SlideShare a Scribd company logo
Seminar in Advanced Machine Learning Rong Jin
Course Description Introduction to the state-of-the-art techniques in machine learning Focus of this semester Convex optimization Semi-supervised learning
Course Description
Course Organization Each group has 1 to 3 students Each group covers one or two topics Usually each topic will take two lectures Please send me the information about each group and interesting topics to cover by the end of this week May take 1~2 credits as enrolling in independent study (CSE890)
Course Organization Course website:  http://www.cse.msu.edu/~rongjin/adv_ml The best way to learn is discussion, discussion and discussion Never hesitate to raise questions Never ignore any details Let’s have fun!
Convex Programming and Classification Problems Rong Jin
Outline Connection between classification and linear programming (LP), convex quadratic programming (QP) has a long history Recent progresses in convex optimization: conic and semi-definite programming; robust optimization The purpose of this lecture is to outline some connections between convex optimization and classification problems
Support Vector Machine (SVM) Training examples Can be solved efficiently by quadratic programming D = f ( x 1 ; y 1 ) ; ( x 2 ; y 2 ) ; : : : ; ( x n ; y n ) g w h e r e x i 2 R d ; y i 2 f ¡ 1 ; + 1 g m i n k w k 2 2 s . t . y i ( w > x i ¡ b ) ¸ 1 ; i = 1 ; 2 ; : : : ; n
SVM: Robust Optimization SVMs are a way to handle noise in data points assume each data point is unknown-but-bounded in a sphere of radius    and center  x i find the largest     such that separation is still possible between the two classes of perturbed points ½
SVM: Robust Optimization How to solve it? m a x ½ s . t . 8 i = 1 ; 2 ; : : : ; n j x ¡ x i j 2 · ½ ! y i ( w > x ¡ b ) ¸ 1
SVM: Robust Optimization j x ¡ x i j 2 · ½ ! y i ( w > x ¡ b ) ¸ 1 y i ( w > x i ¡ b ) ¡ ½ k w k 2 ¸ 1 m a x ½ s . t . 8 i = 1 ; 2 ; : : : ; n y i ( w > x i ¡ b ) ¡ ½ k w k 2 ¸ 1
Robust Optimization Linear programming (LP) Assume  a i 's are unknown-but-bounded in ellipsoids Robust LP  m i n c > x ; : a > i x · b i ; i = 1 ; 2 ; : : : ; n m i n c > x ; : 8 a i 2 E i ; a > i x · b i ; i = 1 ; 2 ; : : : ; n E i = f a i j ( a i ¡ ^ a i ) > § ¡ 1 i ( a i ¡ ^ a i ) · 1 g
Minimax Probability Machine (MPM) How to decide the decision boundary  ? Negative Class Positive Class x > a · b N e g a t i v e c l a s s : x ¡ » N ( ¹ x ¡ ; § ¡ ) x > a ¸ b P o s i t i v e c l a s s : x + » N ( ¹ x + ; § + ) x > a = b
Minimax Probability Machine (MPM) w h e r e x ¡ » N ( ¹ x ¡ ; § ¡ ) a n d x + » N ( ¹ x + ; § + ) x > a · b x > a ¸ b Negative Class Positive Class m i n m a x ( ² + ; ² ¡ ) s . t . P r ( x > + a · b ) = 1 ¡ ² + P r ( x > ¡ a ¸ b ) = 1 ¡ ² ¡
Minimax Probability Machine (MPM) w h e r e x ¡ » N ( ¹ x ¡ ; § ¡ ) a n d x + » N ( ¹ x + ; § + ) x > a · b x > a ¸ b Negative Class Positive Class m i n ² s . t . P r ( x > + a · b ) ¸ 1 ¡ ² P r ( x > ¡ a ¸ b ) ¸ 1 ¡ ²
Minimax Probability Machine (MPM) Assume  x  follows the Gaussian distribution  Negative Class Positive Class N ( ¹ x ; § ) P r ( x > a · b ) · 1 ¡ ² ¹ x > a + · k § a k 2 · b w h e r e · = © ¡ 1 ( 1 ¡ ² ) x > a · b x > a ¸ b
Minimax Probability Machine (MPM) m a x · s . t . x > + a + · k § + a k 2 2 · b x > ¡ a ¡ · k § ¡ a k 2 ¸ b Second order cone constraints m i n ® + ¯ s . t . a > ( x ¡ ¡ x + ) = 1 ® ¸ k § + a k 2 2 ; ¯ ¸ k § ¡ a k 2 2
Second Order Cone Programming (SOCP) x o ¸ p x 2 1 + x 2 2 ® ¸ k § ¡ a k 2 y = § ¡ a ® ¸ k y k 2 z 2 Q Ã ! z º Q 0 C o n e : Q = f z j z 0 ¸ k ¹ z k 2 g
Second Order Cone Programming (SOCP) SOCP LP Generalize the inequality definition
Minimax Probability Machine (MPM) m i n ² s . t . P r ( x > + a · b ) ¸ 1 ¡ ² P r ( x > ¡ a ¸ b ) ¸ 1 ¡ ² w h e r e x ¡ » N ( ¹ x ¡ ; § ¡ ) a n d x + » N ( ¹ x + ; § + ) m i n ² s . t . i n f x + » ( ¹ x + ; § + ) P r ( x > + a · b ) ¸ 1 ¡ ² i n f x ¡ » ( ¹ x ¡ ; § ¡ ) P r ( x > ¡ a ¸ b ) ¸ 1 ¡ ²
MPM Chebychev inequality i n f x » ( ¹ x ; § ) P r ( x > a · b ) = ( b ¡ ¹ x > a ) 2 + ( b ¡ ¹ x > a ) 2 + + a > § a w h e r e [ x ] + o u t p u t s 0 w h e n x < 0 a n d x w h e n x ¸ 0 . m i n ® + ¯ s . t . a > ( x ¡ ¡ x + ) = 1 ® ¸ k § + a k 2 2 ; ¯ ¸ k § ¡ a k 2 2
Pattern Invariance In Images Translation Rotation Shear
Learning from Invariance Trans. Á 1   Á 2
Incorporating Invariance Trans. Invariance transformation SVM incorporating invariance trans. Infinite number of examples T ( x ; µ = 0 ) = x x ( µ ) = T ( x ; µ ) : R d £ R ! R d m i n k w k 2 2 s . t . 8 µ 2 R ; i = 1 ; 2 ; : : : ; n y i ( w > x i ( µ ) ¡ b ) ¸ 1
Taylor Approximation of Invariance Taylor Expansion about   0 =0 gives
Polynomial Approximation What is the necessary and sufficient condition for a polynomial to always be non-negative? 8 µ 2 R : y w > x ( µ ) ¡ 1 ¸ 0
Non-Negative Polynomials (I) Theorem (Nesterov,2000):  If  r =2 l  , the necessary and sufficient condition for polynomial  p ( µ )  to be non-negative everywhere is   Example: 9 P º 0 ; s . t . p ( µ ) = µ > P µ
Semidefinite Programming Machines A j := g 1, j g i , j g m , j B := 1 1 1 1 G 1, j G i , j G m , j Semi-definite programming 1 0 0 0 1 0 0 0 1 0 0 0
Semidefinite Programming (SDP) SDP LP Generalize the inequality definition
Beyond Convex Programming In most cases, problems are non-convex optimization Approximation Linear programming approximation LMI relaxation (drop rank constraints) Submodular function approximation Difference of two convex functions (DC)
Example: MAXCUT Problem Exponential # of points = NP-hard problem ! m i n x > Q x s . t . x i 2 f ¡ 1 ; + 1 g m i n x > Q x s . t . x 2 i = 1
LMI Relaxation x 2 i = 1 X = x x > X i ; i = 1 m i n x > Q x s . t . x i 2 f ¡ 1 ; + 1 g m i n X i ; j Q i ; j X i ; j s . t . X i ; i = 1 X º 0 ; r a n k ( X ) = 1 m i n X i ; j Q i ; j X i ; j s . t . X i ; i = 1 ; X º 0
How Good is the Approximation? Nesterov prove recently d ¤ = m i n x > Q x s . t . x i 2 f ¡ 1 ; + 1 g g ¤ = m i n X i ; j Q i ; j X i ; j s . t . X i ; i = 1 ; X º 0 1 ¸ g ¤ d ¤ ¸ 2 ¼ = 0 : 6 3 6 6
What you should learn ? Basic concepts of convex sets and functions Basic theory of convex optimization How to formulate a problem into the standard convex optimization? How to efficiently approximate the solution given large datasets? (optional) How to approximate the non-convex programming problems into a convex one?

More Related Content

PDF
Mid term solution
PPT
Z TRANSFORM PROPERTIES AND INVERSE Z TRANSFORM
PPTX
PPTX
inverse z transform
PDF
D I G I T A L C O N T R O L S Y S T E M S J N T U M O D E L P A P E R{Www
PPTX
Effects of varying number of samples in an image
PPT
digital control Chapter 2 slide
PPTX
Lecture 7
Mid term solution
Z TRANSFORM PROPERTIES AND INVERSE Z TRANSFORM
inverse z transform
D I G I T A L C O N T R O L S Y S T E M S J N T U M O D E L P A P E R{Www
Effects of varying number of samples in an image
digital control Chapter 2 slide
Lecture 7

What's hot (20)

PPT
Using Petri Net Invariants in State Space Construction
PPTX
Viterbi algorithm
PPTX
Hidden Markov Models
PPT
inverse z-transform ppt
PPT
Developing Expert Voices Question #1 Solution Ver 2
PPTX
Derivativedemo
PPT
HIDDEN MARKOV MODEL AND ITS APPLICATION
PPTX
Z transform
PDF
Trigo cheat sheet_reduced
PDF
Distributed ADMM
PDF
DSP_FOEHU - MATLAB 02 - The Discrete-time Fourier Analysis
PPTX
Discreate time system and z transform
PDF
Z transform Day 1
PPTX
Trigonometry Cheat Sheet
PDF
DSP, Differences between Fourier series ,Fourier Transform and Z transform
PDF
Decimation and Interpolation
PPTX
Unit 1 Operation on signals
PDF
Trigo Sheet Cheat :D
PPTX
A note on word embedding
PDF
report
Using Petri Net Invariants in State Space Construction
Viterbi algorithm
Hidden Markov Models
inverse z-transform ppt
Developing Expert Voices Question #1 Solution Ver 2
Derivativedemo
HIDDEN MARKOV MODEL AND ITS APPLICATION
Z transform
Trigo cheat sheet_reduced
Distributed ADMM
DSP_FOEHU - MATLAB 02 - The Discrete-time Fourier Analysis
Discreate time system and z transform
Z transform Day 1
Trigonometry Cheat Sheet
DSP, Differences between Fourier series ,Fourier Transform and Z transform
Decimation and Interpolation
Unit 1 Operation on signals
Trigo Sheet Cheat :D
A note on word embedding
report
Ad

Viewers also liked (20)

PPTX
E shopping
DOCX
SIP REPORT ON ZYDUS WELLNESS
PPT
E shopping
PPTX
E commerce , e-banking & e-shopping
PDF
[Eestec] Machine Learning online seminar 1, 12 2016
PPT
Online shopping
DOCX
Online shopping.
PDF
Online Shopping System PPT
PPTX
Online Shopping Presentation
PDF
Online shopping
PPTX
Ecommerce final ppt
PPTX
Online Shopping Full Project Presentation (20 slides)
PPT
Online shopping ppt by rohit jain
DOC
Online shopping report-6 month project
PPTX
Introduction to Machine Learning
PPT
E Commerce Presentation
PPTX
Online shopping presentation
PPT
THE INTERNET OF THINGS
PPTX
Internet-of-things- (IOT) - a-seminar - ppt - by- mohan-kumar-g
PPT
E commerce
 
E shopping
SIP REPORT ON ZYDUS WELLNESS
E shopping
E commerce , e-banking & e-shopping
[Eestec] Machine Learning online seminar 1, 12 2016
Online shopping
Online shopping.
Online Shopping System PPT
Online Shopping Presentation
Online shopping
Ecommerce final ppt
Online Shopping Full Project Presentation (20 slides)
Online shopping ppt by rohit jain
Online shopping report-6 month project
Introduction to Machine Learning
E Commerce Presentation
Online shopping presentation
THE INTERNET OF THINGS
Internet-of-things- (IOT) - a-seminar - ppt - by- mohan-kumar-g
E commerce
 
Ad

Similar to Lecture 1 (20)

PDF
deeplearninhg........ applicationsWEEK 05.pdf
PDF
Discrete Nonlinear Optimal Control of S/C Formations Near The L1 and L2 poi...
PDF
Stochastic optimal control &amp; rl
PDF
RNN and sequence-to-sequence processing
PPTX
Paper Introduction "Density-aware person detection and tracking in crowds"
PPTX
04. Growth_Rate_AND_Asymptotic Notations_.pptx
PDF
Lecture 5 backpropagation
PPTX
01 - DAA - PPT.pptx
PPTX
Introduction of Xgboost
PPT
Identification of the Mathematical Models of Complex Relaxation Processes in ...
PPT
CS8451 - Design and Analysis of Algorithms
PDF
Stochastic Alternating Direction Method of Multipliers
PDF
05_AJMS_332_21.pdf
PDF
QMC: Operator Splitting Workshop, Projective Splitting with Forward Steps and...
PPTX
Introduction to PyTorch
PPT
Algorithm.ppt
PDF
Paper Study: Melding the data decision pipeline
PDF
SDF Hysteretic System 1 - Differential Vaiana Rosati Model
PDF
Data Structure: Algorithm and analysis
PDF
Random Matrix Theory and Machine Learning - Part 3
deeplearninhg........ applicationsWEEK 05.pdf
Discrete Nonlinear Optimal Control of S/C Formations Near The L1 and L2 poi...
Stochastic optimal control &amp; rl
RNN and sequence-to-sequence processing
Paper Introduction "Density-aware person detection and tracking in crowds"
04. Growth_Rate_AND_Asymptotic Notations_.pptx
Lecture 5 backpropagation
01 - DAA - PPT.pptx
Introduction of Xgboost
Identification of the Mathematical Models of Complex Relaxation Processes in ...
CS8451 - Design and Analysis of Algorithms
Stochastic Alternating Direction Method of Multipliers
05_AJMS_332_21.pdf
QMC: Operator Splitting Workshop, Projective Splitting with Forward Steps and...
Introduction to PyTorch
Algorithm.ppt
Paper Study: Melding the data decision pipeline
SDF Hysteretic System 1 - Differential Vaiana Rosati Model
Data Structure: Algorithm and analysis
Random Matrix Theory and Machine Learning - Part 3

More from butest (20)

PDF
EL MODELO DE NEGOCIO DE YOUTUBE
DOC
1. MPEG I.B.P frame之不同
PDF
LESSONS FROM THE MICHAEL JACKSON TRIAL
PPT
Timeline: The Life of Michael Jackson
DOCX
Popular Reading Last Updated April 1, 2010 Adams, Lorraine The ...
PDF
LESSONS FROM THE MICHAEL JACKSON TRIAL
PPTX
Com 380, Summer II
PPT
PPT
DOCX
The MYnstrel Free Press Volume 2: Economic Struggles, Meet Jazz
DOC
MICHAEL JACKSON.doc
PPTX
Social Networks: Twitter Facebook SL - Slide 1
PPT
Facebook
DOCX
Executive Summary Hare Chevrolet is a General Motors dealership ...
DOC
Welcome to the Dougherty County Public Library's Facebook and ...
DOC
NEWS ANNOUNCEMENT
DOC
C-2100 Ultra Zoom.doc
DOC
MAC Printing on ITS Printers.doc.doc
DOC
Mac OS X Guide.doc
DOC
hier
DOC
WEB DESIGN!
EL MODELO DE NEGOCIO DE YOUTUBE
1. MPEG I.B.P frame之不同
LESSONS FROM THE MICHAEL JACKSON TRIAL
Timeline: The Life of Michael Jackson
Popular Reading Last Updated April 1, 2010 Adams, Lorraine The ...
LESSONS FROM THE MICHAEL JACKSON TRIAL
Com 380, Summer II
PPT
The MYnstrel Free Press Volume 2: Economic Struggles, Meet Jazz
MICHAEL JACKSON.doc
Social Networks: Twitter Facebook SL - Slide 1
Facebook
Executive Summary Hare Chevrolet is a General Motors dealership ...
Welcome to the Dougherty County Public Library's Facebook and ...
NEWS ANNOUNCEMENT
C-2100 Ultra Zoom.doc
MAC Printing on ITS Printers.doc.doc
Mac OS X Guide.doc
hier
WEB DESIGN!

Lecture 1

  • 1. Seminar in Advanced Machine Learning Rong Jin
  • 2. Course Description Introduction to the state-of-the-art techniques in machine learning Focus of this semester Convex optimization Semi-supervised learning
  • 4. Course Organization Each group has 1 to 3 students Each group covers one or two topics Usually each topic will take two lectures Please send me the information about each group and interesting topics to cover by the end of this week May take 1~2 credits as enrolling in independent study (CSE890)
  • 5. Course Organization Course website: http://www.cse.msu.edu/~rongjin/adv_ml The best way to learn is discussion, discussion and discussion Never hesitate to raise questions Never ignore any details Let’s have fun!
  • 6. Convex Programming and Classification Problems Rong Jin
  • 7. Outline Connection between classification and linear programming (LP), convex quadratic programming (QP) has a long history Recent progresses in convex optimization: conic and semi-definite programming; robust optimization The purpose of this lecture is to outline some connections between convex optimization and classification problems
  • 8. Support Vector Machine (SVM) Training examples Can be solved efficiently by quadratic programming D = f ( x 1 ; y 1 ) ; ( x 2 ; y 2 ) ; : : : ; ( x n ; y n ) g w h e r e x i 2 R d ; y i 2 f ¡ 1 ; + 1 g m i n k w k 2 2 s . t . y i ( w > x i ¡ b ) ¸ 1 ; i = 1 ; 2 ; : : : ; n
  • 9. SVM: Robust Optimization SVMs are a way to handle noise in data points assume each data point is unknown-but-bounded in a sphere of radius  and center x i find the largest  such that separation is still possible between the two classes of perturbed points ½
  • 10. SVM: Robust Optimization How to solve it? m a x ½ s . t . 8 i = 1 ; 2 ; : : : ; n j x ¡ x i j 2 · ½ ! y i ( w > x ¡ b ) ¸ 1
  • 11. SVM: Robust Optimization j x ¡ x i j 2 · ½ ! y i ( w > x ¡ b ) ¸ 1 y i ( w > x i ¡ b ) ¡ ½ k w k 2 ¸ 1 m a x ½ s . t . 8 i = 1 ; 2 ; : : : ; n y i ( w > x i ¡ b ) ¡ ½ k w k 2 ¸ 1
  • 12. Robust Optimization Linear programming (LP) Assume a i 's are unknown-but-bounded in ellipsoids Robust LP m i n c > x ; : a > i x · b i ; i = 1 ; 2 ; : : : ; n m i n c > x ; : 8 a i 2 E i ; a > i x · b i ; i = 1 ; 2 ; : : : ; n E i = f a i j ( a i ¡ ^ a i ) > § ¡ 1 i ( a i ¡ ^ a i ) · 1 g
  • 13. Minimax Probability Machine (MPM) How to decide the decision boundary ? Negative Class Positive Class x > a · b N e g a t i v e c l a s s : x ¡ » N ( ¹ x ¡ ; § ¡ ) x > a ¸ b P o s i t i v e c l a s s : x + » N ( ¹ x + ; § + ) x > a = b
  • 14. Minimax Probability Machine (MPM) w h e r e x ¡ » N ( ¹ x ¡ ; § ¡ ) a n d x + » N ( ¹ x + ; § + ) x > a · b x > a ¸ b Negative Class Positive Class m i n m a x ( ² + ; ² ¡ ) s . t . P r ( x > + a · b ) = 1 ¡ ² + P r ( x > ¡ a ¸ b ) = 1 ¡ ² ¡
  • 15. Minimax Probability Machine (MPM) w h e r e x ¡ » N ( ¹ x ¡ ; § ¡ ) a n d x + » N ( ¹ x + ; § + ) x > a · b x > a ¸ b Negative Class Positive Class m i n ² s . t . P r ( x > + a · b ) ¸ 1 ¡ ² P r ( x > ¡ a ¸ b ) ¸ 1 ¡ ²
  • 16. Minimax Probability Machine (MPM) Assume x follows the Gaussian distribution Negative Class Positive Class N ( ¹ x ; § ) P r ( x > a · b ) · 1 ¡ ² ¹ x > a + · k § a k 2 · b w h e r e · = © ¡ 1 ( 1 ¡ ² ) x > a · b x > a ¸ b
  • 17. Minimax Probability Machine (MPM) m a x · s . t . x > + a + · k § + a k 2 2 · b x > ¡ a ¡ · k § ¡ a k 2 ¸ b Second order cone constraints m i n ® + ¯ s . t . a > ( x ¡ ¡ x + ) = 1 ® ¸ k § + a k 2 2 ; ¯ ¸ k § ¡ a k 2 2
  • 18. Second Order Cone Programming (SOCP) x o ¸ p x 2 1 + x 2 2 ® ¸ k § ¡ a k 2 y = § ¡ a ® ¸ k y k 2 z 2 Q Ã ! z º Q 0 C o n e : Q = f z j z 0 ¸ k ¹ z k 2 g
  • 19. Second Order Cone Programming (SOCP) SOCP LP Generalize the inequality definition
  • 20. Minimax Probability Machine (MPM) m i n ² s . t . P r ( x > + a · b ) ¸ 1 ¡ ² P r ( x > ¡ a ¸ b ) ¸ 1 ¡ ² w h e r e x ¡ » N ( ¹ x ¡ ; § ¡ ) a n d x + » N ( ¹ x + ; § + ) m i n ² s . t . i n f x + » ( ¹ x + ; § + ) P r ( x > + a · b ) ¸ 1 ¡ ² i n f x ¡ » ( ¹ x ¡ ; § ¡ ) P r ( x > ¡ a ¸ b ) ¸ 1 ¡ ²
  • 21. MPM Chebychev inequality i n f x » ( ¹ x ; § ) P r ( x > a · b ) = ( b ¡ ¹ x > a ) 2 + ( b ¡ ¹ x > a ) 2 + + a > § a w h e r e [ x ] + o u t p u t s 0 w h e n x < 0 a n d x w h e n x ¸ 0 . m i n ® + ¯ s . t . a > ( x ¡ ¡ x + ) = 1 ® ¸ k § + a k 2 2 ; ¯ ¸ k § ¡ a k 2 2
  • 22. Pattern Invariance In Images Translation Rotation Shear
  • 23. Learning from Invariance Trans. Á 1 Á 2
  • 24. Incorporating Invariance Trans. Invariance transformation SVM incorporating invariance trans. Infinite number of examples T ( x ; µ = 0 ) = x x ( µ ) = T ( x ; µ ) : R d £ R ! R d m i n k w k 2 2 s . t . 8 µ 2 R ; i = 1 ; 2 ; : : : ; n y i ( w > x i ( µ ) ¡ b ) ¸ 1
  • 25. Taylor Approximation of Invariance Taylor Expansion about  0 =0 gives
  • 26. Polynomial Approximation What is the necessary and sufficient condition for a polynomial to always be non-negative? 8 µ 2 R : y w > x ( µ ) ¡ 1 ¸ 0
  • 27. Non-Negative Polynomials (I) Theorem (Nesterov,2000): If r =2 l , the necessary and sufficient condition for polynomial p ( µ ) to be non-negative everywhere is Example: 9 P º 0 ; s . t . p ( µ ) = µ > P µ
  • 28. Semidefinite Programming Machines A j := g 1, j g i , j g m , j B := 1 1 1 1 G 1, j G i , j G m , j Semi-definite programming 1 0 0 0 1 0 0 0 1 0 0 0
  • 29. Semidefinite Programming (SDP) SDP LP Generalize the inequality definition
  • 30. Beyond Convex Programming In most cases, problems are non-convex optimization Approximation Linear programming approximation LMI relaxation (drop rank constraints) Submodular function approximation Difference of two convex functions (DC)
  • 31. Example: MAXCUT Problem Exponential # of points = NP-hard problem ! m i n x > Q x s . t . x i 2 f ¡ 1 ; + 1 g m i n x > Q x s . t . x 2 i = 1
  • 32. LMI Relaxation x 2 i = 1 X = x x > X i ; i = 1 m i n x > Q x s . t . x i 2 f ¡ 1 ; + 1 g m i n X i ; j Q i ; j X i ; j s . t . X i ; i = 1 X º 0 ; r a n k ( X ) = 1 m i n X i ; j Q i ; j X i ; j s . t . X i ; i = 1 ; X º 0
  • 33. How Good is the Approximation? Nesterov prove recently d ¤ = m i n x > Q x s . t . x i 2 f ¡ 1 ; + 1 g g ¤ = m i n X i ; j Q i ; j X i ; j s . t . X i ; i = 1 ; X º 0 1 ¸ g ¤ d ¤ ¸ 2 ¼ = 0 : 6 3 6 6
  • 34. What you should learn ? Basic concepts of convex sets and functions Basic theory of convex optimization How to formulate a problem into the standard convex optimization? How to efficiently approximate the solution given large datasets? (optional) How to approximate the non-convex programming problems into a convex one?

Editor's Notes

  • #29: This was previously on the poster: Each trajectory (data point + transformation) is represented by an SDP constraint G i: