SlideShare a Scribd company logo
Paresh Khatri
Feb, 2013
MPLS-based Metro Ethernet Networks
A Tutorial
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 2
Agenda
Introduction to Metro Ethernet Services
Traditional Metro Ethernet networks
Delivering Ethernet over MPLS
Summary
Questions
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 3
1. Introduction
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 4
Paresh Khatri (paresh.khatri@alcatel-lucent.com)
 Director – IP Competence Centre, APAC Pre-Sales, Alcatel-Lucent
 Key focus areas:
 Large-scale IP/MPLS networks
 L2/L3 VPNs
 Carrier Ethernet
 Next-generation mobile backhaul networks
 Acknowledgements:
 Some figures and text are provided courtesy of the Metro Ethernet Forum (MEF)
Introduction
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 5
2. Introduction to Metro Ethernet Services
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 6
Agenda
2. Introduction to Metro Ethernet Services
2.1 Why Metro Ethernet ?
2.2 Attributes of Carrier Ethernet
2.3 Carrier Ethernet Services defined by the MEF
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 7
2.1 Why Metro Ethernet ?
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 8
What is Metro Ethernet ?
 “… generally defined as the network that bridges or connects
geographically separated enterprise LANs while also connecting across the
WAN or backbone networks that are generally owned by service providers.
The Metro Ethernet Networks provide connectivity services across Metro
geography utilising Ethernet as the core protocol and enabling broadband
applications”
from “Metro Ethernet Networks – A Technical Overview” from the Metro Ethernet Forum
Introduction to Metro Ethernet Services
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 9
Why Metro Ethernet ?
 Benefits both providers and customers in numerous ways …
 Packet traffic has now overtaken all other traffic types
 Need for rapid provisioning
 Reduced CAPEX/OPEX
 Increased and flexible bandwidth options
 Well-known interfaces and technology
Introduction to Metro Ethernet Services
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 10
2.2 Attributes of Carrier Ethernet
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 11
• Carrier Ethernet is a ubiquitous, standardized,
carrier-class SERVICE defined by five
attributes that distinguish Carrier Ethernet
from familiar LAN based Ethernet
• It brings the compelling business
benefit of the Ethernet cost model
to achieve significant savings
Carrier
Ethernet
• Scalability
• Standardized Services
• Service Management
• Quality of Service
• Reliability
Carrier
Ethernet
Attributes
The 5 Attributes of Carrier Ethernet
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 12
2.3 Carrier Ethernet Services defined by the MEF
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 13
What do we mean by Metro Ethernet services ?
 Use of Ethernet access tails
 Provision of Ethernet-based services across the MAN/WAN
 Point-to-point
 Point-to-multipoint
 Multipoint-to-multipoint
 However, the underlying infrastructure used to deliver Ethernet services
does NOT have to be Ethernet !!!
 Referred to as Carrier Ethernet services by the Metro Ethernet Forum
 The terms “Carrier Ethernet” and “Metro Ethernet” are used interchangeably in
this presentation, but in the strict sense of the term, “Carrier Ethernet” refers to
the carrier-grade evolution of “Metro Ethernet”
Introduction to Metro Ethernet Services
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 14
Carrier Ethernet
Network
UNI
The User Network Interface (UNI)
 The UNI is the physical interface or port that is the demarcation
between the customer and the service provider/Cable
Operator/Carrier/MSO
 The UNI is always provided by the Service Provider
 The UNI in a Carrier Ethernet Network is a standard physical
Ethernet Interface at operating speeds 10Mbs, 100Mbps, 1Gbps or
10Gbps
CE: Customer Equipment, UNI: User Network Interface. MEF certified Carrier Ethernet products
CE
MEF Carrier Ethernet Terminology
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 15
Carrier Ethernet
Network
UNI
MEF Carrier Ethernet Terminology
The User Network Interface (UNI):
 MEF has defined two types of UNIs:
 MEF UNI Type I (MEF 13)
– A UNI compliant with MEF 13
– Manually configurable
– Specified for existing Ethernet devices
– Provides bare minimum data-plane connectivity services with no control-plane or
management-plane capabilities.
 MEF UNI Type II (MEF 20)
– Automatically configurable via E-LMI (allowing UNI-C to retrieve EVC status and
configuration information from UNI-N)
– Manageable via OAM
CE: Customer Equipment, UNI: User Network Interface. MEF certified Carrier Ethernet products
CE UNI
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 16
MetroMetro
EthernetEthernet
NetworkNetwork
CustomerCustomer
EdgeEdge
(CE)(CE)
User NetworkUser Network
InterfaceInterface
(UNI)(UNI)
User NetworkUser Network
InterfaceInterface
(UNI)(UNI)
CustomerCustomer
EdgeEdge
(CE)(CE)
MEF Carrier Ethernet Terminology
 Customer Equipment (CE) attaches to the Metro Ethernet Network
(MEN) at the UNI
 Using standard Ethernet frames.
 CE can be
 Router or bridge/switch - IEEE 802.1 bridge
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 17
Ethernet Services “Eth” Layer
Subscriber Site
Service Provider 1
Metro Ethernet Network
Service Provider 2
Metro Ethernet Network
Subscriber Site
ETH
UNI-C
ETH
UNI-N
ETH
UNI-N
ETH
UNI-N
ETH
UNI-N
ETH
UNI-C
UNI: User Network Interface, UNI-C: UNI-customer side, UNI-N network side
NNI: Network to Network Interface, E-NNI: External NNI; I-NNI Internal NNI
MEF Ethernet Services Model
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 18
MEF Carrier Ethernet Terminology
Ethernet Virtual Connection (EVC)
 An Ethernet Service Instantiation
 Most commonly (but not necessarily) identified via a VLAN-ID
 Like Frame Relay and ATM PVCs or SVCs
 Connects two or more subscriber sites (UNI’s)
 Can multiplex multiple EVCs on the same UNI
 An association of two or more UNIs
 Prevents data transfer between sites that are not part of the same EVC
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 19
MEF Carrier Ethernet Terminology
Ethernet Virtual Connection (EVC)
 Three types of EVC:
UNI
MEN
UNI
Point-to-Point EVC MEN
Multipoint-to-Multipoint EVC
MEN
Rooted-Multipoint EVC
Leaf
Leaf
Leaf
Root
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 20
E-LINE
E-LAN
Point to Point
Service Type used to
create
•Ethernet Private Lines
•Virtual Private Lines
•Ethernet Internet Access
E-TREE
Point to Multi-Point
•Efficient use of Service
Provider ports
•Foundation for Multicast
networks e.g. IPTV
Multi-Point to Multi-Point
Service Type used to create
•Multipoint Layer 2 VPNs
•Transparent LAN Service
Point-to-Point EVC
CE
UNI
UNI
CE
CE
UNI CE
UNI
Multipoint EVC
Rooted Multipoint EVC
CE UNI
CE
UNI
CE
UNI
Basic Carrier Ethernet Services
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 21
EVCs and Services
In a Carrier Ethernet network, data is transported across Point-to-Point,
Multipoint-to-Multipoint and Point-to-Multipoint EVCs according to the
attributes and definitions of the E-Line, E-LAN and E-Tree services
respectively.
Point-to-Point EVC
Carrier Ethernet
Network
UNI UNI
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 22
Services Using E-Line Service Type
Ethernet Private Line (EPL)
 Replaces a TDM Private line
 Dedicated UNIs for Point-to-Point connections
 Single Ethernet Virtual Connection (EVC) per UNI
Point-to-Point EVC
Carrier Ethernet
Network
CE UNI
CE
UNI
CE
UNI
ISP
POP
UNI
Storage Service
Provider
Internet
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 23
Services Using E-Line Service Type
Ethernet Virtual Private Line (EVPL)
 Replaces Frame Relay or ATM services
 Supports Service Multiplexed UNI
(i.e. multiple EVCs per UNI)
 Allows single physical connection (UNI) to customer premise equipment for
multiple virtual connections
 This is a UNI that must be configurable to support Multiple EVCs per UNI
Service
Multiplexed
Ethernet
UNI
Multipoint-to-Multipoint EVC
Carrier Ethernet Network
CE UNI
CE
UNI
CE
UNI
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 24
Services Using E-LAN Service Type
Ethernet Private LAN and Ethernet Virtual Private LAN Services
 Supports dedicated or service-multiplexed UNIs
 Supports transparent LAN services and multipoint VPNs
Service
Multiplexed
Ethernet
UNI
Point-to-Multipoint EVC
Carrier
Ethernet
Network
CE
UNI
UNI
UNI
CE
UNI
CE
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 25
Services Using E-Tree Service Type
Ethernet Private Tree (EP-Tree) and Ethernet Virtual Private Tree (EVP-
Tree) Services
 Enables Point-to-Multipoint Services with less provisioning than typical hub
and spoke configuration using E-Lines
 Provides traffic separation between users with traffic from one “leaf” being allowed
to arrive at one of more “roots” but never being transmitted to other “leaves”
Root
Carrier Ethernet Network
CE
UNI
UNI
UNI
CE
CE
Leaf
Leaf
UNI
CE
Leaf
Rooted-Multipoint EVC
Ethernet Private Tree example
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 26
Name any two of the five attributes of Carrier
Ethernet as defined by the Metro Ethernet
Forum.
Audience Question 1
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 27
3. Traditional Metro Ethernet networks
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 28
Agenda
3. Traditional Metro Ethernet Networks
3.1 Service Identification
3.2 Forwarding Mechanism
3.3 Resiliency and Redundancy
3.4 Recent Developments
3.5 Summary
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 29
Traditional methods of Ethernet delivery:
 Ethernet switching/bridging networks (802.1d/802.1q)
 Services identified by VLAN IDs/physical ports
 VLAN IDs globally significant
 Resiliency provided using variants of the Spanning Tree Protocol
Traditional Metro Ethernet Networks
Agg
Agg
Core
Core
Access
Access
Access
Access
Agg
Agg
Access
Access
Access
Access
Core
Core
CPE
CPE
CPE
CPE
CPE
CPE
CPE
CPE
CPE
CPE
CPE
CPE
CPE
CPE
CPE
CPE
Ethernet Switches
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 30
3.1 Service Identification
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 31
Service Identification:
 Ethernet switching/bridging networks
 First generation was based on IEEE 802.1q switches
 One obvious limitation was the VLAN ID space – the 12-bit VLAN ID allows a
maximum of 4094 VLANs (VLANs 0 and 4095 are reserved). This limited the total
number of services in any one switching/bridging domain.
 The other problem was that of customer VLAN usage – customers could not carry
tagged traffic transparently across the network
Traditional Metro Ethernet Networks
C-DA
C-SA
Payload
C-VID
Ethertype
Ethertype
VLAN ID
(12 bits)
PCP(3 bits)
0x8100
(16 bits)
CFI (1 bit)
Tag
Protocol
Identifer (TPID)
Tag
Control
Information
(TCI)
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 32
Service Identification :
 Q-in-Q (aka VLAN stacking, aka 802.1ad) comes to the rescue !
 Q-in-Q technology, which has now been standardised by the IEEE as 802.1ad
(Provider Bridging), allowed the addition of an additional tag to customer Ethernet
frames – the S-tag. The S-tag (Service Tag) was imposed by the Service Provider
and therefore, it became possible to carry customer tags (C-tags) transparently
through the network.
Traditional Metro Ethernet Networks
Provider
Bridge
Customer
Device
C-DA
C-SA
Payload
C-VID
Ethertype
Ethertype
C-DA
C-SA
Payload
S-VID
C-VID
Ethertype
Ethertype
Ethertype
VLAN ID
(12 bits)
PCP(3 bits)
0x88a8
(16 bits)
DEI (1 bit)
Tag
Protocol
Identifer (TPID)
Tag
Control
Information
(TCI)
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 33
Service Identification:
 Some important observations about Q-in-Q:
 This is not a new encapsulation format; it simply results in the addition of a second
tag to the customer Ethernet frame, allowing any customer VLAN tags to be
preserved across the network
 There is no change to the customer destination or source MAC addresses
 The number of distinct service instances within each Provider Bridging domain is
still limited by the S-VLAN ID space i.e. 4094 S-VLANs. The difference is that
customer VLANs can now be preserved and carried transparently across the
provider network.
Traditional Metro Ethernet Networks
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 34
3.2 Forwarding Mechanism
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 35
Forwarding Mechanism:
 Dynamic learning methods used to build forwarding databases
Traditional Metro Ethernet Networks
Agg
Agg
Core
Core
Access
Access
Access
Access
Agg
Agg
Access
Access
Access
Access
Core
Core
CPE
CPE
CPE
CPE
CPE
CPE
CPE
CPE
CPE
CPE
CPE
CPE
CPE
CPE
CPE
CPE
MAC Learning Points
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 36
Traditional Metro Ethernet Networks
Forwarding Mechanism:
 Dynamic learning methods used to
build forwarding databases
Provider
Switch
E1
CPE
(MAC A)
Provider
Switch
E2
Provider
Switch
C
Provider
Switch
E3
CPE
(MAC C)
CPE
(MAC B)
Forwarding Database – E1
MAC Interface
MAC-A i1
MAC-B i2
MAC-C i2
i1
i2
i3
i4
i5
i6 i7
i8
i9
Forwarding Database – E2
MAC Interface
MAC-A i6
MAC-B i7
MAC-C i6
Forwarding Database – E3
MAC Interface
MAC-A i8
MAC-B i8
MAC-C i9
Forwarding Database – C
MAC Interface
MAC-A i3
MAC-B i5
MAC-C i4
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 37
Forwarding Mechanism:
 Dynamic learning methods used to build forwarding databases
 Data-plane process – there are no control-plane processes for discovering endpoint
information
 In the worst case, ALL switches have forwarding databases that include ALL
MAC addresses. This is true even for switches in the core of the network
(Switch C in preceding example).
 Switches have limited resources for storing MAC addresses. This poses severe
scaling issues in all parts of the network. VLAN-stacking does not help with this
problem.
 On topology changes, forwarding databases are flushed and addresses need to be
re-learned. While these addresses are re-learned, traffic to unknown destinations
is flooded through the network, resulting in wasted bandwidth.
Traditional Metro Ethernet Networks
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 38
3.3 Resiliency and Redundancy
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 39
Resiliency and Redundancy
 Redundancy is needed in any network offering Carrier-grade Ethernet BUT
loops are bad !!
 The Spanning Tree Protocol (STP) is used to break loops in bridged Ethernet
networks
 There have been many generations of the STP over the years
 All of these variants work by removing redundant links so that there is one, and
only one, active path from each switch to every other switch i.e. all loops are
eliminated. In effect, a minimum cost tree is created by the election of a root
bridge and the subsequent determination of shortest-path links to the root bridge
from every other bridge
 Bridges transmit special frames called Bridge Protocol Data Units (BPDUs) to
exchange information about bridge priority, path costs etc.
 High Availability is difficult to achieve in traditional Metro Ethernet
networks.
Traditional Metro Ethernet Networks
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 40
Building the Spanning Tree …
Traditional Metro Ethernet Networks
Switch
A
Switch
B
Switch
C
Switch
D
10
10
20
10
Switch
A
Switch
B
Switch
C
Switch
D
Root Bridge
Rudimentary Traffic-Engineering Capabilities
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 41
First generation of STP (IEEE802.1d-1998):
 Had a number of significant shortcomings:
 Convergence times – the protocol is timer-based with times in the order of 10s of
seconds. After network topology changes (failure or addition of links), it could
take up to 50s for the network to re-converge
 The protocol was VLAN-unaware, which meant that in an IEEE 802.1q network, all
VLANs had to share the same spanning tree. This meant that there were network
links that would not be utilised at all since they were placed into a blocked state.
– Many vendors implemented their own, proprietary extensions to the protocol to
allow the use of a separate STP instance per VLAN, allowing better link utilisation
within the network
 There were many conditions which resulted in the inadvertent formation of loops in
the network. Given the flooding nature of bridged Ethernet, and the lack of a TTL-
like field in Ethernet frames, looping frames could loop forever.
– There are numerous well-publicised instances of network meltdowns in Enterprise
and Service Provider networks
– A lot of service providers have been permanently scarred by the catastrophic effects
of STP loops !
Traditional Metro Ethernet Networks
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 42
Newer generations of STP (IEEE802.1d-2004 – Rapid STP aka 802.1w):
 Some major improvements:
 Dependence on timers is reduced. Negotiation protocols have been introduced to
allow rapid transitioning of links to a forwarding state
 The Topology Change process has been re-designed to allow faster recovery from
topology changes
 Optimisations for certain types of direct and indirect link failures
 Convergence times are now down to sub-second in certain special cases but a lot of
failure cases still require seconds to converge !
 But…
 The protocol was still VLAN-unaware, which meant that the issue of under-utilised
links was still present
Traditional Metro Ethernet Networks
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 43
Newer generations of STP (IEEE802.1q-2003 – Multiple STP aka 802.1s):
 Built on top of RSTP
 Added VLAN awareness:
 Introduces the capability for the existence of multiple STP instances within the
same bridged network
 Allows the association of VLANs to STP instances, in order to provide a (relatively)
small number of STP instances, instead of using an instance per VLAN.
 Different STP instances can have different topologies, which allows much better
link utilisation
 BUT
 The stigma associated with past failures is hard to remove…
 The protocol is fairly complicated, compared to its much simpler predecessors
Traditional Metro Ethernet Networks
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 44
3.4 Recent Developments
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 45
Provider Backbone Bridging
 Takes IEEE 802.1ad to the next level
 MAC-in-MAC technology:
 Customer Ethernet frames are encapsulated in a provider Ethernet frame
 Alleviates the MAC explosion problem
 Core switches no longer need to learn customer MAC addresses
 Does not address the STP issue, however.
Recent Developments
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 46
Provider Backbone Bridging (PBB)
Ethernet Technology being standardized in IEEE 802.1ah Task Group
 Designed to interconnect Provider Bridge Networks (PBN - IEEE 802.1ad)
 Adds a Backbone Header to a Customer/QinQ Ethernet Frame
 Provider Addressing for Backbone Forwarding
 New extended tag for Service Virtualization
 Standardization ongoing
PBBN is Ethernet based:
Connectionless Forwarding based on MAC Learning & Forwarding,
Loop Avoidance based on STP,
VLAN ID for Broadcast Containment
PBN PBNPBBN
PBB
BEB
PBB
BEB
BEB:
Backbone Edge Bridge
Forward frames based
on backbone MAC
addresses
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 47
C-DA
C-SA
Payload
B-DA
B-SA
B-VID
I-SID
S-VID
C-VID
Ethertype
Ethertype
Ethertype
Ethertype
Ethertype
PBN
(QinQ)
PBN
(QinQ)
PBBN
PBB PE2
C-DA
C-SA
Payload
S-VID
C-VID
Ethertype
Ethertype
Ethertype
C-DA
C-SA
Payload
S-VID
C-VID
Ethertype
Ethertype
Ethertype
QinQ
frame
QinQ
frame
PBB
frame
B2
PBB PE1
B1B4
B6B5
B3
A1
CMAC=XBackbone FIBs
A1->Port
Customer FIB
X->A1
Customer FIB
X->Port
CMAC=Y
MAC-based,
Connectionless
Forwarding
Broadcast Containment
EIdentifies the service instance inside PE
I1
I2
I1
I1
I2
IEEE 802.1ah Model for PBB – I and B Components
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 48
802.1ah Provider Backbone Bridge Encapsulation
Payload
C-TAG TCI
q Etype = 81-00
S – TAG TCI
ad Etype = 88-a8
C – SA
C – DA
I – TAG TCI
ah Etype = 88-e7
B – TAG TCI
ad Etype = 88-a8
B – SA
B – DA
6+6
22 (w/o FCS)
2+2
2+4
I-TAG
B-TAG
S-TAG
C-TAG
DEI p bits VLAN-ID
I-PCP IDEI UCA Res I-SID
24313 1Bits
I-PCP = Customer Priority
I-DEI = Drop Elegibility
UCA = Use Customer Addresses
I-SID = Service Instance ID
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 49
Shortest Path Bridging
 Addresses the STP issue…
 SPBM is a Spanning-Tree Protocol replacement for PBB
 Being standardized in the IEEE in 802.1aq
 Shortest path backbone bridging Mac/VLAN Mode
 Requirements to address:
 No blocked ports like STP
 Fast resiliency
 No hop count restrictions like STP
 Simple networking paradigm
Recent Developments
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 50
How it works:
 Discover the network topology
 Enable a routing protocol on each system to discover the network topology
 Build shortest path trees between the network nodes
 To be used later for forwarding traffic on
 Distribute the service information to the network nodes
 Once services are created (i.e. ISIDs), the routing protocol is used to distribute the
information to all SPBM nodes
 All nodes (edge and core) are now aware of all VPNs and where the endpoints are.
 Update Forwarding Tables to connect the service nodes
 If the node determines that it is on the shortest path between endpoints for an
ISID, it updates its FIB for forwarding.
 When all nodes on shortest path complete the calculations, the VPN is connected!
Shortest Path Bridging
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 51
1. Discover network topology
• IS-IS enabled on nodes,
• Each node/link is automatically discovered
ISIS
ISIS ISIS
ISISISIS
ISIS
ISIS
ISIS ISIS
ISIS
ISIS
2. Nodes use IS-IS link state to automatically
build trees from itself to all nodes:
Important properties:
• Shortest path tree based on link metrics
• No blocked links
• Loop free via RPFC on SA-BMAC
• Symmetric unicast/mcast datapath
between any two nodes provides closed
OAM system
• unicast path now exists from every node
to every other node
3. Use IS-IS to advertise new services
communities of interest
• MAC and ISID information flooded to the
network
CREATE
ISID=100
4. When nodes receive notice of a new service AND they
are on the shortest path, update FDB
• Unicast FIB entry – no flooding in BVPLS
• Mcast FIB entry – per ISID group MAC
100
100
100
100
100
100
Shortest path tree to node A shown
Node A
Shortest Path Bridging - Operation
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 52
2
43
1
2
43
1
2
43 1
3
2
1
4
4
2
1
3
Base SPBM Topology
SPT for node 1 SPT for node 2 SPT for node 3 SPT for node 4
Path from 1 to 4 are
symmetrical for SPT at
node 1 and SPT at node 4.
Same for all other node
pairs.
Shortest Path Bridging – SPT Example
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 53
3.5 Summary
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 54
Summary of Issues:
 High Availability is difficult to achieve in networks running the Spanning
Tree Protocol
 Scalability – IEEE 802.1q/802.1ad networks run into scalability limitations in
terms of the number of supported services
 Customer Ethernet frames are encapsulated in a provider Ethernet frame
 QoS – only very rudimentary traffic-engineering can be achieved in bridged
Ethernet networks.
 A lot of deployed Ethernet switching platforms lack carrier-class capabilities
required for the delivery of Carrier Ethernet services
 New extensions in IEEE 802.1ah address some limitations such as the
number of service instances and MAC explosion problems
 New extensions in IEEE 802.1aq address the replacement of the Spanning
Tree Protocol
Traditional Metro Ethernet Networks
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 55
Which IEEE standard defines Provider Bridging
(Q-in-Q) ?
Audience Question 2
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 56
What is the size of the I-SID field in IEEE
802.1ah?
Audience Question 3
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 57
4. Delivering Ethernet over MPLS
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 58
Agenda
4. Delivering Ethernet over MPLS
4.1 Introduction to MPLS
4.2 The Pseudowire Reference Model
4.3 Ethernet Virtual Private Wire Service
4.4 Ethernet Virtual Private LAN Service
4.5 Scaling VPLS
4.6 VPLS Topologies
4.7 Resiliency Mechanisms
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 59
4.1 Introduction to MPLS
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 60
MPLS Attributes
 Convergence: From “MPLS over everything” to “Everything over MPLS” !
 One network, multiple services
 Excellent virtualisation capabilities
 Today’s MPLS network can transport IP, ATM, Frame Relay and even TDM !
 Scalability
 MPLS is used in some of the largest service provider networks in the world
 Advanced Traffic Engineering capabilities using RSVP-TE
 Rapid recovery based on MPLS Fast ReRoute (FRR)
 Rapid restoration around failures by local action at the Points of Local Repair (PLRs)
 Sub-50ms restoration on link/node failures is a key requirement for carriers who are used to
such performance in their SONET/SDH networks
 Feature-richness
 MPLS has 10 years of development behind it and continues to evolve today
 Layer 3 VPNs have already proven themselves as the killer app for MPLS – there is no
reason why this success cannot be emulated by Layer 2 VPNs
Delivering Ethernet over MPLS
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 61
The “Multiprotocol” nature of MPLS:
 MPLS is multiprotocol in terms of both the layers above and below it !
 The ultimate technology for convergence
MPLS is truly Multi-Protocol
MPLS
Ethernet
Frame
Relay
ATM PoS PPP Etc.
Physical
Ethernet
Frame
Relay
ATM TDM IP Etc.
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 62
The virtualisation capabilities of MPLS:
 One common network supports multiple, different overlaid services
MPLS Virtualisation
PE PE
MPLS
PE
PE
PE
P
P P
P
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 63
The virtualisation capabilities of MPLS:
 One common network supports multiple, different overlaid services
MPLS Virtualisation
VPLS
VPWS
L3VPN
MPLS
PE
PE PE
PE
PE
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 64
64 | MPLS-based Metro Ethernet Networks, February 2011
MPLS Scalability:
 Service state is kept only on the Provider Edge devices
 The Provider (P) devices simply contain reachability information to each other and
all PEs in the network
 The Provider Edge (PE) devices contain customer and service-specific state
MPLS Scalability
PE PE
MPLS
PE
PE
PE
P
P P
P
No
customer
or service
state in
the core
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 65
Traffic-Engineering capabilities
 The Problem: consider example below – all mission-critical traffic between
nodes A and Z has to use the path A-D-E-F-Z, while all other traffic uses the
path A-B-C-Z.
MPLS Traffic-Engineering
A Z
D E F
B C
Other traffic
Mission-critical traffic
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 66
The IGP-based solution
 Use link metrics to influence traffic path
MPLS Traffic-Engineering
A Z
D E F
B C10
10
10 10
30
10
10
Other traffic
Mission-critical traffic
 It’s all or nothing – Traffic cannot be routed selectively
Other solutions
 Policy-based routing – will work but is cumbersone to manage and has to be
carefully crafted to avoid routing loops
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 67
The MPLS solution
 Use constrained path routing to build Label Switched Paths (LSPs)
MPLS Traffic-Engineering
 Constrain LSP1 to use only the “orange” physical links
A Z
D E F
B C
Mission-critical
traffic
LSP 2
LSP 1
Other traffic
 Constrain LSP2 to use only the “blue” physical links
 At the PEs, map the mission-critical traffic to LSP2 and…
 …all other traffic to LSP1
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 68
Recovery from failures – typical IGP
 Step 1 – Detection of the failure
 One or more routers detect that a failure (link or node) has occurred
 Step 2 – Propagation of failure notification
 The router(s) detecting the failure inform other routers in the domain about the
failure
 Step 3 – Recomputation of Paths/Routes
 All routers which receive the failure notification now have to recalculate new
routes/paths by running SPF algorithms etc
 Step 4 – Updating of the Forwarding Table
 Once new routes are computed, they are downloaded to the routers’ forwarding
table, in order to allow them to be used
 All of this takes time…
MPLS Traffic-Engineering
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 69
Failure and Recovery Example – IGP-based
 What happens immediately after the link between C and Z fails ?
MPLS Traffic-Engineering
B
Z
Direction of traffic flow
 Step 1 - Assuming a loss of signal (or similar physical indication) nodes C and Z
immediately detect that the link is down
 Node A does not know that the link is down yet and keeps sending traffic destined
to node Z to Node C. Assuming that node C has not completed step 4 yet, this
traffic is dropped.
C
A
10
10
20
10
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 70
Failure and Recovery Example (continued) – IGP-based
 Node C (and node Z) will be the first to recalculate its routing table and update its
forwarding table (step 4).
MPLS Traffic-Engineering
 In the meantime, Node A does not know that the link is down yet and keeps sending
traffic destined to node Z to Node C. Given that node C has completed step 4, it
now believes (quite correctly) that the best path to Z is via node A. BUT – node A
still believes that the best path to node Z is via node C so it sends the traffic right
back to node C. We have a transient loop (micro-loop) ….
 The loop resolves itself as soon as node A updates its forwarding table but in the
meantime, valuable packets have been dropped
B
Z
Direction of traffic flow C
A
10
10
20
10
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 71
Failure and Recovery Example (continued)
 Node A and all other nodes eventually update their forwarding tables and
all is well again.
 But the damage is already done. . .
MPLS Traffic-Engineering
B
Z
Direction of traffic flow
C
A
10
10
20
10
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 72
Recovery from failures – how can MPLS help ?
 RSVP-TE Fast Re-Route (FRR) pre-computes detours around potential failure
points such as next-hop nodes and links
 When link or node failures occur, the routers (Points of Local Repair)
directly connected to the failed link rapidly (sub-50ms) switch all traffic
onto the detour paths.
 The network eventually converges and the head-end router (source of the
traffic) switches traffic onto the most optimal path. Until that is done,
traffic flows over the potentially sub-optimal detour path BUT the packet
loss is kept to a minimum
MPLS Traffic-Engineering
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 73
Failure and Recovery Example – with MPLS FRR
 Node C pre-computes and builds a detour around link C-Z
MPLS Traffic-Engineering
B
Z
Direction of traffic flow
C
A
10
10
20
10
Bypass tunnel
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 74
Failure and Recovery Example – with MPLS FRR
 When link C-Z fails, node C reroutes traffic onto the detour tunnel
 Traffic does a U-turn but still makes it to the destination
MPLS Traffic-Engineering
B
ZDirection of traffic flow
C
A
10
10
20
10
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 75
What is the size of the MPLS label stack entry ?
And the MPLS label itself ?
Audience Question 4
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 76
4.2 The Pseudowire Reference Model
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 77
Pseudowires:
 Key enabling technology for delivering Ethernet services over MPLS
 Specified by the pwe3 working group of the IETF
 Originally designed for Ethernet over MPLS (EoMPLS) – initially called Martini
tunnels
 Now extended to many other services – ATM, FR, Ethernet, TDM
 Encapsulates and transports service-specific PDUs/Frames across a Packet
Switched Network (PSN) tunnel
 The use of pseudowires for the emulation of point-to-point services is
referred to as Virtual Private Wire Service (VPWS)
 IETF definition (RFC3985):
“...a mechanism that emulates the essential attributes of a
telecommunications service (such as a T1 leased line or Frame Relay)
over a PSN. PWE3 is intended to provide only the minimum necessary
functionality to emulate the wire with the required degree of
faithfulness for the given service definition.”
The Pseudowire Reference Model
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 78
Generic PWE3 Architectural Reference Model:
PWE3 Reference Model
PSN
CE 1 CE 2
Emulated Service
Pseudowire
PSN Tunnel
Attachment
Circuit
Attachmen
t Circuit
PE 1 PE 2
•Payload •Payload
•PW Demultiplexer
•Physical
•Data Link
•PSN
•Payload
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 79
Pseudowire Terminology
 Attachment circuit (AC)
 The physical or virtual circuit attaching a CE to a PE.
 Customer Edge (CE)
 A device where one end of a service originates and/or terminates.
 Forwarder (FWRD)
 A PE subsystem that selects the PW to use in order to transmit a payload received on an AC.
 Packet Switched Network (PSN)
 Within the context of PWE3, this is a network using IP or MPLS as the mechanism for packet
forwarding.
 Provider Edge (PE)
 A device that provides PWE3 to a CE.
 Pseudo Wire (PW)
 A mechanism that carries the essential elements of an emulated service from one PE to one or
more other PEs over a PSN.
 PSN Tunnel
 A tunnel across a PSN, inside which one or more PWs can be carried.
 PW Demultiplexer
 Data-plane method of identifying a PW terminating at a PE.
PWE3 Terminology
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 80
Pseudowire – Protocol Layering:
 The PW demultiplexing layer provides the ability to deliver multiple PWs
over a single PSN tunnel
Pseudowire Protocol Layering
•Payload
•PW Label
•Physical
•Data Link
•PSN Label
Ethernet over MPLS PSN
Ethernet Frame
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 81
4.3 Ethernet Virtual Private Wire Service (VPWS)
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 82
Ethernet Pseudowires:
 Encapsulation specified in RFC4448 – “Encapsulation Methods for Transport
of Ethernet over MPLS Networks”
 Ethernet pseudowires carry Ethernet/802.3 Protocol Data Units (PDUs) over
an MPLS network
 Enables service providers to offer “emulated” Ethernet services over
existing MPLS networks
 RFC4448 defines a point-to-point Ethernet pseudowire service
 Operates in one of two modes:
 Tagged mode - In tagged mode, each frame MUST contain at least one 802.1Q
VLAN tag, and the tag value is meaningful to the two PW termination points.
 Raw mode - On a raw mode PW, a frame MAY contain an 802.1Q VLAN tag, but if it
does, the tag is not meaningful to the PW termination points, and passes
transparently through them.
Ethernet Virtual Private Wire Service
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 83
Ethernet Pseudowires (continued):
 Two types of services:
 “port-to-port” – all traffic ingressing each attachment circuit is transparently
conveyed to the other attachment circuit, where each attachment circuit is an
entire Ethernet port
 “Ethernet VLAN to VLAN” – all traffic ingressing each attachment circuit is
transparently conveyed to the other attachment circuit, where each attachment
circuit is a VLAN on an Ethernet port
– In this service instance, the VLAN tag may be stripped on ingress and
then re-imposed on egress.
– Alternatively, the VLAN tag may be stripped on ingress and a completely
different VLAN ID imposed on egress, allowing VLAN re-write
– The VLAN ID is locally significant to the Ethernet port
Ethernet Virtual Private Wire Service
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 84
PWE3 Architectural Reference Model for Ethernet Pseudowires
PWE3 Reference Model for Ethernet VPWS
PSN
CE 1 CE 2
Emulated Service
Pseudowire
PSN Tunnel
Attachment
Circuit
Attachmen
t Circuit
PE 1 PE 2
•Payload •Payload
•PW Demultiplexer
•Physical
•Data Link
•PSN
•Payload
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 85
Ethernet PWE3 Protocol Stack Reference Model:
Ethernet Virtual Private Wire Service
•Emulated
•Ethernet
•PW Demultiplexer
•Physical
•Data Link
•PSN MPLS
Emulated Service •Emulated
•Ethernet
•PW Demultiplexer
•Physical
•Data Link
•PSN MPLS
Pseudowire
PSN Tunnel
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 86
Example 1: Ethernet VPWS port-to-port (traffic flow from CE1 to CE2)
Ethernet VPWS Example 1
PSN
CE 1 CE 2
Port 1/2/1 Port 3/2/0
PE 1 PE 2
•Payload •Payload
•6775
•Physical
•Data Link
•1029
PE1 Config:
Service ID: 1000
Service Type: Ethernet VPWS
(port-to-port)
PSN Label for PE2: 1029
PW Label from PE2: 6775
Port: 1/2/1
PE2 Config:
Service ID: 1000
Service Type: Ethernet VPWS
(port-to-port)
PSN Label for PE1: 4567
PW Label from PE1: 10978
Port: 3/2/0
Traffic Flow
DA
SA
VLAN tag
DA
SA
VLAN tag
•Payload
DA
SA
VLAN tag
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 87
Example 1: Ethernet VPWS port-to-port (traffic flow from CE2 to CE1)
Ethernet VPWS Example 1
PSN
CE 1 CE 2
Port 1/2/1 Port 3/2/0
PE 1 PE 2
•Payload •Payload
•10978
•Physical
•Data Link
•4567
PE1 Config:
Service ID: 1000
Service Type: Ethernet VPWS
(port-to-port)
PSN Label for PE2: 1029
PW Label from PE2: 6775
Port: 1/2/1
PE2 Config:
Service ID: 1000
Service Type: Ethernet VPWS
(port-to-port)
PSN Label for PE1: 4567
PW Label from PE1: 10978
Port: 3/2/0
Traffic Flow
DA
SA
VLAN tag
DA
SA
VLAN tag
•Payload
DA
SA
VLAN tag
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 88
Example 2: Ethernet VPWS VLAN-based (traffic flow from CE1 to CE2)
Ethernet VPWS Example 2
PSN
CE 1 CE 2
Port 1/2/1 Port 3/2/0
PE 1 PE 2
•Payload •Payload
•5879
•Physical
•Data Link
•1029
PE1 Config:
Service ID: 2000
Service Type: Ethernet VPWS
(VLAN-100)
PSN Label for PE2: 1029
PW Label from PE2: 5879
Port: 1/2/1 VLAN 100
PE2 Config:
Service ID: 2000
Service Type: Ethernet VPWS
(VLAN-200)
PSN Label for PE1: 4567
PW Label from PE1: 21378
Port: 3/2/0 VLAN 200
Traffic Flow
DA
SA
VLAN tag - 100
DA
SA
•Payload
DA
SA
VLAN tag - 200
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 89
Example 2: Ethernet VPWS VLAN-based (traffic flow from CE2 to CE1)
Ethernet VPWS Example 2
PSN
CE 1 CE 2
Port 1/2/1 Port 3/2/0
PE 1 PE 2
•Payload •Payload
•21378
•Physical
•Data Link
•4567
PE1 Config:
Service ID: 2000
Service Type: Ethernet VPWS
(VLAN-100)
PSN Label for PE2: 1029
PW Label from PE2: 5879
Port: 1/2/1 VLAN 100
PE2 Config:
Service ID: 1000
Service Type: Ethernet VPWS
(VLAN-200)
PSN Label for PE1: 4567
PW Label from PE1: 21378
Port: 3/2/0 VLAN 200
Traffic Flow
DA
SA
VLAN tag - 100
DA
SA
•Payload
DA
SA
VLAN tag - 200
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 90
Ethernet Pseudowires – Setup and Maintenance:
 Signalling specified in RFC4447 – “Pseudowire Setup and Maintenance Using
the Label Distribution Protocol (LDP)”
 The MPLS Label Distribution Protocol, LDP [RFC5036], is used for setting up
and maintaining the pseudowires
 PW label bindings are distributed using the LDP downstream unsolicited mode
 PEs establish an LDP session using the LDP Extended Discovery mechanism a.k.a
Targeted LDP or tLDP
 The PSN tunnels are established and maintained separately by using any of
the following:
 The Label Distribution Protocol (LDP)
 The Resource Reservation Protocol with Traffic Engineering (RSVP-TE)
 Static labels
Ethernet Virtual Private Wire Service
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 91
Ethernet Pseudowires – Setup and Maintenance:
 LDP distributes FEC to label mappings using the PWid FEC Element (popularly
known as FEC Type 128)
 Both pseudowire endpoints have to be provisioned with the same 32-bit identifier
for the pseudowire to allow them to obtain a common understanding of which
service a given pseudowire belongs to.
Ethernet Virtual Private Wire Service
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| PWid (0x80) |C| PW type |PW info Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Group ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| PW ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Interface Parameter Sub-TLV |
| " |
| " |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 92
Ethernet Pseudowires – Setup and Maintenance:
 A new TLV, the Generalized PWid FEC Element (popularly known as FEC Type 129)
has also been developed but is not widely deployed as yet
 The Generalized PWid FEC element requires that the PW endpoints be uniquely
identified; the PW itself is identified as a pair of endpoints. In addition, the
endpoint identifiers are structured to support applications where the identity of
the remote endpoints needs to be auto-discovered rather than statically
configured.
Ethernet Virtual Private Wire Service
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 93
Ethernet Pseudowires – Setup and Maintenance:
 The Generalized PWid FEC Element (popularly known as FEC Type 129)
Ethernet Virtual Private Wire Service
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Gen PWid (0x81)|C| PW Type |PW info Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AGI Type | Length | Value |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ AGI Value (contd.) ~
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AII Type | Length | Value |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ SAII Value (contd.) ~
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AII Type | Length | Value |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ TAII Value (contd.) ~
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 94
What protocol is used to exchange pseudowire
labels between provider edge routers ?
Audience Question 5
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 95
4.4 Ethernet Virtual Private LAN Service (VPLS)
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 96
Ethernet VPLS:
 Two variants
 RFC4762 - Virtual Private LAN Service (VPLS) Using Label Distribution Protocol
(LDP) Signaling. We will concentrate on this variant in the rest of this tutorial
 RFC4761 - Virtual Private LAN Service (VPLS) Using BGP for Auto-Discovery and
Signaling
Ethernet Virtual Private LAN Service
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 97
Definition:
 A VPLS creates an emulated private LAN segment for a given set of users.
 It creates a Layer 2 broadcast domain that is fully capable of learning and
forwarding on Ethernet MAC addresses and that is closed to a given set of
users. Multiple VPLS services can be supported from a single Provider Edge
(PE) node.
 The primary motivation behind VPLS is to provide connectivity between
geographically dispersed customer sites across MANs and WANs, as if they
were connected using a LAN.
 The main intended application for the end-user can be divided into the
following two categories:
 Connectivity between customer routers: LAN routing application
 Connectivity between customer Ethernet switches: LAN switching application
Ethernet Virtual Private LAN Service
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 98
Benefits for the customer:
 Simplicity
 Behaves like an “ethernet switch in the sky”
 No routing interaction with the provider
 Clear demarcation between subscriber and provider
 Layer 3 agnostic
 Scalable
 Provider configures site connectivity only
 Hierarchy reduces number of sites touched
 Multi-site connectivity
 On the fly connectivity via Ethernet bridging
VPLS Benefits
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 99
Topological Model for VPLS (customer view)
VPLS Topological Model
PSN
CE 1 CE 2
CE 3
Ethernet Switch
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 100
Topological Model for VPLS (provider view)
VPLS Topological Model
PSN
CE 1 CE 2
Emulated LAN
Attachment
Circuit
Attachmen
t Circuit
PE 1 PE 2
CE 3
PE 3
Attachmen
t Circuit
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 101
PSN Tunnels and Pseudowire Constructs for VPLS:
Constructing VPLS Services
PSN
CE 1 CE 2
Attachment Circuit
Attachment Circuit
CE 3
Attachment Circuit
PSN (LSP) tunnel
VB
VB
PE 1 PE 2
PE 3
VBVB
Virtual Bridge
Instance
Pseudowire
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 102
Provider Edge Functions:
 PE interfaces participating in a VPLS instance are able to flood, forward,
and filter Ethernet frames, like a standard Ethernet bridged port
 Many forms of Attachment Circuits are acceptable, as long as they carry
Ethernet frames:
 Physical Ethernet ports
 Logical (tagged) Ethernet ports
 ATM PVCs carrying Ethernet frames
 Ethernet Pseudowire
 Frames sent to broadcast addresses and to unknown destination MAC
addresses are flooded to all ports:
 Attachment Circuits
 Pseudowires to all other PE nodes participating in the VPLS service
 PEs have the capability to associate MAC addresses with Pseudowires
VPLS PE Functions
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 103
Provider Edge Functions (continued):
 Address learning:
 Unlike BGP VPNs [RFC4364], reachability information is not advertised and
distributed via a control plane.
 Reachability is obtained by standard learning bridge functions in the data plane.
 When a packet arrives on a PW, if the source MAC address is unknown, it is
associated with the PW, so that outbound packets to that MAC address can be
delivered over the associated PW.
 When a packet arrives on an AC, if the source MAC address is unknown, it is
associated with the AC, so that outbound packets to that MAC address can be
delivered over the associated AC.
VPLS PE Functions
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 104
VPLS Signalling
VPLS Mechanics:
 Bridging capable PE routers are
connected with a full mesh of MPLS
LSP tunnels
 Per-Service pseudowire labels are
negotiated using RFC 4447
techniques
 Replicates unknown/broadcast
traffic in a service domain
 MAC learning over tunnel & access
ports
 Separate FIB per VPLS for private
communication
PSN
CE 1 CE 2
VPLS
Service
Attachment
Circuit
Attachment
Circuit
PE 1 PE 2
CE 3
PE 3
Attachment
Circuit
Full mesh of
LSP tunnels
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 105
VPLS Signalling
Tunnel establishment
 LDP:
 MPLS paths based on IGP reachability
 RSVP: traffic engineered MPLS paths
with bandwidth & link constraints,
and fast reroute alternatives
Pseudowire establishment
 LDP: point-to-point exchange of PW
ID, labels, MTU
PSN
CE 1 CE 2
VPLS
Service
Attachment
Circuit
Attachment
Circuit
PE 1 PE 2
CE 3
PE 3
Attachment
Circuit
Full mesh of
LSP tunnels
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 106
VPLS Signalling
A full mesh of pseudowires is established between all PEs
participating in the VPLS service:
 Each PE initiates a targeted LDP session to the far-end System IP (loopback)
address
 Tells far-end what PW label to use when sending packets for each service
PSN
CE 1 CE 2
Attachment
Circuit
Attachment
Circuit
CE 3
Attachment
Circuit
PSN (LSP) tunnel
VB
VB
PE 1 PE 2
PE 3
VBVB
Virtual Bridge
Instance
Pseudowire
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 107
VPLS Signalling
Why a full mesh of pseudowires?
 If the topology of the VPLS is not restricted to a full mesh, then it may
be that for two PEs not directly connected via PWs, they would have to
use an intermediary PE to relay packets
 A loop-breaking protocol, such as the Spanning Tree Protocol, would be
required
 With a full-mesh of PWs, every PE is now directly connected to every
other PE in the VPLS via a PW; there is no longer any need to relay
packets
 The loop-breaking rule now becomes the "split horizon" rule, whereby a
PE MUST NOT forward traffic received from one PW to another in the
same VPLS mesh
 Does this remind you of a similar mechanism used in IP networks ? The ibgp
full-mesh !
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 108
Ethernet Pseudowires – Setup and Maintenance:
 Signalling specified in RFC4447 – “Pseudowire Setup and Maintenance Using
the Label Distribution Protocol (LDP)”
 The MPLS Label Distribution Protocol, LDP [RFC5036], is used for setting up
and maintaining the pseudowires
 PW label bindings are distributed using the LDP downstream unsolicited mode
 PEs establish an LDP session using the LDP Extended Discovery mechanism a.k.a
Targeted LDP or tLDP
 The PSN tunnels are established and maintained separately by using any of
the following:
 The Label Distribution Protocol (LDP)
 The Resource Reservation Protocol with Traffic Engineering (RSVP-TE)
 Static labels
VPLS Pseudowire Signalling
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 109
Ethernet Pseudowires – Setup and Maintenance:
 LDP distributes FEC to label mappings using the PWid FEC Element (popularly
known as FEC Type 128)
 Both pseudowire endpoints have to be provisioned with the same 32-bit identifier
for the pseudowire to allow them to obtain a common understanding of which
service a given pseudowire belongs to.
VPLS Pseudowire Signalling
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| PWid (0x80) |C| PW type |PW info Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Group ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| PW ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Interface Parameter Sub-TLV |
| " |
| " |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 110
Ethernet Pseudowires – Setup and Maintenance:
 A new TLV, the Generalized PWid FEC Element (popularly known as FEC Type 129)
has also been developed but is not widely deployed as yet
 The Generalized PWid FEC element requires that the PW endpoints be uniquely
identified; the PW itself is identified as a pair of endpoints. In addition, the
endpoint identifiers are structured to support applications where the identity of
the remote endpoints needs to be auto-discovered rather than statically
configured.
VPLS Pseudowire Signalling
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 111
Ethernet Pseudowires – Setup and Maintenance:
 The Generalized PWid FEC Element (popularly known as FEC Type 129)
VPLS Pseudowire Signalling
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Gen PWid (0x81)|C| PW Type |PW info Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AGI Type | Length | Value |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ AGI Value (contd.) ~
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AII Type | Length | Value |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ SAII Value (contd.) ~
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AII Type | Length | Value |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ TAII Value (contd.) ~
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 112
Ethernet VPLS Signalling Example
PE1 Config:
Service ID: 1001
Service Type: Ethernet VPLS
PSN Label for PE2: 1029
PSN Label for PE3: 9178
PW Label from PE2: 6775
PW Label from PE3: 10127
Port: 1/2/1
PE2 Config:
Service ID: 1001
Service Type: Ethernet VPLS
PSN Label for PE1: 4567
PSN Label for PE3: 11786
PW Label from PE1: 10978
PW Label from PE3: 4757
Port: 3/2/0
Port
1/2/1
Port
3/2/0
PSN
M1 M2
M3
VB
PE 1 PE 2
PE 3
VBVB
PE3 Config:
Service ID: 1001
Service Type: Ethernet VPLS
PSN Label for PE1: 6668
PSN Label for PE2: 12812
PW Label from PE1: 4568
PW Label from PE3: 10128
Port: 4/1/2
Port 4/1/2
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 113
VPLS Packet Walkthrough and MAC Learning Example
Port
1/2/1
Port
3/2/0
PSN
M1 M2
M3
VB
PE 1 PE 2
PE 3
VBVB
Port 4/1/2
Packet Walkthrough for
VPLS Service-id 1001
Send a packet from M2 to M1
- PE2 learns that M2 is reached on Port 3/2/0
- PE2 floods to PE1 with PW-label 10978 and PE3 with PW-label 4757
- PE1 learns from the PW-label 10978 that M2 is behind PE2
- PE1 sends on Port 1/2/1
- PE3 sends on Port 4/1/2
- PE3 learns from the PW-label 4757 M2 is behind PE2
- M1 receives packet
Forwarding Database – PE 2
MA
C
Locatio
n
Mapping
M2 Local Port 3/2/0
Forwarding Database – PE 3
MAC Location Mapping
M2 Remote PW to PE2
Forwarding Database – PE 1
MAC Location Mapping
M2 Remote PW to PE2
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 114
VPLS Packet Walkthrough and MAC Learning Example
(cont.)
Port
1/2/1
Port
3/2/0
PSN
M1 M2
M3
VB
PE 1 PE 2
PE 3
VBVB
Port 4/1/2
Packet Walkthrough for
VPLS Service-id 1001
Forwarding Database – PE 2
MA
C
Locatio
n
Mapping
M1 Remote PW to PE1
M2 Local Port 3/2/0
Forwarding Database – PE 1
MAC Location Mapping
M1 Local Port 1/2/1
M2 Remote PW to PE2
Reply with a packet from M1 to M2
- PE1 learns M1 is on Port 1/2/1
- PE1 knows that M2 is reachable via PE2
- PE1 sends to PE2 using PW-label 6775
- PE2 knows that M2 is reachable on Port 3/2/0 and so it sends it out that port
- M2 receives packet
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 115
If a full-mesh VPLS is set up between 5 provider
edge routers, how many pseudowires need to be
configured ?
Audience Question 6
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 116
4.5 Scaling VPLS
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 117
PE-1
PE-2
VPLS
M-1
M-3
VB
VB
VB
PE-3
VB
M-5
M-6
VB
MTU-1
Hierarchical-VPLS (H-VPLS)
 Introduces hierarchy in the base VPLS solution to provide scaling &
operational advantages
 Extends the reach of a VPLS using spokes, i.e., point-to-point
pseudowires or logical ports
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 118
Hierarchical VPLS
How is a spoke useful?
 Scales signalling
 Full-mesh between MTUs is reduced to full-mesh between PEs and
single PW between MTU and PE
 Scales replication
 Replication at MTU is not required
 Replication is reduced to what is necessary between PEs
 Simplifies edge devices
 Keeps cost down because PEs can be replaced with MTUs
 Enables scalable inter-domain VPLS
 Single spoke to interconnect domains
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 119
Scalability: Signalling
is reduced to full-mesh between PEs and
single spoke between MTU and PE
Mesh PWs
Spoke PWs
Mesh PWs
Full-mesh between PEs
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 120
Scalability: Replication
Flat architecture replication is reduced to distributed replication
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 121
Scalability: Configuration
Full mesh configuration
is significantly reduced
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 122
Topological Extensibility: Metro Interconnect
ISP
IP / MPLS
Core Network
Metro
IP / MPLS
Network
Metro
IP / MPLS
Network
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 123
Topological Extensibility: Inter-AS Connectivity
Provider hand-off can be
 q-tagged or q-in-q port
 Pseudowire spoke
Provider A
IP / MPLS
Network
Provider B
IP / MPLS
Network
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 124
4.6 VPLS Topologies
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 125
Topologies: Mesh
PE-4
PE-1
PE-3
PE-2
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 126
Topologies: Hierarchical
PE-4
PE-1
PE-3
PE-2
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 127
Topologies: Dual-homing
PE-4
PE-1
PE-3
PE-2
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 128
Topologies: Ring
A full mesh would have too
many duplicate packets
Each PE has a spoke to the
next PE in the VPLS
Packets are flooded into the
adjacent spokes and to all
VPLS ports
When MACs are learned,
packets stop at the owning
PE
PE-6
PE-1
PE-4
PE-3
PE-2
PE-5
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 129
4.7 Resiliency Mechanisms
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 130
Agenda
4.7. Resiliency Mechanisms
4.7.1 Multi-Chassis LAG (MC-LAG)
4.7.2 Redundancy with VPLS
4.7.3 Pseudo-wire Redundancy with MC-LAG
4.7.4 Multi-Segment Pseudo-wires
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 131
4.7.1 Multi-Chassis LAG (MC-LAG)
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 132
Multi-chassis LAG: What is it ?
LAG 1 LAG 1
Traffic distributed via hash algorithm
 Maintains packet sequence per “flow”
 Based on packet content or SAP/service ID
Link Aggregation Control Protocol (LACP)
IEEE Std 802.3-2002_part3 (formerly in 802.3ad)
system MAC and priority system MAC and priority
administrative key administrative key
Consistent port capabilities (e.g. speed, duplex)
Standard LAG
What if one system fails…
Introduce LAG redundancy to TWO systems
Multi-Chassis LAG (MC-LAG)
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 133
Multi-chassis LAG: How does it work ?
Multi-chassis LAG
LAG 1
Provider
Network
lag 1 lacp-key 1
system-id 00:00:00:00:00:01
system-priority 100
lag 1 lacp-key 1
system-id 00:00:00:00:00:01
system-priority 100
Edge
device
LAG 1
(sub-
group)
(sub-
group)
LAG 1
LACP
Standard LAG
Multi-chassis LAG
control protocol
MC-LAG
MC-LAG
MC-LAG on a SAP
Active
Standbyout of sync
in LACPDUs
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 134
Multi-chassis LAG: How does it work ?
Active
LAG 1
(sub-
group)
LAG 1
Provider
Network
Edge
device
LACP
Standard LAG
Standby
Multi-chassis LAG failover
Multi-chassis LAG
control protocol
MC-LAG
MC-LAG
msg
(sub-
group)
LAG 1
out of sync
LACP message
Activein sync
in LACPDUs
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 135
4.7.2 Redundancy with VPLS
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 136
Active
Redundancy at the VPLS edge: MC-LAG
LAG
Standby
MC-LAG
Standard
LAG
VPL
S
Active
MC-LAG
MAC
withdraw
Triggered by Phy/
LACP/802.3ah
failure detection
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 137
Redundancy Applications for VPLS w/MC-LAG
Network Edge
L2/L3 CPE for business services L2 DSLAM/BRAS for triple-play services
DSLAM
Provider
Network
Standby
ActiveProvider
Network
Standby
Active
CE
MC-LAG
MC-LAG
MC-LAG
MC-LAG
Full
Mesh
Full
MeshMC-LAG
Active
Standby
MC-LAG
MC-LAG
MC-LAG
MC-LAG
VPLS
VPLS
Inter-metro Connectivity
Single active path
Selective MAC
withdraw for
faster convergence
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 138
4.7.3 Pseudo-wire Redundancy with Multi-chassis LAG
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 139
Pseudowire Redundancy
Access
Node
Access
Node
VLL
• Tunnel redundancy
PW
Tunnel bypass
VLL
Access
Node
Access
Node
VLL
• PW redundancy
• Single edge redundancy LAG
Redundant PW
Access
Node
Access
Node
VLL
• PW redundancy
• Dual edge redundancy LAG LAG
Redundant PW
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 140
Combining MC-LAG with Pseudowire Redundancy
Extends L2 point-to-point redundancy across the network
Acces
s Node
Acces
s Node
MC-
LAG
Redundant PW
Active Active
ActiveStandby
Local PW status signaled via T-LDP
VLL service terminates on different devices
MC-LAG status propagated
to local PW end points
PW showing both ends
active preferred for forwarding
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 141
Multi-chassis LAG with Pseudo-Wire Redundancy:
How does it work ?
Access
Node
Access
Node
VLL
• PW redundancy
• Single edge redundancy
LAG
PW
VLL
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 142
Multi-chassis LAG with PW Redundancy:
How does it work ?
LAG to PWs
LAG
MC-LAG
Standard
LAG
SAP
MC-LAG
SAP
epipe
C
X Y
BA
D
epipe
epipe
PW
PW
PW
PW
Traffic path
epipe
PWs
A
C
B
D
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 143
Multi-chassis LAG with PW Redundancy:
How does it work ?
LAG to PWs : LAG link failure
MC-LAG
Standard
LAG
SAP
MC-LAG
SAP
epipe
C
X Y
BA
D
epipe
epipe
S SDP
S SDP
S SDP
S SDP
Traffic path
epipe
New Traffic path
A
C
B
D
LAG PWs
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 144
Multi-chassis LAG with Pseudo-Wire Redundancy:
How does it work ?
Access
Node
Access
Node
VLL
• PW redundancy
• Dual edge redundancy
LAG
PW
VLL
LAG
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 145
Multi-chassis LAG with PW Redundancy:
How does it work ?
LAG to PWs to LAG
LAG LAG
MC-LAG
Standard
LAG
MC-LAG MC-LAG
MC-LAG
Active Standby
ActiveStandby
Standard
LAG
PWs
PW
Pw
PW
PW
PW
PW
PW
PW
Traffic path
A F
B D
EC
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 146
Multi-chassis LAG with PW Redundancy:
How does it work ?
LAG to PWs to LAG : Network device failure
Active Standby
LAG LAG
MC-LAG
Standard
LAG
MC-LAG MC-LAG
MC-LAG
ActiveStandby
Standard
LAG
PWs
PW
PW
PW
PW
PW
PW
PW
PW
Traffic path
New Traffic path
ActiveActive
A F
B D
EC
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 147
4.7.4 Multi-segment Pseudo-wires
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 148
Multi-segment Pseudo-wire – Motivation
Ethernet VLL with SS-PW
CE
CE
CE
CE
CE
MPLS MPLS
MPLS
MPLS
PE
PE
PE
PE
P
P
PE
PE
MPLS tunnel
SS-PW
T-LDP
T-LDP
T-LDP
Remove need for full mesh of LDP-peers/LSP-
tunnels
VLLs over multiple tunnels (of different types)
Simplifying VLL provisioning
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 149
149 | MPLS-based Metro Ethernet Networks, February 2011
Multi-segment Pseudo-wire – How can you use them ?
Ethernet VLL with MS-PW
CE
CE
CE
CE
CE
MPLS MPLS
MPLS
MPLS tunnel
T-LDP
T-LDP
T-LDP
MPLS
S-PE
S-PE
T-PEMS-PW
T-PE
T-PE
T-PE
T-LDP
T-LDP
T-LDP
S-PE
T-PE
T-LDP
T-LDP
Ethernet VLL redundancy across multiple areas
e.g. FRR only available within an area/level
Inter-domain connectivity
[Metro w/RSVP] to [core w/LDP] to [metro w/RSVP]
One device needs PWs to many remote devices
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 150
Multi-segment Pseudo-wire – How do they work ?
Customer frame
Customer frame
PE
Access
Node
Access
Node
PEP
Single Segment PW
VLL
Access
Node
Access
Node
T-PET-PE S-PE
Multi Segment PW
VLL
Customer frameTUN-1 PW-1 Customer frameTUN-2 PW-2
Customer frameTUN-1 PW-1 Customer frameTUN-2 PW-1
same
swapped
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 151
Multi-segment Pseudo-wire – Redundancy
Inter-metro/domain Redundant Ethernet VLLs with MS-PW
CECE
MPLS
MPLS
MPLS
S-PE
T-PE T-PE
S-PEActive Active Active
Endpoint with 2 PWs with
preference determining TX
Endpoint with 2 PWs with
preference determining TX
S-PES-PE
Domain A Domain BInter-domain
–Individual segments can have MPLS (FRR…) protection
–Configure parallel MS-PW for end-end protection
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 152
5. Summary
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 153
Summary
 Ethernet Services are in a period of tremendous growth with great
revenue potential for service providers
 The Metro Ethernet Forum has standardised Ethernet services and
continues to enhance specifications
 Traditional forms of Ethernet delivery are no longer suitable for the
delivery of “carrier-grade” Ethernet services
 MPLS provides a proven platform for the delivery of scalable, flexible,
feature-rich Ethernet services using the same infrastructure used to
deliver other MPLS-based services
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 154
6. Questions ???
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 155
Thank You
COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 156
www.alcatel-lucent.com

More Related Content

PDF
MPLS-based Metro Ethernet Networks
PDF
MPLS-based Metro Ethernet Networks Tutorial by Khatri
PDF
The NGN Carrier Ethernet System: Technologies, Architecture and Deployment Mo...
PPT
Carrier Ethernet
PDF
Metro Ethernet Concepts
PDF
Carrier Ethernet - What and Why
PDF
Carrier Ethernet
PPT
Architectural Options for Metro Carrier-Ethernet Network Buildout: Analysis &...
MPLS-based Metro Ethernet Networks
MPLS-based Metro Ethernet Networks Tutorial by Khatri
The NGN Carrier Ethernet System: Technologies, Architecture and Deployment Mo...
Carrier Ethernet
Metro Ethernet Concepts
Carrier Ethernet - What and Why
Carrier Ethernet
Architectural Options for Metro Carrier-Ethernet Network Buildout: Analysis &...

What's hot (20)

PDF
Alcatel - 7750 SR & CGNAT SR-OS Fundamental
PDF
Carrier ethernet essentials
PDF
Cisco Packet Transport Network – MPLS-TP
PDF
Rethink the core_webcast_download_22_may2012
PDF
Why carrier grade ethernet
PDF
Carrier ethernet vs-mpls-power-utility-communications
PDF
Carrier ethernet-for-power-utilities-presentation
PDF
Mobile Transport Evolution with Unified MPLS
PDF
Performance evaluation-of-ieee-802.11p-for-vehicular-communication-networks
PDF
MPLS in Mobile Backhaul
PPTX
PDF
EPON in Cable Environment – EPON, SIEPON, DPoE
PDF
PLNOG 13: Emil Gągała: EVPN – rozwiązanie nie tylko dla Data Center
PDF
Resilience and Service Protection in EPON
PDF
Multiprotocol Label Switching - A brief introduction to the most relevant asp...
PPTX
MEF-LR-CE-Wholesale-Services-and-Interconnection-Trends-Webinar_FINAL (1)
PDF
North American MSO – EPON Deployments
PDF
10 fn s21
PDF
4G LTE Network – an update from Huawei
PPT
IP RAN 100NGN
Alcatel - 7750 SR & CGNAT SR-OS Fundamental
Carrier ethernet essentials
Cisco Packet Transport Network – MPLS-TP
Rethink the core_webcast_download_22_may2012
Why carrier grade ethernet
Carrier ethernet vs-mpls-power-utility-communications
Carrier ethernet-for-power-utilities-presentation
Mobile Transport Evolution with Unified MPLS
Performance evaluation-of-ieee-802.11p-for-vehicular-communication-networks
MPLS in Mobile Backhaul
EPON in Cable Environment – EPON, SIEPON, DPoE
PLNOG 13: Emil Gągała: EVPN – rozwiązanie nie tylko dla Data Center
Resilience and Service Protection in EPON
Multiprotocol Label Switching - A brief introduction to the most relevant asp...
MEF-LR-CE-Wholesale-Services-and-Interconnection-Trends-Webinar_FINAL (1)
North American MSO – EPON Deployments
10 fn s21
4G LTE Network – an update from Huawei
IP RAN 100NGN
Ad

Similar to MPLS-Based Metro Ethernet (20)

DOCX
Glimpse of carrier ethernet
PDF
Cygnotel Prueba 01
PDF
Metro ethernet-services
PPTX
Carrier Ethernet
PDF
Cisco Live! :: Carrier Ethernet 2.0 :: BRKSPG-2720 | Las Vegas July/2016
PDF
Carrier ethernetessentials
PDF
Carrier Ethernet
PDF
Carrier Ethernet Services -logic-3-5
PDF
Ethernet Demarcation Devices for managing end to end Ethernet service delivery
PDF
OptiQNet842_presentation-ynlin-0.5
PDF
Cisco Live! :: Carrier Ethernet 2.0 :: BRKSPG-2720 | Las Vegas July/2016
PPT
Milcom10 T10 Optical Ethernet Sharma Davari 2010 11 01
PPTX
Carrier Ethernet Americas
PDF
Carrier Ethernet Americas 2012
PDF
Ethernet Solutions Tech Specs
PDF
10 fn s21
PDF
Third Networks And Services 1st Edition Mehmet T Toy Hakki Candan Cankaya
PPT
Asna 0604 keynote_schoen
PDF
Illuminating Optical Ethernet Networks!
PDF
Demystifying optical ethernet networks
Glimpse of carrier ethernet
Cygnotel Prueba 01
Metro ethernet-services
Carrier Ethernet
Cisco Live! :: Carrier Ethernet 2.0 :: BRKSPG-2720 | Las Vegas July/2016
Carrier ethernetessentials
Carrier Ethernet
Carrier Ethernet Services -logic-3-5
Ethernet Demarcation Devices for managing end to end Ethernet service delivery
OptiQNet842_presentation-ynlin-0.5
Cisco Live! :: Carrier Ethernet 2.0 :: BRKSPG-2720 | Las Vegas July/2016
Milcom10 T10 Optical Ethernet Sharma Davari 2010 11 01
Carrier Ethernet Americas
Carrier Ethernet Americas 2012
Ethernet Solutions Tech Specs
10 fn s21
Third Networks And Services 1st Edition Mehmet T Toy Hakki Candan Cankaya
Asna 0604 keynote_schoen
Illuminating Optical Ethernet Networks!
Demystifying optical ethernet networks
Ad

More from APNIC (20)

PPTX
APNIC Report, presented at APAN 60 by Thy Boskovic
PDF
APNIC Update, presented at PHNOG 2025 by Shane Hermoso
PDF
RPKI Status Update, presented by Makito Lay at IDNOG 10
PDF
The Internet -By the Numbers, Sri Lanka Edition
PDF
Triggering QUIC, presented by Geoff Huston at IETF 123
PDF
DNSSEC Made Easy, presented at PHNOG 2025
PDF
BGP Security Best Practices that Matter, presented at PHNOG 2025
PDF
APNIC's Role in the Pacific Islands, presented at Pacific IGF 2205
PDF
IPv6 Deployment and Best Practices, presented by Makito Lay
PDF
Cleaning up your RPKI invalids, presented at PacNOG 35
PDF
The Internet - By the numbers, presented at npNOG 11
PDF
Transmission Control Protocol (TCP) and Starlink
PDF
DDoS in India, presented at INNOG 8 by Dave Phelan
PDF
Global Networking Trends, presented at the India ISP Conclave 2025
PDF
Make DDoS expensive for the threat actors
PDF
Fast Reroute in SR-MPLS, presented at bdNOG 19
PDF
DDos Mitigation Strategie, presented at bdNOG 19
PDF
ICP -2 Review – What It Is, and How to Participate and Provide Your Feedback
PDF
APNIC Update - Global Synergy among the RIRs: Connecting the Regions
PDF
Measuring Starlink Protocol Performance, presented at LACNIC 43
APNIC Report, presented at APAN 60 by Thy Boskovic
APNIC Update, presented at PHNOG 2025 by Shane Hermoso
RPKI Status Update, presented by Makito Lay at IDNOG 10
The Internet -By the Numbers, Sri Lanka Edition
Triggering QUIC, presented by Geoff Huston at IETF 123
DNSSEC Made Easy, presented at PHNOG 2025
BGP Security Best Practices that Matter, presented at PHNOG 2025
APNIC's Role in the Pacific Islands, presented at Pacific IGF 2205
IPv6 Deployment and Best Practices, presented by Makito Lay
Cleaning up your RPKI invalids, presented at PacNOG 35
The Internet - By the numbers, presented at npNOG 11
Transmission Control Protocol (TCP) and Starlink
DDoS in India, presented at INNOG 8 by Dave Phelan
Global Networking Trends, presented at the India ISP Conclave 2025
Make DDoS expensive for the threat actors
Fast Reroute in SR-MPLS, presented at bdNOG 19
DDos Mitigation Strategie, presented at bdNOG 19
ICP -2 Review – What It Is, and How to Participate and Provide Your Feedback
APNIC Update - Global Synergy among the RIRs: Connecting the Regions
Measuring Starlink Protocol Performance, presented at LACNIC 43

Recently uploaded (20)

PPTX
innovation process that make everything different.pptx
PDF
Automated vs Manual WooCommerce to Shopify Migration_ Pros & Cons.pdf
PPTX
Introduction to Information and Communication Technology
PPTX
international classification of diseases ICD-10 review PPT.pptx
PDF
Unit-1 introduction to cyber security discuss about how to secure a system
PDF
Paper PDF World Game (s) Great Redesign.pdf
PPTX
E -tech empowerment technologies PowerPoint
PPTX
presentation_pfe-universite-molay-seltan.pptx
PDF
How to Ensure Data Integrity During Shopify Migration_ Best Practices for Sec...
PPTX
PptxGenJS_Demo_Chart_20250317130215833.pptx
PPTX
Introuction about WHO-FIC in ICD-10.pptx
PPTX
introduction about ICD -10 & ICD-11 ppt.pptx
DOCX
Unit-3 cyber security network security of internet system
PPTX
522797556-Unit-2-Temperature-measurement-1-1.pptx
PDF
Introduction to the IoT system, how the IoT system works
PDF
FINAL CALL-6th International Conference on Networks & IOT (NeTIOT 2025)
PPTX
Job_Card_System_Styled_lorem_ipsum_.pptx
PPT
tcp ip networks nd ip layering assotred slides
PDF
WebRTC in SignalWire - troubleshooting media negotiation
PDF
Decoding a Decade: 10 Years of Applied CTI Discipline
innovation process that make everything different.pptx
Automated vs Manual WooCommerce to Shopify Migration_ Pros & Cons.pdf
Introduction to Information and Communication Technology
international classification of diseases ICD-10 review PPT.pptx
Unit-1 introduction to cyber security discuss about how to secure a system
Paper PDF World Game (s) Great Redesign.pdf
E -tech empowerment technologies PowerPoint
presentation_pfe-universite-molay-seltan.pptx
How to Ensure Data Integrity During Shopify Migration_ Best Practices for Sec...
PptxGenJS_Demo_Chart_20250317130215833.pptx
Introuction about WHO-FIC in ICD-10.pptx
introduction about ICD -10 & ICD-11 ppt.pptx
Unit-3 cyber security network security of internet system
522797556-Unit-2-Temperature-measurement-1-1.pptx
Introduction to the IoT system, how the IoT system works
FINAL CALL-6th International Conference on Networks & IOT (NeTIOT 2025)
Job_Card_System_Styled_lorem_ipsum_.pptx
tcp ip networks nd ip layering assotred slides
WebRTC in SignalWire - troubleshooting media negotiation
Decoding a Decade: 10 Years of Applied CTI Discipline

MPLS-Based Metro Ethernet

  • 1. Paresh Khatri Feb, 2013 MPLS-based Metro Ethernet Networks A Tutorial
  • 2. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 2 Agenda Introduction to Metro Ethernet Services Traditional Metro Ethernet networks Delivering Ethernet over MPLS Summary Questions
  • 3. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 3 1. Introduction
  • 4. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 4 Paresh Khatri (paresh.khatri@alcatel-lucent.com)  Director – IP Competence Centre, APAC Pre-Sales, Alcatel-Lucent  Key focus areas:  Large-scale IP/MPLS networks  L2/L3 VPNs  Carrier Ethernet  Next-generation mobile backhaul networks  Acknowledgements:  Some figures and text are provided courtesy of the Metro Ethernet Forum (MEF) Introduction
  • 5. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 5 2. Introduction to Metro Ethernet Services
  • 6. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 6 Agenda 2. Introduction to Metro Ethernet Services 2.1 Why Metro Ethernet ? 2.2 Attributes of Carrier Ethernet 2.3 Carrier Ethernet Services defined by the MEF
  • 7. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 7 2.1 Why Metro Ethernet ?
  • 8. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 8 What is Metro Ethernet ?  “… generally defined as the network that bridges or connects geographically separated enterprise LANs while also connecting across the WAN or backbone networks that are generally owned by service providers. The Metro Ethernet Networks provide connectivity services across Metro geography utilising Ethernet as the core protocol and enabling broadband applications” from “Metro Ethernet Networks – A Technical Overview” from the Metro Ethernet Forum Introduction to Metro Ethernet Services
  • 9. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 9 Why Metro Ethernet ?  Benefits both providers and customers in numerous ways …  Packet traffic has now overtaken all other traffic types  Need for rapid provisioning  Reduced CAPEX/OPEX  Increased and flexible bandwidth options  Well-known interfaces and technology Introduction to Metro Ethernet Services
  • 10. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 10 2.2 Attributes of Carrier Ethernet
  • 11. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 11 • Carrier Ethernet is a ubiquitous, standardized, carrier-class SERVICE defined by five attributes that distinguish Carrier Ethernet from familiar LAN based Ethernet • It brings the compelling business benefit of the Ethernet cost model to achieve significant savings Carrier Ethernet • Scalability • Standardized Services • Service Management • Quality of Service • Reliability Carrier Ethernet Attributes The 5 Attributes of Carrier Ethernet
  • 12. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 12 2.3 Carrier Ethernet Services defined by the MEF
  • 13. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 13 What do we mean by Metro Ethernet services ?  Use of Ethernet access tails  Provision of Ethernet-based services across the MAN/WAN  Point-to-point  Point-to-multipoint  Multipoint-to-multipoint  However, the underlying infrastructure used to deliver Ethernet services does NOT have to be Ethernet !!!  Referred to as Carrier Ethernet services by the Metro Ethernet Forum  The terms “Carrier Ethernet” and “Metro Ethernet” are used interchangeably in this presentation, but in the strict sense of the term, “Carrier Ethernet” refers to the carrier-grade evolution of “Metro Ethernet” Introduction to Metro Ethernet Services
  • 14. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 14 Carrier Ethernet Network UNI The User Network Interface (UNI)  The UNI is the physical interface or port that is the demarcation between the customer and the service provider/Cable Operator/Carrier/MSO  The UNI is always provided by the Service Provider  The UNI in a Carrier Ethernet Network is a standard physical Ethernet Interface at operating speeds 10Mbs, 100Mbps, 1Gbps or 10Gbps CE: Customer Equipment, UNI: User Network Interface. MEF certified Carrier Ethernet products CE MEF Carrier Ethernet Terminology
  • 15. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 15 Carrier Ethernet Network UNI MEF Carrier Ethernet Terminology The User Network Interface (UNI):  MEF has defined two types of UNIs:  MEF UNI Type I (MEF 13) – A UNI compliant with MEF 13 – Manually configurable – Specified for existing Ethernet devices – Provides bare minimum data-plane connectivity services with no control-plane or management-plane capabilities.  MEF UNI Type II (MEF 20) – Automatically configurable via E-LMI (allowing UNI-C to retrieve EVC status and configuration information from UNI-N) – Manageable via OAM CE: Customer Equipment, UNI: User Network Interface. MEF certified Carrier Ethernet products CE UNI
  • 16. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 16 MetroMetro EthernetEthernet NetworkNetwork CustomerCustomer EdgeEdge (CE)(CE) User NetworkUser Network InterfaceInterface (UNI)(UNI) User NetworkUser Network InterfaceInterface (UNI)(UNI) CustomerCustomer EdgeEdge (CE)(CE) MEF Carrier Ethernet Terminology  Customer Equipment (CE) attaches to the Metro Ethernet Network (MEN) at the UNI  Using standard Ethernet frames.  CE can be  Router or bridge/switch - IEEE 802.1 bridge
  • 17. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 17 Ethernet Services “Eth” Layer Subscriber Site Service Provider 1 Metro Ethernet Network Service Provider 2 Metro Ethernet Network Subscriber Site ETH UNI-C ETH UNI-N ETH UNI-N ETH UNI-N ETH UNI-N ETH UNI-C UNI: User Network Interface, UNI-C: UNI-customer side, UNI-N network side NNI: Network to Network Interface, E-NNI: External NNI; I-NNI Internal NNI MEF Ethernet Services Model
  • 18. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 18 MEF Carrier Ethernet Terminology Ethernet Virtual Connection (EVC)  An Ethernet Service Instantiation  Most commonly (but not necessarily) identified via a VLAN-ID  Like Frame Relay and ATM PVCs or SVCs  Connects two or more subscriber sites (UNI’s)  Can multiplex multiple EVCs on the same UNI  An association of two or more UNIs  Prevents data transfer between sites that are not part of the same EVC
  • 19. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 19 MEF Carrier Ethernet Terminology Ethernet Virtual Connection (EVC)  Three types of EVC: UNI MEN UNI Point-to-Point EVC MEN Multipoint-to-Multipoint EVC MEN Rooted-Multipoint EVC Leaf Leaf Leaf Root
  • 20. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 20 E-LINE E-LAN Point to Point Service Type used to create •Ethernet Private Lines •Virtual Private Lines •Ethernet Internet Access E-TREE Point to Multi-Point •Efficient use of Service Provider ports •Foundation for Multicast networks e.g. IPTV Multi-Point to Multi-Point Service Type used to create •Multipoint Layer 2 VPNs •Transparent LAN Service Point-to-Point EVC CE UNI UNI CE CE UNI CE UNI Multipoint EVC Rooted Multipoint EVC CE UNI CE UNI CE UNI Basic Carrier Ethernet Services
  • 21. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 21 EVCs and Services In a Carrier Ethernet network, data is transported across Point-to-Point, Multipoint-to-Multipoint and Point-to-Multipoint EVCs according to the attributes and definitions of the E-Line, E-LAN and E-Tree services respectively. Point-to-Point EVC Carrier Ethernet Network UNI UNI
  • 22. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 22 Services Using E-Line Service Type Ethernet Private Line (EPL)  Replaces a TDM Private line  Dedicated UNIs for Point-to-Point connections  Single Ethernet Virtual Connection (EVC) per UNI Point-to-Point EVC Carrier Ethernet Network CE UNI CE UNI CE UNI ISP POP UNI Storage Service Provider Internet
  • 23. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 23 Services Using E-Line Service Type Ethernet Virtual Private Line (EVPL)  Replaces Frame Relay or ATM services  Supports Service Multiplexed UNI (i.e. multiple EVCs per UNI)  Allows single physical connection (UNI) to customer premise equipment for multiple virtual connections  This is a UNI that must be configurable to support Multiple EVCs per UNI Service Multiplexed Ethernet UNI Multipoint-to-Multipoint EVC Carrier Ethernet Network CE UNI CE UNI CE UNI
  • 24. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 24 Services Using E-LAN Service Type Ethernet Private LAN and Ethernet Virtual Private LAN Services  Supports dedicated or service-multiplexed UNIs  Supports transparent LAN services and multipoint VPNs Service Multiplexed Ethernet UNI Point-to-Multipoint EVC Carrier Ethernet Network CE UNI UNI UNI CE UNI CE
  • 25. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 25 Services Using E-Tree Service Type Ethernet Private Tree (EP-Tree) and Ethernet Virtual Private Tree (EVP- Tree) Services  Enables Point-to-Multipoint Services with less provisioning than typical hub and spoke configuration using E-Lines  Provides traffic separation between users with traffic from one “leaf” being allowed to arrive at one of more “roots” but never being transmitted to other “leaves” Root Carrier Ethernet Network CE UNI UNI UNI CE CE Leaf Leaf UNI CE Leaf Rooted-Multipoint EVC Ethernet Private Tree example
  • 26. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 26 Name any two of the five attributes of Carrier Ethernet as defined by the Metro Ethernet Forum. Audience Question 1
  • 27. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 27 3. Traditional Metro Ethernet networks
  • 28. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 28 Agenda 3. Traditional Metro Ethernet Networks 3.1 Service Identification 3.2 Forwarding Mechanism 3.3 Resiliency and Redundancy 3.4 Recent Developments 3.5 Summary
  • 29. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 29 Traditional methods of Ethernet delivery:  Ethernet switching/bridging networks (802.1d/802.1q)  Services identified by VLAN IDs/physical ports  VLAN IDs globally significant  Resiliency provided using variants of the Spanning Tree Protocol Traditional Metro Ethernet Networks Agg Agg Core Core Access Access Access Access Agg Agg Access Access Access Access Core Core CPE CPE CPE CPE CPE CPE CPE CPE CPE CPE CPE CPE CPE CPE CPE CPE Ethernet Switches
  • 30. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 30 3.1 Service Identification
  • 31. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 31 Service Identification:  Ethernet switching/bridging networks  First generation was based on IEEE 802.1q switches  One obvious limitation was the VLAN ID space – the 12-bit VLAN ID allows a maximum of 4094 VLANs (VLANs 0 and 4095 are reserved). This limited the total number of services in any one switching/bridging domain.  The other problem was that of customer VLAN usage – customers could not carry tagged traffic transparently across the network Traditional Metro Ethernet Networks C-DA C-SA Payload C-VID Ethertype Ethertype VLAN ID (12 bits) PCP(3 bits) 0x8100 (16 bits) CFI (1 bit) Tag Protocol Identifer (TPID) Tag Control Information (TCI)
  • 32. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 32 Service Identification :  Q-in-Q (aka VLAN stacking, aka 802.1ad) comes to the rescue !  Q-in-Q technology, which has now been standardised by the IEEE as 802.1ad (Provider Bridging), allowed the addition of an additional tag to customer Ethernet frames – the S-tag. The S-tag (Service Tag) was imposed by the Service Provider and therefore, it became possible to carry customer tags (C-tags) transparently through the network. Traditional Metro Ethernet Networks Provider Bridge Customer Device C-DA C-SA Payload C-VID Ethertype Ethertype C-DA C-SA Payload S-VID C-VID Ethertype Ethertype Ethertype VLAN ID (12 bits) PCP(3 bits) 0x88a8 (16 bits) DEI (1 bit) Tag Protocol Identifer (TPID) Tag Control Information (TCI)
  • 33. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 33 Service Identification:  Some important observations about Q-in-Q:  This is not a new encapsulation format; it simply results in the addition of a second tag to the customer Ethernet frame, allowing any customer VLAN tags to be preserved across the network  There is no change to the customer destination or source MAC addresses  The number of distinct service instances within each Provider Bridging domain is still limited by the S-VLAN ID space i.e. 4094 S-VLANs. The difference is that customer VLANs can now be preserved and carried transparently across the provider network. Traditional Metro Ethernet Networks
  • 34. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 34 3.2 Forwarding Mechanism
  • 35. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 35 Forwarding Mechanism:  Dynamic learning methods used to build forwarding databases Traditional Metro Ethernet Networks Agg Agg Core Core Access Access Access Access Agg Agg Access Access Access Access Core Core CPE CPE CPE CPE CPE CPE CPE CPE CPE CPE CPE CPE CPE CPE CPE CPE MAC Learning Points
  • 36. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 36 Traditional Metro Ethernet Networks Forwarding Mechanism:  Dynamic learning methods used to build forwarding databases Provider Switch E1 CPE (MAC A) Provider Switch E2 Provider Switch C Provider Switch E3 CPE (MAC C) CPE (MAC B) Forwarding Database – E1 MAC Interface MAC-A i1 MAC-B i2 MAC-C i2 i1 i2 i3 i4 i5 i6 i7 i8 i9 Forwarding Database – E2 MAC Interface MAC-A i6 MAC-B i7 MAC-C i6 Forwarding Database – E3 MAC Interface MAC-A i8 MAC-B i8 MAC-C i9 Forwarding Database – C MAC Interface MAC-A i3 MAC-B i5 MAC-C i4
  • 37. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 37 Forwarding Mechanism:  Dynamic learning methods used to build forwarding databases  Data-plane process – there are no control-plane processes for discovering endpoint information  In the worst case, ALL switches have forwarding databases that include ALL MAC addresses. This is true even for switches in the core of the network (Switch C in preceding example).  Switches have limited resources for storing MAC addresses. This poses severe scaling issues in all parts of the network. VLAN-stacking does not help with this problem.  On topology changes, forwarding databases are flushed and addresses need to be re-learned. While these addresses are re-learned, traffic to unknown destinations is flooded through the network, resulting in wasted bandwidth. Traditional Metro Ethernet Networks
  • 38. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 38 3.3 Resiliency and Redundancy
  • 39. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 39 Resiliency and Redundancy  Redundancy is needed in any network offering Carrier-grade Ethernet BUT loops are bad !!  The Spanning Tree Protocol (STP) is used to break loops in bridged Ethernet networks  There have been many generations of the STP over the years  All of these variants work by removing redundant links so that there is one, and only one, active path from each switch to every other switch i.e. all loops are eliminated. In effect, a minimum cost tree is created by the election of a root bridge and the subsequent determination of shortest-path links to the root bridge from every other bridge  Bridges transmit special frames called Bridge Protocol Data Units (BPDUs) to exchange information about bridge priority, path costs etc.  High Availability is difficult to achieve in traditional Metro Ethernet networks. Traditional Metro Ethernet Networks
  • 40. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 40 Building the Spanning Tree … Traditional Metro Ethernet Networks Switch A Switch B Switch C Switch D 10 10 20 10 Switch A Switch B Switch C Switch D Root Bridge Rudimentary Traffic-Engineering Capabilities
  • 41. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 41 First generation of STP (IEEE802.1d-1998):  Had a number of significant shortcomings:  Convergence times – the protocol is timer-based with times in the order of 10s of seconds. After network topology changes (failure or addition of links), it could take up to 50s for the network to re-converge  The protocol was VLAN-unaware, which meant that in an IEEE 802.1q network, all VLANs had to share the same spanning tree. This meant that there were network links that would not be utilised at all since they were placed into a blocked state. – Many vendors implemented their own, proprietary extensions to the protocol to allow the use of a separate STP instance per VLAN, allowing better link utilisation within the network  There were many conditions which resulted in the inadvertent formation of loops in the network. Given the flooding nature of bridged Ethernet, and the lack of a TTL- like field in Ethernet frames, looping frames could loop forever. – There are numerous well-publicised instances of network meltdowns in Enterprise and Service Provider networks – A lot of service providers have been permanently scarred by the catastrophic effects of STP loops ! Traditional Metro Ethernet Networks
  • 42. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 42 Newer generations of STP (IEEE802.1d-2004 – Rapid STP aka 802.1w):  Some major improvements:  Dependence on timers is reduced. Negotiation protocols have been introduced to allow rapid transitioning of links to a forwarding state  The Topology Change process has been re-designed to allow faster recovery from topology changes  Optimisations for certain types of direct and indirect link failures  Convergence times are now down to sub-second in certain special cases but a lot of failure cases still require seconds to converge !  But…  The protocol was still VLAN-unaware, which meant that the issue of under-utilised links was still present Traditional Metro Ethernet Networks
  • 43. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 43 Newer generations of STP (IEEE802.1q-2003 – Multiple STP aka 802.1s):  Built on top of RSTP  Added VLAN awareness:  Introduces the capability for the existence of multiple STP instances within the same bridged network  Allows the association of VLANs to STP instances, in order to provide a (relatively) small number of STP instances, instead of using an instance per VLAN.  Different STP instances can have different topologies, which allows much better link utilisation  BUT  The stigma associated with past failures is hard to remove…  The protocol is fairly complicated, compared to its much simpler predecessors Traditional Metro Ethernet Networks
  • 44. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 44 3.4 Recent Developments
  • 45. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 45 Provider Backbone Bridging  Takes IEEE 802.1ad to the next level  MAC-in-MAC technology:  Customer Ethernet frames are encapsulated in a provider Ethernet frame  Alleviates the MAC explosion problem  Core switches no longer need to learn customer MAC addresses  Does not address the STP issue, however. Recent Developments
  • 46. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 46 Provider Backbone Bridging (PBB) Ethernet Technology being standardized in IEEE 802.1ah Task Group  Designed to interconnect Provider Bridge Networks (PBN - IEEE 802.1ad)  Adds a Backbone Header to a Customer/QinQ Ethernet Frame  Provider Addressing for Backbone Forwarding  New extended tag for Service Virtualization  Standardization ongoing PBBN is Ethernet based: Connectionless Forwarding based on MAC Learning & Forwarding, Loop Avoidance based on STP, VLAN ID for Broadcast Containment PBN PBNPBBN PBB BEB PBB BEB BEB: Backbone Edge Bridge Forward frames based on backbone MAC addresses
  • 47. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 47 C-DA C-SA Payload B-DA B-SA B-VID I-SID S-VID C-VID Ethertype Ethertype Ethertype Ethertype Ethertype PBN (QinQ) PBN (QinQ) PBBN PBB PE2 C-DA C-SA Payload S-VID C-VID Ethertype Ethertype Ethertype C-DA C-SA Payload S-VID C-VID Ethertype Ethertype Ethertype QinQ frame QinQ frame PBB frame B2 PBB PE1 B1B4 B6B5 B3 A1 CMAC=XBackbone FIBs A1->Port Customer FIB X->A1 Customer FIB X->Port CMAC=Y MAC-based, Connectionless Forwarding Broadcast Containment EIdentifies the service instance inside PE I1 I2 I1 I1 I2 IEEE 802.1ah Model for PBB – I and B Components
  • 48. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 48 802.1ah Provider Backbone Bridge Encapsulation Payload C-TAG TCI q Etype = 81-00 S – TAG TCI ad Etype = 88-a8 C – SA C – DA I – TAG TCI ah Etype = 88-e7 B – TAG TCI ad Etype = 88-a8 B – SA B – DA 6+6 22 (w/o FCS) 2+2 2+4 I-TAG B-TAG S-TAG C-TAG DEI p bits VLAN-ID I-PCP IDEI UCA Res I-SID 24313 1Bits I-PCP = Customer Priority I-DEI = Drop Elegibility UCA = Use Customer Addresses I-SID = Service Instance ID
  • 49. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 49 Shortest Path Bridging  Addresses the STP issue…  SPBM is a Spanning-Tree Protocol replacement for PBB  Being standardized in the IEEE in 802.1aq  Shortest path backbone bridging Mac/VLAN Mode  Requirements to address:  No blocked ports like STP  Fast resiliency  No hop count restrictions like STP  Simple networking paradigm Recent Developments
  • 50. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 50 How it works:  Discover the network topology  Enable a routing protocol on each system to discover the network topology  Build shortest path trees between the network nodes  To be used later for forwarding traffic on  Distribute the service information to the network nodes  Once services are created (i.e. ISIDs), the routing protocol is used to distribute the information to all SPBM nodes  All nodes (edge and core) are now aware of all VPNs and where the endpoints are.  Update Forwarding Tables to connect the service nodes  If the node determines that it is on the shortest path between endpoints for an ISID, it updates its FIB for forwarding.  When all nodes on shortest path complete the calculations, the VPN is connected! Shortest Path Bridging
  • 51. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 51 1. Discover network topology • IS-IS enabled on nodes, • Each node/link is automatically discovered ISIS ISIS ISIS ISISISIS ISIS ISIS ISIS ISIS ISIS ISIS 2. Nodes use IS-IS link state to automatically build trees from itself to all nodes: Important properties: • Shortest path tree based on link metrics • No blocked links • Loop free via RPFC on SA-BMAC • Symmetric unicast/mcast datapath between any two nodes provides closed OAM system • unicast path now exists from every node to every other node 3. Use IS-IS to advertise new services communities of interest • MAC and ISID information flooded to the network CREATE ISID=100 4. When nodes receive notice of a new service AND they are on the shortest path, update FDB • Unicast FIB entry – no flooding in BVPLS • Mcast FIB entry – per ISID group MAC 100 100 100 100 100 100 Shortest path tree to node A shown Node A Shortest Path Bridging - Operation
  • 52. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 52 2 43 1 2 43 1 2 43 1 3 2 1 4 4 2 1 3 Base SPBM Topology SPT for node 1 SPT for node 2 SPT for node 3 SPT for node 4 Path from 1 to 4 are symmetrical for SPT at node 1 and SPT at node 4. Same for all other node pairs. Shortest Path Bridging – SPT Example
  • 53. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 53 3.5 Summary
  • 54. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 54 Summary of Issues:  High Availability is difficult to achieve in networks running the Spanning Tree Protocol  Scalability – IEEE 802.1q/802.1ad networks run into scalability limitations in terms of the number of supported services  Customer Ethernet frames are encapsulated in a provider Ethernet frame  QoS – only very rudimentary traffic-engineering can be achieved in bridged Ethernet networks.  A lot of deployed Ethernet switching platforms lack carrier-class capabilities required for the delivery of Carrier Ethernet services  New extensions in IEEE 802.1ah address some limitations such as the number of service instances and MAC explosion problems  New extensions in IEEE 802.1aq address the replacement of the Spanning Tree Protocol Traditional Metro Ethernet Networks
  • 55. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 55 Which IEEE standard defines Provider Bridging (Q-in-Q) ? Audience Question 2
  • 56. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 56 What is the size of the I-SID field in IEEE 802.1ah? Audience Question 3
  • 57. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 57 4. Delivering Ethernet over MPLS
  • 58. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 58 Agenda 4. Delivering Ethernet over MPLS 4.1 Introduction to MPLS 4.2 The Pseudowire Reference Model 4.3 Ethernet Virtual Private Wire Service 4.4 Ethernet Virtual Private LAN Service 4.5 Scaling VPLS 4.6 VPLS Topologies 4.7 Resiliency Mechanisms
  • 59. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 59 4.1 Introduction to MPLS
  • 60. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 60 MPLS Attributes  Convergence: From “MPLS over everything” to “Everything over MPLS” !  One network, multiple services  Excellent virtualisation capabilities  Today’s MPLS network can transport IP, ATM, Frame Relay and even TDM !  Scalability  MPLS is used in some of the largest service provider networks in the world  Advanced Traffic Engineering capabilities using RSVP-TE  Rapid recovery based on MPLS Fast ReRoute (FRR)  Rapid restoration around failures by local action at the Points of Local Repair (PLRs)  Sub-50ms restoration on link/node failures is a key requirement for carriers who are used to such performance in their SONET/SDH networks  Feature-richness  MPLS has 10 years of development behind it and continues to evolve today  Layer 3 VPNs have already proven themselves as the killer app for MPLS – there is no reason why this success cannot be emulated by Layer 2 VPNs Delivering Ethernet over MPLS
  • 61. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 61 The “Multiprotocol” nature of MPLS:  MPLS is multiprotocol in terms of both the layers above and below it !  The ultimate technology for convergence MPLS is truly Multi-Protocol MPLS Ethernet Frame Relay ATM PoS PPP Etc. Physical Ethernet Frame Relay ATM TDM IP Etc.
  • 62. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 62 The virtualisation capabilities of MPLS:  One common network supports multiple, different overlaid services MPLS Virtualisation PE PE MPLS PE PE PE P P P P
  • 63. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 63 The virtualisation capabilities of MPLS:  One common network supports multiple, different overlaid services MPLS Virtualisation VPLS VPWS L3VPN MPLS PE PE PE PE PE
  • 64. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 64 64 | MPLS-based Metro Ethernet Networks, February 2011 MPLS Scalability:  Service state is kept only on the Provider Edge devices  The Provider (P) devices simply contain reachability information to each other and all PEs in the network  The Provider Edge (PE) devices contain customer and service-specific state MPLS Scalability PE PE MPLS PE PE PE P P P P No customer or service state in the core
  • 65. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 65 Traffic-Engineering capabilities  The Problem: consider example below – all mission-critical traffic between nodes A and Z has to use the path A-D-E-F-Z, while all other traffic uses the path A-B-C-Z. MPLS Traffic-Engineering A Z D E F B C Other traffic Mission-critical traffic
  • 66. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 66 The IGP-based solution  Use link metrics to influence traffic path MPLS Traffic-Engineering A Z D E F B C10 10 10 10 30 10 10 Other traffic Mission-critical traffic  It’s all or nothing – Traffic cannot be routed selectively Other solutions  Policy-based routing – will work but is cumbersone to manage and has to be carefully crafted to avoid routing loops
  • 67. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 67 The MPLS solution  Use constrained path routing to build Label Switched Paths (LSPs) MPLS Traffic-Engineering  Constrain LSP1 to use only the “orange” physical links A Z D E F B C Mission-critical traffic LSP 2 LSP 1 Other traffic  Constrain LSP2 to use only the “blue” physical links  At the PEs, map the mission-critical traffic to LSP2 and…  …all other traffic to LSP1
  • 68. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 68 Recovery from failures – typical IGP  Step 1 – Detection of the failure  One or more routers detect that a failure (link or node) has occurred  Step 2 – Propagation of failure notification  The router(s) detecting the failure inform other routers in the domain about the failure  Step 3 – Recomputation of Paths/Routes  All routers which receive the failure notification now have to recalculate new routes/paths by running SPF algorithms etc  Step 4 – Updating of the Forwarding Table  Once new routes are computed, they are downloaded to the routers’ forwarding table, in order to allow them to be used  All of this takes time… MPLS Traffic-Engineering
  • 69. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 69 Failure and Recovery Example – IGP-based  What happens immediately after the link between C and Z fails ? MPLS Traffic-Engineering B Z Direction of traffic flow  Step 1 - Assuming a loss of signal (or similar physical indication) nodes C and Z immediately detect that the link is down  Node A does not know that the link is down yet and keeps sending traffic destined to node Z to Node C. Assuming that node C has not completed step 4 yet, this traffic is dropped. C A 10 10 20 10
  • 70. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 70 Failure and Recovery Example (continued) – IGP-based  Node C (and node Z) will be the first to recalculate its routing table and update its forwarding table (step 4). MPLS Traffic-Engineering  In the meantime, Node A does not know that the link is down yet and keeps sending traffic destined to node Z to Node C. Given that node C has completed step 4, it now believes (quite correctly) that the best path to Z is via node A. BUT – node A still believes that the best path to node Z is via node C so it sends the traffic right back to node C. We have a transient loop (micro-loop) ….  The loop resolves itself as soon as node A updates its forwarding table but in the meantime, valuable packets have been dropped B Z Direction of traffic flow C A 10 10 20 10
  • 71. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 71 Failure and Recovery Example (continued)  Node A and all other nodes eventually update their forwarding tables and all is well again.  But the damage is already done. . . MPLS Traffic-Engineering B Z Direction of traffic flow C A 10 10 20 10
  • 72. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 72 Recovery from failures – how can MPLS help ?  RSVP-TE Fast Re-Route (FRR) pre-computes detours around potential failure points such as next-hop nodes and links  When link or node failures occur, the routers (Points of Local Repair) directly connected to the failed link rapidly (sub-50ms) switch all traffic onto the detour paths.  The network eventually converges and the head-end router (source of the traffic) switches traffic onto the most optimal path. Until that is done, traffic flows over the potentially sub-optimal detour path BUT the packet loss is kept to a minimum MPLS Traffic-Engineering
  • 73. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 73 Failure and Recovery Example – with MPLS FRR  Node C pre-computes and builds a detour around link C-Z MPLS Traffic-Engineering B Z Direction of traffic flow C A 10 10 20 10 Bypass tunnel
  • 74. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 74 Failure and Recovery Example – with MPLS FRR  When link C-Z fails, node C reroutes traffic onto the detour tunnel  Traffic does a U-turn but still makes it to the destination MPLS Traffic-Engineering B ZDirection of traffic flow C A 10 10 20 10
  • 75. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 75 What is the size of the MPLS label stack entry ? And the MPLS label itself ? Audience Question 4
  • 76. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 76 4.2 The Pseudowire Reference Model
  • 77. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 77 Pseudowires:  Key enabling technology for delivering Ethernet services over MPLS  Specified by the pwe3 working group of the IETF  Originally designed for Ethernet over MPLS (EoMPLS) – initially called Martini tunnels  Now extended to many other services – ATM, FR, Ethernet, TDM  Encapsulates and transports service-specific PDUs/Frames across a Packet Switched Network (PSN) tunnel  The use of pseudowires for the emulation of point-to-point services is referred to as Virtual Private Wire Service (VPWS)  IETF definition (RFC3985): “...a mechanism that emulates the essential attributes of a telecommunications service (such as a T1 leased line or Frame Relay) over a PSN. PWE3 is intended to provide only the minimum necessary functionality to emulate the wire with the required degree of faithfulness for the given service definition.” The Pseudowire Reference Model
  • 78. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 78 Generic PWE3 Architectural Reference Model: PWE3 Reference Model PSN CE 1 CE 2 Emulated Service Pseudowire PSN Tunnel Attachment Circuit Attachmen t Circuit PE 1 PE 2 •Payload •Payload •PW Demultiplexer •Physical •Data Link •PSN •Payload
  • 79. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 79 Pseudowire Terminology  Attachment circuit (AC)  The physical or virtual circuit attaching a CE to a PE.  Customer Edge (CE)  A device where one end of a service originates and/or terminates.  Forwarder (FWRD)  A PE subsystem that selects the PW to use in order to transmit a payload received on an AC.  Packet Switched Network (PSN)  Within the context of PWE3, this is a network using IP or MPLS as the mechanism for packet forwarding.  Provider Edge (PE)  A device that provides PWE3 to a CE.  Pseudo Wire (PW)  A mechanism that carries the essential elements of an emulated service from one PE to one or more other PEs over a PSN.  PSN Tunnel  A tunnel across a PSN, inside which one or more PWs can be carried.  PW Demultiplexer  Data-plane method of identifying a PW terminating at a PE. PWE3 Terminology
  • 80. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 80 Pseudowire – Protocol Layering:  The PW demultiplexing layer provides the ability to deliver multiple PWs over a single PSN tunnel Pseudowire Protocol Layering •Payload •PW Label •Physical •Data Link •PSN Label Ethernet over MPLS PSN Ethernet Frame
  • 81. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 81 4.3 Ethernet Virtual Private Wire Service (VPWS)
  • 82. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 82 Ethernet Pseudowires:  Encapsulation specified in RFC4448 – “Encapsulation Methods for Transport of Ethernet over MPLS Networks”  Ethernet pseudowires carry Ethernet/802.3 Protocol Data Units (PDUs) over an MPLS network  Enables service providers to offer “emulated” Ethernet services over existing MPLS networks  RFC4448 defines a point-to-point Ethernet pseudowire service  Operates in one of two modes:  Tagged mode - In tagged mode, each frame MUST contain at least one 802.1Q VLAN tag, and the tag value is meaningful to the two PW termination points.  Raw mode - On a raw mode PW, a frame MAY contain an 802.1Q VLAN tag, but if it does, the tag is not meaningful to the PW termination points, and passes transparently through them. Ethernet Virtual Private Wire Service
  • 83. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 83 Ethernet Pseudowires (continued):  Two types of services:  “port-to-port” – all traffic ingressing each attachment circuit is transparently conveyed to the other attachment circuit, where each attachment circuit is an entire Ethernet port  “Ethernet VLAN to VLAN” – all traffic ingressing each attachment circuit is transparently conveyed to the other attachment circuit, where each attachment circuit is a VLAN on an Ethernet port – In this service instance, the VLAN tag may be stripped on ingress and then re-imposed on egress. – Alternatively, the VLAN tag may be stripped on ingress and a completely different VLAN ID imposed on egress, allowing VLAN re-write – The VLAN ID is locally significant to the Ethernet port Ethernet Virtual Private Wire Service
  • 84. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 84 PWE3 Architectural Reference Model for Ethernet Pseudowires PWE3 Reference Model for Ethernet VPWS PSN CE 1 CE 2 Emulated Service Pseudowire PSN Tunnel Attachment Circuit Attachmen t Circuit PE 1 PE 2 •Payload •Payload •PW Demultiplexer •Physical •Data Link •PSN •Payload
  • 85. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 85 Ethernet PWE3 Protocol Stack Reference Model: Ethernet Virtual Private Wire Service •Emulated •Ethernet •PW Demultiplexer •Physical •Data Link •PSN MPLS Emulated Service •Emulated •Ethernet •PW Demultiplexer •Physical •Data Link •PSN MPLS Pseudowire PSN Tunnel
  • 86. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 86 Example 1: Ethernet VPWS port-to-port (traffic flow from CE1 to CE2) Ethernet VPWS Example 1 PSN CE 1 CE 2 Port 1/2/1 Port 3/2/0 PE 1 PE 2 •Payload •Payload •6775 •Physical •Data Link •1029 PE1 Config: Service ID: 1000 Service Type: Ethernet VPWS (port-to-port) PSN Label for PE2: 1029 PW Label from PE2: 6775 Port: 1/2/1 PE2 Config: Service ID: 1000 Service Type: Ethernet VPWS (port-to-port) PSN Label for PE1: 4567 PW Label from PE1: 10978 Port: 3/2/0 Traffic Flow DA SA VLAN tag DA SA VLAN tag •Payload DA SA VLAN tag
  • 87. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 87 Example 1: Ethernet VPWS port-to-port (traffic flow from CE2 to CE1) Ethernet VPWS Example 1 PSN CE 1 CE 2 Port 1/2/1 Port 3/2/0 PE 1 PE 2 •Payload •Payload •10978 •Physical •Data Link •4567 PE1 Config: Service ID: 1000 Service Type: Ethernet VPWS (port-to-port) PSN Label for PE2: 1029 PW Label from PE2: 6775 Port: 1/2/1 PE2 Config: Service ID: 1000 Service Type: Ethernet VPWS (port-to-port) PSN Label for PE1: 4567 PW Label from PE1: 10978 Port: 3/2/0 Traffic Flow DA SA VLAN tag DA SA VLAN tag •Payload DA SA VLAN tag
  • 88. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 88 Example 2: Ethernet VPWS VLAN-based (traffic flow from CE1 to CE2) Ethernet VPWS Example 2 PSN CE 1 CE 2 Port 1/2/1 Port 3/2/0 PE 1 PE 2 •Payload •Payload •5879 •Physical •Data Link •1029 PE1 Config: Service ID: 2000 Service Type: Ethernet VPWS (VLAN-100) PSN Label for PE2: 1029 PW Label from PE2: 5879 Port: 1/2/1 VLAN 100 PE2 Config: Service ID: 2000 Service Type: Ethernet VPWS (VLAN-200) PSN Label for PE1: 4567 PW Label from PE1: 21378 Port: 3/2/0 VLAN 200 Traffic Flow DA SA VLAN tag - 100 DA SA •Payload DA SA VLAN tag - 200
  • 89. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 89 Example 2: Ethernet VPWS VLAN-based (traffic flow from CE2 to CE1) Ethernet VPWS Example 2 PSN CE 1 CE 2 Port 1/2/1 Port 3/2/0 PE 1 PE 2 •Payload •Payload •21378 •Physical •Data Link •4567 PE1 Config: Service ID: 2000 Service Type: Ethernet VPWS (VLAN-100) PSN Label for PE2: 1029 PW Label from PE2: 5879 Port: 1/2/1 VLAN 100 PE2 Config: Service ID: 1000 Service Type: Ethernet VPWS (VLAN-200) PSN Label for PE1: 4567 PW Label from PE1: 21378 Port: 3/2/0 VLAN 200 Traffic Flow DA SA VLAN tag - 100 DA SA •Payload DA SA VLAN tag - 200
  • 90. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 90 Ethernet Pseudowires – Setup and Maintenance:  Signalling specified in RFC4447 – “Pseudowire Setup and Maintenance Using the Label Distribution Protocol (LDP)”  The MPLS Label Distribution Protocol, LDP [RFC5036], is used for setting up and maintaining the pseudowires  PW label bindings are distributed using the LDP downstream unsolicited mode  PEs establish an LDP session using the LDP Extended Discovery mechanism a.k.a Targeted LDP or tLDP  The PSN tunnels are established and maintained separately by using any of the following:  The Label Distribution Protocol (LDP)  The Resource Reservation Protocol with Traffic Engineering (RSVP-TE)  Static labels Ethernet Virtual Private Wire Service
  • 91. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 91 Ethernet Pseudowires – Setup and Maintenance:  LDP distributes FEC to label mappings using the PWid FEC Element (popularly known as FEC Type 128)  Both pseudowire endpoints have to be provisioned with the same 32-bit identifier for the pseudowire to allow them to obtain a common understanding of which service a given pseudowire belongs to. Ethernet Virtual Private Wire Service 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | PWid (0x80) |C| PW type |PW info Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Group ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | PW ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Interface Parameter Sub-TLV | | " | | " | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  • 92. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 92 Ethernet Pseudowires – Setup and Maintenance:  A new TLV, the Generalized PWid FEC Element (popularly known as FEC Type 129) has also been developed but is not widely deployed as yet  The Generalized PWid FEC element requires that the PW endpoints be uniquely identified; the PW itself is identified as a pair of endpoints. In addition, the endpoint identifiers are structured to support applications where the identity of the remote endpoints needs to be auto-discovered rather than statically configured. Ethernet Virtual Private Wire Service
  • 93. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 93 Ethernet Pseudowires – Setup and Maintenance:  The Generalized PWid FEC Element (popularly known as FEC Type 129) Ethernet Virtual Private Wire Service 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Gen PWid (0x81)|C| PW Type |PW info Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | AGI Type | Length | Value | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ~ AGI Value (contd.) ~ | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | AII Type | Length | Value | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ~ SAII Value (contd.) ~ | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | AII Type | Length | Value | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ~ TAII Value (contd.) ~ | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  • 94. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 94 What protocol is used to exchange pseudowire labels between provider edge routers ? Audience Question 5
  • 95. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 95 4.4 Ethernet Virtual Private LAN Service (VPLS)
  • 96. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 96 Ethernet VPLS:  Two variants  RFC4762 - Virtual Private LAN Service (VPLS) Using Label Distribution Protocol (LDP) Signaling. We will concentrate on this variant in the rest of this tutorial  RFC4761 - Virtual Private LAN Service (VPLS) Using BGP for Auto-Discovery and Signaling Ethernet Virtual Private LAN Service
  • 97. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 97 Definition:  A VPLS creates an emulated private LAN segment for a given set of users.  It creates a Layer 2 broadcast domain that is fully capable of learning and forwarding on Ethernet MAC addresses and that is closed to a given set of users. Multiple VPLS services can be supported from a single Provider Edge (PE) node.  The primary motivation behind VPLS is to provide connectivity between geographically dispersed customer sites across MANs and WANs, as if they were connected using a LAN.  The main intended application for the end-user can be divided into the following two categories:  Connectivity between customer routers: LAN routing application  Connectivity between customer Ethernet switches: LAN switching application Ethernet Virtual Private LAN Service
  • 98. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 98 Benefits for the customer:  Simplicity  Behaves like an “ethernet switch in the sky”  No routing interaction with the provider  Clear demarcation between subscriber and provider  Layer 3 agnostic  Scalable  Provider configures site connectivity only  Hierarchy reduces number of sites touched  Multi-site connectivity  On the fly connectivity via Ethernet bridging VPLS Benefits
  • 99. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 99 Topological Model for VPLS (customer view) VPLS Topological Model PSN CE 1 CE 2 CE 3 Ethernet Switch
  • 100. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 100 Topological Model for VPLS (provider view) VPLS Topological Model PSN CE 1 CE 2 Emulated LAN Attachment Circuit Attachmen t Circuit PE 1 PE 2 CE 3 PE 3 Attachmen t Circuit
  • 101. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 101 PSN Tunnels and Pseudowire Constructs for VPLS: Constructing VPLS Services PSN CE 1 CE 2 Attachment Circuit Attachment Circuit CE 3 Attachment Circuit PSN (LSP) tunnel VB VB PE 1 PE 2 PE 3 VBVB Virtual Bridge Instance Pseudowire
  • 102. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 102 Provider Edge Functions:  PE interfaces participating in a VPLS instance are able to flood, forward, and filter Ethernet frames, like a standard Ethernet bridged port  Many forms of Attachment Circuits are acceptable, as long as they carry Ethernet frames:  Physical Ethernet ports  Logical (tagged) Ethernet ports  ATM PVCs carrying Ethernet frames  Ethernet Pseudowire  Frames sent to broadcast addresses and to unknown destination MAC addresses are flooded to all ports:  Attachment Circuits  Pseudowires to all other PE nodes participating in the VPLS service  PEs have the capability to associate MAC addresses with Pseudowires VPLS PE Functions
  • 103. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 103 Provider Edge Functions (continued):  Address learning:  Unlike BGP VPNs [RFC4364], reachability information is not advertised and distributed via a control plane.  Reachability is obtained by standard learning bridge functions in the data plane.  When a packet arrives on a PW, if the source MAC address is unknown, it is associated with the PW, so that outbound packets to that MAC address can be delivered over the associated PW.  When a packet arrives on an AC, if the source MAC address is unknown, it is associated with the AC, so that outbound packets to that MAC address can be delivered over the associated AC. VPLS PE Functions
  • 104. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 104 VPLS Signalling VPLS Mechanics:  Bridging capable PE routers are connected with a full mesh of MPLS LSP tunnels  Per-Service pseudowire labels are negotiated using RFC 4447 techniques  Replicates unknown/broadcast traffic in a service domain  MAC learning over tunnel & access ports  Separate FIB per VPLS for private communication PSN CE 1 CE 2 VPLS Service Attachment Circuit Attachment Circuit PE 1 PE 2 CE 3 PE 3 Attachment Circuit Full mesh of LSP tunnels
  • 105. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 105 VPLS Signalling Tunnel establishment  LDP:  MPLS paths based on IGP reachability  RSVP: traffic engineered MPLS paths with bandwidth & link constraints, and fast reroute alternatives Pseudowire establishment  LDP: point-to-point exchange of PW ID, labels, MTU PSN CE 1 CE 2 VPLS Service Attachment Circuit Attachment Circuit PE 1 PE 2 CE 3 PE 3 Attachment Circuit Full mesh of LSP tunnels
  • 106. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 106 VPLS Signalling A full mesh of pseudowires is established between all PEs participating in the VPLS service:  Each PE initiates a targeted LDP session to the far-end System IP (loopback) address  Tells far-end what PW label to use when sending packets for each service PSN CE 1 CE 2 Attachment Circuit Attachment Circuit CE 3 Attachment Circuit PSN (LSP) tunnel VB VB PE 1 PE 2 PE 3 VBVB Virtual Bridge Instance Pseudowire
  • 107. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 107 VPLS Signalling Why a full mesh of pseudowires?  If the topology of the VPLS is not restricted to a full mesh, then it may be that for two PEs not directly connected via PWs, they would have to use an intermediary PE to relay packets  A loop-breaking protocol, such as the Spanning Tree Protocol, would be required  With a full-mesh of PWs, every PE is now directly connected to every other PE in the VPLS via a PW; there is no longer any need to relay packets  The loop-breaking rule now becomes the "split horizon" rule, whereby a PE MUST NOT forward traffic received from one PW to another in the same VPLS mesh  Does this remind you of a similar mechanism used in IP networks ? The ibgp full-mesh !
  • 108. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 108 Ethernet Pseudowires – Setup and Maintenance:  Signalling specified in RFC4447 – “Pseudowire Setup and Maintenance Using the Label Distribution Protocol (LDP)”  The MPLS Label Distribution Protocol, LDP [RFC5036], is used for setting up and maintaining the pseudowires  PW label bindings are distributed using the LDP downstream unsolicited mode  PEs establish an LDP session using the LDP Extended Discovery mechanism a.k.a Targeted LDP or tLDP  The PSN tunnels are established and maintained separately by using any of the following:  The Label Distribution Protocol (LDP)  The Resource Reservation Protocol with Traffic Engineering (RSVP-TE)  Static labels VPLS Pseudowire Signalling
  • 109. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 109 Ethernet Pseudowires – Setup and Maintenance:  LDP distributes FEC to label mappings using the PWid FEC Element (popularly known as FEC Type 128)  Both pseudowire endpoints have to be provisioned with the same 32-bit identifier for the pseudowire to allow them to obtain a common understanding of which service a given pseudowire belongs to. VPLS Pseudowire Signalling 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | PWid (0x80) |C| PW type |PW info Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Group ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | PW ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Interface Parameter Sub-TLV | | " | | " | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  • 110. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 110 Ethernet Pseudowires – Setup and Maintenance:  A new TLV, the Generalized PWid FEC Element (popularly known as FEC Type 129) has also been developed but is not widely deployed as yet  The Generalized PWid FEC element requires that the PW endpoints be uniquely identified; the PW itself is identified as a pair of endpoints. In addition, the endpoint identifiers are structured to support applications where the identity of the remote endpoints needs to be auto-discovered rather than statically configured. VPLS Pseudowire Signalling
  • 111. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 111 Ethernet Pseudowires – Setup and Maintenance:  The Generalized PWid FEC Element (popularly known as FEC Type 129) VPLS Pseudowire Signalling 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Gen PWid (0x81)|C| PW Type |PW info Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | AGI Type | Length | Value | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ~ AGI Value (contd.) ~ | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | AII Type | Length | Value | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ~ SAII Value (contd.) ~ | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | AII Type | Length | Value | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ~ TAII Value (contd.) ~ | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  • 112. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 112 Ethernet VPLS Signalling Example PE1 Config: Service ID: 1001 Service Type: Ethernet VPLS PSN Label for PE2: 1029 PSN Label for PE3: 9178 PW Label from PE2: 6775 PW Label from PE3: 10127 Port: 1/2/1 PE2 Config: Service ID: 1001 Service Type: Ethernet VPLS PSN Label for PE1: 4567 PSN Label for PE3: 11786 PW Label from PE1: 10978 PW Label from PE3: 4757 Port: 3/2/0 Port 1/2/1 Port 3/2/0 PSN M1 M2 M3 VB PE 1 PE 2 PE 3 VBVB PE3 Config: Service ID: 1001 Service Type: Ethernet VPLS PSN Label for PE1: 6668 PSN Label for PE2: 12812 PW Label from PE1: 4568 PW Label from PE3: 10128 Port: 4/1/2 Port 4/1/2
  • 113. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 113 VPLS Packet Walkthrough and MAC Learning Example Port 1/2/1 Port 3/2/0 PSN M1 M2 M3 VB PE 1 PE 2 PE 3 VBVB Port 4/1/2 Packet Walkthrough for VPLS Service-id 1001 Send a packet from M2 to M1 - PE2 learns that M2 is reached on Port 3/2/0 - PE2 floods to PE1 with PW-label 10978 and PE3 with PW-label 4757 - PE1 learns from the PW-label 10978 that M2 is behind PE2 - PE1 sends on Port 1/2/1 - PE3 sends on Port 4/1/2 - PE3 learns from the PW-label 4757 M2 is behind PE2 - M1 receives packet Forwarding Database – PE 2 MA C Locatio n Mapping M2 Local Port 3/2/0 Forwarding Database – PE 3 MAC Location Mapping M2 Remote PW to PE2 Forwarding Database – PE 1 MAC Location Mapping M2 Remote PW to PE2
  • 114. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 114 VPLS Packet Walkthrough and MAC Learning Example (cont.) Port 1/2/1 Port 3/2/0 PSN M1 M2 M3 VB PE 1 PE 2 PE 3 VBVB Port 4/1/2 Packet Walkthrough for VPLS Service-id 1001 Forwarding Database – PE 2 MA C Locatio n Mapping M1 Remote PW to PE1 M2 Local Port 3/2/0 Forwarding Database – PE 1 MAC Location Mapping M1 Local Port 1/2/1 M2 Remote PW to PE2 Reply with a packet from M1 to M2 - PE1 learns M1 is on Port 1/2/1 - PE1 knows that M2 is reachable via PE2 - PE1 sends to PE2 using PW-label 6775 - PE2 knows that M2 is reachable on Port 3/2/0 and so it sends it out that port - M2 receives packet
  • 115. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 115 If a full-mesh VPLS is set up between 5 provider edge routers, how many pseudowires need to be configured ? Audience Question 6
  • 116. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 116 4.5 Scaling VPLS
  • 117. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 117 PE-1 PE-2 VPLS M-1 M-3 VB VB VB PE-3 VB M-5 M-6 VB MTU-1 Hierarchical-VPLS (H-VPLS)  Introduces hierarchy in the base VPLS solution to provide scaling & operational advantages  Extends the reach of a VPLS using spokes, i.e., point-to-point pseudowires or logical ports
  • 118. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 118 Hierarchical VPLS How is a spoke useful?  Scales signalling  Full-mesh between MTUs is reduced to full-mesh between PEs and single PW between MTU and PE  Scales replication  Replication at MTU is not required  Replication is reduced to what is necessary between PEs  Simplifies edge devices  Keeps cost down because PEs can be replaced with MTUs  Enables scalable inter-domain VPLS  Single spoke to interconnect domains
  • 119. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 119 Scalability: Signalling is reduced to full-mesh between PEs and single spoke between MTU and PE Mesh PWs Spoke PWs Mesh PWs Full-mesh between PEs
  • 120. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 120 Scalability: Replication Flat architecture replication is reduced to distributed replication
  • 121. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 121 Scalability: Configuration Full mesh configuration is significantly reduced
  • 122. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 122 Topological Extensibility: Metro Interconnect ISP IP / MPLS Core Network Metro IP / MPLS Network Metro IP / MPLS Network
  • 123. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 123 Topological Extensibility: Inter-AS Connectivity Provider hand-off can be  q-tagged or q-in-q port  Pseudowire spoke Provider A IP / MPLS Network Provider B IP / MPLS Network
  • 124. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 124 4.6 VPLS Topologies
  • 125. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 125 Topologies: Mesh PE-4 PE-1 PE-3 PE-2
  • 126. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 126 Topologies: Hierarchical PE-4 PE-1 PE-3 PE-2
  • 127. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 127 Topologies: Dual-homing PE-4 PE-1 PE-3 PE-2
  • 128. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 128 Topologies: Ring A full mesh would have too many duplicate packets Each PE has a spoke to the next PE in the VPLS Packets are flooded into the adjacent spokes and to all VPLS ports When MACs are learned, packets stop at the owning PE PE-6 PE-1 PE-4 PE-3 PE-2 PE-5
  • 129. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 129 4.7 Resiliency Mechanisms
  • 130. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 130 Agenda 4.7. Resiliency Mechanisms 4.7.1 Multi-Chassis LAG (MC-LAG) 4.7.2 Redundancy with VPLS 4.7.3 Pseudo-wire Redundancy with MC-LAG 4.7.4 Multi-Segment Pseudo-wires
  • 131. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 131 4.7.1 Multi-Chassis LAG (MC-LAG)
  • 132. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 132 Multi-chassis LAG: What is it ? LAG 1 LAG 1 Traffic distributed via hash algorithm  Maintains packet sequence per “flow”  Based on packet content or SAP/service ID Link Aggregation Control Protocol (LACP) IEEE Std 802.3-2002_part3 (formerly in 802.3ad) system MAC and priority system MAC and priority administrative key administrative key Consistent port capabilities (e.g. speed, duplex) Standard LAG What if one system fails… Introduce LAG redundancy to TWO systems Multi-Chassis LAG (MC-LAG)
  • 133. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 133 Multi-chassis LAG: How does it work ? Multi-chassis LAG LAG 1 Provider Network lag 1 lacp-key 1 system-id 00:00:00:00:00:01 system-priority 100 lag 1 lacp-key 1 system-id 00:00:00:00:00:01 system-priority 100 Edge device LAG 1 (sub- group) (sub- group) LAG 1 LACP Standard LAG Multi-chassis LAG control protocol MC-LAG MC-LAG MC-LAG on a SAP Active Standbyout of sync in LACPDUs
  • 134. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 134 Multi-chassis LAG: How does it work ? Active LAG 1 (sub- group) LAG 1 Provider Network Edge device LACP Standard LAG Standby Multi-chassis LAG failover Multi-chassis LAG control protocol MC-LAG MC-LAG msg (sub- group) LAG 1 out of sync LACP message Activein sync in LACPDUs
  • 135. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 135 4.7.2 Redundancy with VPLS
  • 136. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 136 Active Redundancy at the VPLS edge: MC-LAG LAG Standby MC-LAG Standard LAG VPL S Active MC-LAG MAC withdraw Triggered by Phy/ LACP/802.3ah failure detection
  • 137. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 137 Redundancy Applications for VPLS w/MC-LAG Network Edge L2/L3 CPE for business services L2 DSLAM/BRAS for triple-play services DSLAM Provider Network Standby ActiveProvider Network Standby Active CE MC-LAG MC-LAG MC-LAG MC-LAG Full Mesh Full MeshMC-LAG Active Standby MC-LAG MC-LAG MC-LAG MC-LAG VPLS VPLS Inter-metro Connectivity Single active path Selective MAC withdraw for faster convergence
  • 138. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 138 4.7.3 Pseudo-wire Redundancy with Multi-chassis LAG
  • 139. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 139 Pseudowire Redundancy Access Node Access Node VLL • Tunnel redundancy PW Tunnel bypass VLL Access Node Access Node VLL • PW redundancy • Single edge redundancy LAG Redundant PW Access Node Access Node VLL • PW redundancy • Dual edge redundancy LAG LAG Redundant PW
  • 140. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 140 Combining MC-LAG with Pseudowire Redundancy Extends L2 point-to-point redundancy across the network Acces s Node Acces s Node MC- LAG Redundant PW Active Active ActiveStandby Local PW status signaled via T-LDP VLL service terminates on different devices MC-LAG status propagated to local PW end points PW showing both ends active preferred for forwarding
  • 141. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 141 Multi-chassis LAG with Pseudo-Wire Redundancy: How does it work ? Access Node Access Node VLL • PW redundancy • Single edge redundancy LAG PW VLL
  • 142. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 142 Multi-chassis LAG with PW Redundancy: How does it work ? LAG to PWs LAG MC-LAG Standard LAG SAP MC-LAG SAP epipe C X Y BA D epipe epipe PW PW PW PW Traffic path epipe PWs A C B D
  • 143. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 143 Multi-chassis LAG with PW Redundancy: How does it work ? LAG to PWs : LAG link failure MC-LAG Standard LAG SAP MC-LAG SAP epipe C X Y BA D epipe epipe S SDP S SDP S SDP S SDP Traffic path epipe New Traffic path A C B D LAG PWs
  • 144. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 144 Multi-chassis LAG with Pseudo-Wire Redundancy: How does it work ? Access Node Access Node VLL • PW redundancy • Dual edge redundancy LAG PW VLL LAG
  • 145. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 145 Multi-chassis LAG with PW Redundancy: How does it work ? LAG to PWs to LAG LAG LAG MC-LAG Standard LAG MC-LAG MC-LAG MC-LAG Active Standby ActiveStandby Standard LAG PWs PW Pw PW PW PW PW PW PW Traffic path A F B D EC
  • 146. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 146 Multi-chassis LAG with PW Redundancy: How does it work ? LAG to PWs to LAG : Network device failure Active Standby LAG LAG MC-LAG Standard LAG MC-LAG MC-LAG MC-LAG ActiveStandby Standard LAG PWs PW PW PW PW PW PW PW PW Traffic path New Traffic path ActiveActive A F B D EC
  • 147. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 147 4.7.4 Multi-segment Pseudo-wires
  • 148. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 148 Multi-segment Pseudo-wire – Motivation Ethernet VLL with SS-PW CE CE CE CE CE MPLS MPLS MPLS MPLS PE PE PE PE P P PE PE MPLS tunnel SS-PW T-LDP T-LDP T-LDP Remove need for full mesh of LDP-peers/LSP- tunnels VLLs over multiple tunnels (of different types) Simplifying VLL provisioning
  • 149. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 149 149 | MPLS-based Metro Ethernet Networks, February 2011 Multi-segment Pseudo-wire – How can you use them ? Ethernet VLL with MS-PW CE CE CE CE CE MPLS MPLS MPLS MPLS tunnel T-LDP T-LDP T-LDP MPLS S-PE S-PE T-PEMS-PW T-PE T-PE T-PE T-LDP T-LDP T-LDP S-PE T-PE T-LDP T-LDP Ethernet VLL redundancy across multiple areas e.g. FRR only available within an area/level Inter-domain connectivity [Metro w/RSVP] to [core w/LDP] to [metro w/RSVP] One device needs PWs to many remote devices
  • 150. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 150 Multi-segment Pseudo-wire – How do they work ? Customer frame Customer frame PE Access Node Access Node PEP Single Segment PW VLL Access Node Access Node T-PET-PE S-PE Multi Segment PW VLL Customer frameTUN-1 PW-1 Customer frameTUN-2 PW-2 Customer frameTUN-1 PW-1 Customer frameTUN-2 PW-1 same swapped
  • 151. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 151 Multi-segment Pseudo-wire – Redundancy Inter-metro/domain Redundant Ethernet VLLs with MS-PW CECE MPLS MPLS MPLS S-PE T-PE T-PE S-PEActive Active Active Endpoint with 2 PWs with preference determining TX Endpoint with 2 PWs with preference determining TX S-PES-PE Domain A Domain BInter-domain –Individual segments can have MPLS (FRR…) protection –Configure parallel MS-PW for end-end protection
  • 152. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 152 5. Summary
  • 153. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 153 Summary  Ethernet Services are in a period of tremendous growth with great revenue potential for service providers  The Metro Ethernet Forum has standardised Ethernet services and continues to enhance specifications  Traditional forms of Ethernet delivery are no longer suitable for the delivery of “carrier-grade” Ethernet services  MPLS provides a proven platform for the delivery of scalable, flexible, feature-rich Ethernet services using the same infrastructure used to deliver other MPLS-based services
  • 154. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 154 6. Questions ???
  • 155. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 155 Thank You
  • 156. COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.SLIDE 156 www.alcatel-lucent.com