability Rule Joint Probability Rule • If events A and B are independent: • If events A and B are dependent: ( ) ( ) ( ) P A B P A P B ∩ = ⋅ ( ) ( ) ( | ) p A B p A p B A ∩ = i
  • 51. Examples of Independence Examples of Independence •1. Two cards are drawn in succession with replacement from a standard deck of cards. What is the probability that two kings are drawn? • 2. Two marbles are drawn with replacement from a bag containing 7 blue and 3 red marbles. What is the probability of getting a blue on the first draw and a red on the second draw? ∩ = ⋅ = ⋅ = 1 2 1 2 ( ) ( ) ( ) 4 4 1 52 52 169 P K K p K p K ∩ = ⋅ = ⋅ = = ( ) ( ) ( ) 7 3 21 0.21 10 10 100 p B R p B p R
  • 52. Dependent Events Dependent Events • Two events are dependent when the outcome of one event affects the outcome of the second event. • • Example: Draw two cards in succession without replacement from a standard deck. Find the probability of a king on the first draw and a king on the second draw. • Answer: ∩ = ⋅ = ⋅ = 1 2 1 2 1 ( ) ( ) ( ) 4 3 1 52 51 221 P K K p K p K K
  • 53. • Are smoking and lung disease related? • 1. Find the probability of lung disease. • P(L) = 0.15 (row total) • 2. Find p(L/S) , probability of lung disease given smoker. • P(L/S)=0.12/0.19= 0.63. The probability of having lung disease given that you are a smoker is considerably higher than the probability of lung disease in the general population, so we cannot say that smoking and lung disease are independent events. 0.66 0.19 No lung Disease 0.03 0.12 Has Lung Disease Non- smoker Smoker
  • 54. 7.4 7.4 Baye Baye’ ’s s Formula Formula In this section, we will find the probability of In this section, we will find the probability of an earlier event conditioned on the an earlier event conditioned on the occurrence of a later event. occurrence of a later event.
  • 55. Probability of an Earlier Event Given a Later Event Probability of an Earlier Event Given a Later Event The procedures used in this example can be employed for The procedures used in this example can be employed for other problems using Bayesian probability. other problems using Bayesian probability. • A survey of middle-aged men reveals that 28% of them are balding at the crown of their head. Moreover, it is known that such men have an 18% probability of suffering a heart attack in the next 10 years. Men who are not balding in this way have an 11% probability of a heart attack. If a middle-aged man is randomly chosen, what is the probability that he is balding given that he suffered a heart attack? See tree diagram- next slide.
  • 56. We want P(B/H) (probability that he is balding given that he We want P(B/H) (probability that he is balding given that he suffered a heart attack. suffered a heart attack. • Tree diagram: Balding (0.28) Not balding 0.72 Heart attack 0.18 Heart attack 0.11 0.82 no heart attack 0.89 no heart attack
  • 57. Using the rule for conditional probability, we derive the Using the rule for conditional probability, we derive the general formula to solve the problem: general formula to solve the problem: • P(H) can be found by finding the union of • P(B and H) and • p(NB and H) • Rule for conditional probability • Substitution for p(H) ∩ = ( ) ( ) ( ) p B H P p H H B = ∩ + ∩ ( ) ( ( ) ) p B H p NB p H H = + ⋅ ( ) ( ) ( ) ( ) ( ) p H p B p H B p NB p H NB ∩ + ⋅ = ( ) ( ) ( ) ( ( ) ( ) ) p B H P B H p B p H B p NB p H NB
  • 58. Using the tree diagram, substitute the probabilities in the form Using the tree diagram, substitute the probabilities in the formula . ula . The answer reveals that the probability that a middle The answer reveals that the probability that a middle- -aged man is aged man is balding given he suffered a heart attack is 0.389. balding given he suffered a heart attack is 0.389. 1. 2. 3. 4. = 0.389 = + ⋅ ⋅ ( ) ( ) ( ) ( ) ) ( ( ) ( ) p B p H p B p H B B p NB p p H H NB B ∩ + ⋅ = ( ) ( ) ( ) ( ( ) ( ) ) p B H P B H p B p H B p NB p H NB ⋅ + ⋅ = 0.28(0.18) 0.28 (0. 0.72 18) ( (0 ) .11) p B H