SlideShare a Scribd company logo
Identification of theIdentification of the
Mathematical Models ofMathematical Models of
Complex Relaxation ProcessesComplex Relaxation Processes
in Solidsin Solids
Bakhrushin V.E.Bakhrushin V.E.
University of HumanitiesUniversity of Humanities
“ZISMG”, Zaporozhye, Ukraine“ZISMG”, Zaporozhye, Ukraine
Relaxation processes:
- internal friction;
- dispersion of modulus;
- stress relaxation;
- elastic aftereffect.
Parameters:
- interstitial concentrations for different states;
- interstitial solubility;
- local diffusion coefficients;
- activation energies for jumps.
Identification tasks
1. To choose the type of mathematical model: ideal
Debay peak (model of the standard linear body); the
sum of ideal peaks (processes); enhanced Debay
peak; the sum of enhanced peaks; the sum of peaks +
background.
2. To determine the quantity of relaxation processes
3. To determine the parameters of relaxation processes
( )
n
1 1 1 1 i
0 0i
i 1 0i
E E 1 1
Q T Q exp Q cosh
RT R T T
− − − −
=
   
= − + −  ÷ ÷
    
∑
0i
i 0i
kT
E RT ln
hf
=
Model of spectrum at Snoeck relaxation area:
1
0Q ,E−
– background intensity and activation energy;
1
0i 0iQ ,T−
– i-th peak height and temperature
– i-th peak activation energy
f – sample vibration frequency
Parameters, which must be determined are:
1
0i 0in,Q ,T−
or
1
0i in,Q ,E−
( )0,14139 0,003245
0T 12,89967 2,706674f 0,04547 0,04929f E,= + + − +
An error for 300 – 800 К interval at f = 20 – 60 Hz
is not more, then 1 %
From Wert & Marx formula such approximation may
be obtained:
( )( )
m 2
1 1
j j
j 1
S Q Q T min− −
=
= − →∑
( )( )
2
1 1
m
j j
1 2
j 1 j
Q Q T
S min
− −
=
−
= →
σ
∑
( )
( )
2
exp z/
z
 − β
 ψ =
β π
( )mz ln /= τ τ z2β = σ
Peak enhance may be taken into account by the model
of log-normal distribution of relaxation time:
max
max id
δ
ρ =
δ
2
0,0853 0,197 0,970ρ = ϕ + ϕ +
n
1 1 1 i
0i
i 1 0i
E 1 1
Q Q cosh
R T T
− − −
=
  
= −  ÷
ρ  
∑
In this case:
( )mlnϕ = ωτ
For ρ value from N.P. Kushnareva & V.S. Petchersky
data such approximation may be obtained:
Graphic decomposition
2 peaks without error
-8
-4
0
4
1,4 1,7 2 2,3
arcch(Q-1
m/Q-1
)
103
/T
4 peaks + error
-6
-3
0
3
6
1,2 1,5 1,8 2,1 2,4
arcch(Q-1
m/Q-1
)
Linear least-squares method:
( )
n
1
j i i j i
i 1
x A cosh [B (x c )]−
=
ϕ = −∑
1
i 0i j j i 0iA Q , x 1/T , c 1/T−
= = =
i
i i
1 k
B ln
c hfc
=
( )
( )
( )
( )
( )
( )
n
j
j j
j 1 1
n
j
j j
j 1 2
n
j
j j
j 1 n
x
y x 0;
A
x
y x 0;
A
x
y x 0,
A
=
=
=
∂ϕ
 − ϕ =  ∂
∂ϕ
 − ϕ =  ∂
∂ϕ
 − ϕ =  ∂
∑
∑
∑
LLLLLLLLLLLL
( )j 1
i j i ij
i
x
cosh [B (x c )] F
A
−
∂ϕ
= − =
∂
n n n n
2
1 1j 2 1j 2 j n 1j nj j 1j
j 1 j 1 j 1 j 1
n n n n
2
1 2 j 1j 2 2 j n 2 j nj j 2 j
j 1 j 1 j 1 j 1
1 nj 1j 2 nj
A F A F F A F F y F ;
A F F A F A F F y F ;
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A F F A F
= = = =
= = = =
+ + + =
+ + + =
+
∑ ∑ ∑ ∑
∑ ∑ ∑ ∑
L
L
n n n n
2
2 j n nj j nj
j 1 j 1 j 1 j 1
F A F y F
= = = =
+ + =∑ ∑ ∑ ∑L
1 11 2 12 n 1n 1
1 21 2 22 n 2n 21
1 n1 2 n2 n nn n
A W A W ... A W Z ;
A W A W ... A W Z ;
. . . . . . . . . . . . . . . . . . . . . . . . . .
A W A W ... A W Z ,
+ + + =
 + + + =


 + + + =
n
1 1
ik i k
j 1 j i j k
1 1 1 1
W cosh B cosh B
x c x c
− −
=
       
 = − − ÷ ÷  ÷  ÷  ÷ ÷        
∑
n
1
i i i
j 1 j i
1 1
Z y cosh B
x c
−
=
  
= −  ÷ ÷
   
∑
The advantages of linear least-squares
method:
- simple realization;
- sufficient accuracy (up to 10 % for the main peaks
heights)
Method disadvantages:
- linearization error;
- necessity of peak temperatures preliminary definition;
- possibility to obtain an ill-condition system;
- supposition of uniformly precise of the data;
- supposition of absolute accuracy of temperature
measurements;
- possibility of obtaining the negative values of peak
heights.
The method of gradient descent
(linearized least square method)
Main differences:
- an expression of ideal peak is linearized by Taylor
series expansion in the neighborhood of some point
(initial estimate) with abandonment of only linear
terms;
- the possibility to choose the different types of
objective function (cancellation of supposition that the
data have the same errors)
[L. Crer et. al, 1969; M.S. Ahmad et. al, 1971;
O.N. Razumov et. al., 1974; A.I. Efimov et. al., 1982.]
( )( ) ( )
1 1 1m
j j
2
j 1 j k
Q Q T Q T
0, k 1,2,...q
a
− − −
=
− ∂
= =
σ ∂
∑
{ }1 1 1
0 01 0n 1 n 01 0na E,Q ,Q ,...,Q ,E ,...,E ,T ,...,T− − −
=
q 3n 2= +
( )( )
2
1 1
m
j j
1 2
j 1 j
Q Q T
S min
− −
=
−
= →
σ
∑
From
we can obtain:
at general case, q 3n= without background,
q 2n= for ideal Debay peaks.
After linearization we obtain:
( ) ( )
m
0 1
k k k mkm
1
a a a M Z ,−
=
∆ = − = ∑l
( ) ( )1 1m
k 2
j 1 j k
Q T Q T1
M ,
a a
− −
=
 ∂ ∂
=  ÷ ÷σ ∂ ∂ 
∑l
l
( )( ) ( )
1 1 1m
j j
2
j 1 j
Q Q T Q T
Z ,
a
− − −
=
− ∂
=
σ ∂
∑l
l
where:
derivatives are determined in 0
ka
Adjusted values:
0
k k ka a a , 0 1.= + γ∆ < γ ≤
From the definition of ka∆ follows, that it corresponds
with the general formula of gradient search methods:
0
k k 1a a gradS .= −β
Gradient methods realize an iteration procedure, in
which such stopping conditions may be used:
p p 1
k ka a ;−
− < ε p p 1
1 1S S ;−
− < δ 1gradS ;< ξ , , 0.ε δ ξ >
Problems and disadvantages:
- poor convergence at the case of large number of
peaks;
- possibility of iteration stopping at the critical point,
which is not the point of minimum;
- possibility of getting into a loop, when the objective
functional S is ravine;
- absence of realization at standard libraries of the most
popular software packages;
- М matrix must be positively defined at the every step
of iterations
( ) ( )(k 1) (k) 1 (k) (k)
H ,+ −
= −X X X G X
Quasi-Newton algorithm
{ }1 1 1
0 01 0n 1 n 01 0na E,Q ,Q ,...,Q ,E ,...,E ,T ,...,T− − −
=
2 2 2
2
1 1 2 1 q
2 2 2
2
2 1 2 2 q
2 2 2
2
q 1 q 2 q
S S S
...
a a a a a
S S S
...
a a a a aH
... ... ... ...
S S S
...
a a a a a
 ∂ ∂ ∂
 ÷
∂ ∂ ∂ ∂ ∂ ÷
 ÷∂ ∂ ∂
 ÷
∂ ∂ ∂ ∂ ∂=  ÷
 ÷
 ÷
 ÷∂ ∂ ∂
 ÷
∂ ∂ ∂ ∂ ∂ 
1
2
q
S
a
S
aG
...
S
a
∂ 
 ÷∂
 ÷
∂ ÷
 ÷∂=
 ÷
 ÷
 ÷∂
 ÷
 ÷∂ 
ij
ij
h , i j;
c
0, i j.
 =
= 
≠
n
1 T
1 k k k
k 1
P z ,
−
=
= ∑ v v
° 1 1 1
1H C PC ,
− − −
=
zk are eigenvalues and vk are eigenvectors of matrix:
Grinshtadt technique:
1 1
P C HC ,− −
=
It is necessary to provide the positive definiteness of
Hesse matrix or to find an approximation of Н-1
and
F is a Fisher criterion value for the corresponding
numbers of degrees of freedom and significance level,
∆2
- sum of errors squares (relative errors) of
experimental points.
Adequacy criteria for spectrum models:
2
S
F≤
∆
2
F
S
∆
≤
( )0,052
S
F F 2,0...2,5> ≈ ⇒
∆
number of model parameters must be increased;
2
F
S
∆
> ⇒
number of model parameters must be decreased.
Quasi-unimodelity (an absence of physically
different minimums) of objective functional, that is all
minimums of objective functional correspond to the
same physical model of a spectrum.
Deviation from quasi-unimodality may be caused
with:
- the presence of excess peaks in the model;
- absence of some essential peak in the model;
- presence at the real spectrum of some collateral
peak, which height is close to measurement error.
Absence of model residuals serial correlation
(Darbin & Watson criterion):
( )
m 2
j j 1
j 2
m
2
t
j 1
e e
d ,
e
−
=
=
−
=
∑
∑
( )1 1
j j je Q Q T− −
= − - model residuals.
d 2≈ - serial correlation is absent;
d 0→
d 4≈
- positive serial correlation;
- negative serial correlation
(there are excess peaks).
0
5
10
500 600 700 800
Q-1
·103
T, K
Given data (4 peaks + error)
Initial approach (4 peaks) σ=0,1
0
4
8
12
500 600 700 800 T, K
Q-1
·103
The result of decomposition
S=0,30
F=0,74
-0,25
-0,1
0,05
0,2
500 600 700 800
∆Q-1
·103
T, K
Residuals
d=2,18
0
4
8
12
500 600 700 800 T, K
Q-1
·103
Initial approach 1 (3 peaks) σ=0,1
0
4
8
12
500 600 700 800 T, K
Q-1
·103
The result of decomposition 1 (3 peaks)
S=20,52
F=50,31
-2
-1
0
1
500 600 700 800
∆Q-1
·103
T, K
Residuals
d=0,33
0
4
8
12
500 600 700 800 T, K
Q-1
·103
Initial approach 2 (3 peaks) σ=0,1
0
4
8
12
500 600 700 800 T, K
Q-1
·103
The result of decomposition 2 (3 peaks)
S=13,58
F=33,28
-2
-1
0
1
500 600 700 800
∆Q-1
·103
T, K
Residuals
d=0,54
0
4
8
12
500 600 700 800
Q-1
·103
T, K
Initial approach 1 (5 peaks) σ=0,1
Initial approach 2 (5 peaks)
0
4
8
12
500 600 700 800
Q-1
·103
T, K
σ=0,1
Given 3_1 3_2 4 5_1 5_2
T1 570 571,3 578,6 569,4 569,4 569,4
T2 620 632,5 619,8 619,8 619,8
T3 690 698,1 685,5 690,2 690,2 690,2
T4 750 742,4 749,2 749,2 749,2
T5 499,6 718,2
Q1 6 6,3 7,4 5,9 5,9 5,9
Q2 3 3,5 3,1 3,1 3,1
Q3 12 13,0 12,2 12,0 12,0 12,0
Q4 3 3,6 2,9 2,9 2,9
Q5 0,0 0,0
σ=0,1
0
4
8
12
500 600 700 800 T, K
Q-1
·103
σ=0,3Initial approach 1 (4 peaks)
0
4
8
12
500 600 700 800 T, K
Q-1
·103
Initial approach 2 (4 peaks) σ=0,3
0
4
8
12
500 600 700 800 T, K
Q-1
·103
Initial approach 3 (4 peaks) σ=0,3
0
4
8
12
500 600 700 800 T, K
Q-1
·103
The result of decomposition
s=3,01
F=0,76
-0,5
-0,2
0,1
0,4
500 600 700 800
∆Q-1
·103
T, K
d=1,20
Residuals
0
4
8
12
500 600 700 800 T, K
Q-1
·103
Initial approach 1 (3 peaks) σ=0,3
0
4
8
12
500 600 700 800 T, K
Q-1
·103
Initial approach 2 (3 peaks) σ=0,3
0
4
8
12
500 600 700 800 T, K
Q-1
·103
Initial approach 3 (3 peaks) σ=0,3
The result of decomposition
0
4
8
12
500 600 700 800 T, K
Q-1
·103
s=15,87
F=3,99
-2,5
-1
0,5
500 600 700 800
∆Q-1
·103
T, K
Residuals
d=0,57
0
4
8
12
500 600 700 800
Q-1
·103
T, K
Initial approach 1 (5 peaks) σ=0,3
0
4
8
12
500 600 700 800
Q-1
·103
T, K
The result of decomposition
s=2,92
F=0,74
-0,5
-0,2
0,1
0,4
0,7
500 600 700 800
∆Q-1
·103
T, K
Residuals
d=1,21
0
4
8
12
500 600 700 800
Q-1
·103
T, K
Initial approach 2 (5 peaks) σ=0,3
0
4
8
12
500 600 700 800
Q-1
·103
T, K
The result of decomposition
s=1,41
F=0,35
-0,5
-0,2
0,1
0,4
0,7
500 600 700 800
∆Q-1
·103
T, K
Residuals
d=2,47
Given 3 4 5_1 5_2
T1 570 578,7 569,8 571,2 569,7
T2 620 621,8 622,8 621,3
T3 690 686,5 691,2 691,2 690,6
T4 750 749,2 757,1 757,2 751,7
T5 537,5 851,0
Q1 6 7,2 5,9 5,7 5,8
Q2 3 3,0 2,9 2,9
Q3 12 12,4 12,2 12,2 12,0
Q4 3 3,6 2,9 2,9 2,9
Q5 0,3 0,6
σ=0,3
0
10
20
450 550 650 750
Q-1
·103
T, K
0,18
0,36
0,42
0,60
[N], at.%:
Nb – 2 at.% W – N (3 peaks, 1 result)
-3,5
-2,5
-1,5
-0,5
0,5
1,5
2,5
450 550 650 750
∆Q-1
·103
T, K
d: 0,69; 0,52
1,94; 1,14
Residuals
0
10
20
450 550 650 750
Q-1
·103
T, K
0,18
0,36
0,42
0,60
[N], at.%:
Nb – 2 at.% W – N (3 peaks, 2 result)
-3,5
-2,5
-1,5
-0,5
0,5
1,5
2,5
450 550 650 750
∆Q
-1
·103
T, K
d: 0,85; 1,33
1,88; 1,27
Residuals
0
10
20
450 550 650 750
Q-1
·103
T, K
[N], at.%: 0,18
0,36
0,42
0,60
Nb – 2 at.% W – N (4 peaks)
-2,2
-1,2
-0,2
0,8
1,8
2,8
450 550 650 750
∆Q-1
·103 d: 1,83; 2,10
2,84; 1,67
Residuals
0
10
20
450 550 650 750 T, K
Q-1
·103
[N], at.%: 0,18
0,36
0,42
0,60
Nb – 2 at.% W – N (5 peaks, 1 result)
Residuals
-2
-1
0
1
2
450 550 650 750
∆Q
-1
·103
T, K
d: 1,60; 2,36
3,09; 1,83
0
10
20
450 550 650 750 T, K
Q-1
·103
[N], at.%: 0,18
0,36
0,42
0,60
Nb – 2 at.% W – N (5 peaks, 2 result)
-2
-1
0
1
2
450 550 650 750
∆Q-1
·103
T, K
d: 2,54; 2,36
2,96; 2,25
Residuals
T1 T2 T3 T4 Т5 S F
3_1 539,1 657,2 685,2 70,1 2,0
3_2 647,1 673,6 748,7 86,5 1,6
4 537,9 650,9 674,7 749,0 43,3 3,3
5_1 528,8 656,9 676,4 748,0 593,0 35,7 4,0
5_2 535,5 641,4 674,4 745,5 665,5 34,1 4,2
Q1 Q2 Q3 Q4 Q5
3_1 2,2 18,2 13,4
3_2 9,3 21,3 2,7
4 2,1 10,8 19,5 2,6
5_1 1,5 13,6 15,9 2,6 2,1
5_2 2,0 7,0 17,9 2,6 5,8
Nb – 12 at.% W Nb – 6
at.%
W
4
peaks
5 peaks 4
peaks1 set 2 set
E1, kJ/mol 102,2 86
E2, kJ/mol 109,5 111,5 110,1 109,8
E3, kJ/mol 116,3 116,9 116,5 116,5
E4, kJ/mol 128,9 129,6 129,1 128,3
E5, kJ/mol 1456 145,9 145,9 145,9
0
0,3
0,6
0,9
500 600 700 800
Nb – 2 at.% Hf – 0,32 at.% N (3 peaks):
E = 1,47; 1,61; 1,76 kJ/mol;
d = 0,90; F = 1,73.
0
0,3
0,6
0,9
500 600 700 800
Nb – 2 at.% Hf – 0,32 at.% N (4 peaks):
E = 1,29; 1,48; 1,62; 1,79 kJ/mol;
d = 1,26; F = 2,64.
0
0,3
0,6
0,9
500 600 700 800
Nb – 2 at.% Hf – 0,32 at.% N (5 peaks, 1 result):
E = 1,44; 1,54; 1,63; 1,77; 1,91 kJ/mol;
d = 1,06; F = 3,21.
0
0,3
0,6
0,9
500 600 700 800
Nb – 2 at.% Hf – 0,32 at.% N (5 peaks, 2 result):
E = 1,26; 1,46; 1,57; 1,64; 1,80 kJ/mol;
d = 1,55; F = 3,58.
n
N i
i 1
0i
i 2 2 2
i
i
0i
i
M(T) M M (T);
M
M (T) ;
1 4 f
E 1 1
exp
R T T
.
2 f
=


 = − ∆


∆
∆ =
+ π τ
   
 −  ÷
   τ = π
∑
The temperature dependence of dynamic elastic
modulus in a case of n processes, which satisfy the
model of standard linear body, may be determined
from a system:
MN – non-relaxed modulus.
Model parameters, which must be identified, are:
0i 0iM ,T .∆
( ) ( )
m 2
1 exp j j
j 1
S M T M T min,
=
 = − → ∑
We are to solve such minimization problem:
( )exp jM Twhere are experimental data for modulus at Tj.
(*)
Functional (*) has a great number of minimums,
so the result of minimization strongly depends on initial
assumption.
Adequate model may be obtained by using as T0i
initial values the results of relaxation spectrum
decomposition and setting initial values as0iM∆
1
0i N 0iM 2M Q .−
∆ =
T0i values after minimization are very close with the
initial ones, and values change essentially. But
there is a correlation (r = 0,90 – 0,97) between partial
Snoek peaks heights and results for :
0iM∆
0i
1
0i H
M
2,00 0,15.
Q M−
∆
= ±
0iM∆
Nb – 12 at.% W – N
[N], at.%:  - 0,11;
■ – 0,16;
▲ – 0,22;
♦ - 0,31
Identification of the Mathematical Models of Complex Relaxation Processes in Solids

More Related Content

PPT
Conference ppt
PDF
SPSF04 - Euler and Runge-Kutta Methods
PDF
Common derivatives integrals
PDF
Integration techniques
PDF
Perfect method for Frames
PPTX
system of algebraic equation by Iteration method
PDF
Identification of unknown parameters and prediction of missing values. Compar...
PDF
Lecture 5: Stochastic Hydrology
Conference ppt
SPSF04 - Euler and Runge-Kutta Methods
Common derivatives integrals
Integration techniques
Perfect method for Frames
system of algebraic equation by Iteration method
Identification of unknown parameters and prediction of missing values. Compar...
Lecture 5: Stochastic Hydrology

What's hot (20)

PDF
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
PDF
Automated theorem proving for special functions: the next phase
PDF
Stochastic Hydrology Lecture 1: Introduction
PDF
Lecture 2: Stochastic Hydrology
PPT
Introduction to Mathematical Probability
PDF
Lecture 3: Stochastic Hydrology
PDF
Second-order Cosmological Perturbations Engendered by Point-like Masses
PDF
Numerical Methods: Solution of system of equations
PDF
Hierarchical matrix techniques for maximum likelihood covariance estimation
PDF
Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...
PDF
Duel of cosmological screening lengths
DOCX
Unit iv complex integration
PDF
Response Surface in Tensor Train format for Uncertainty Quantification
PDF
On Optimization of Manufacturing of a Sense-amplifier Based Flip-flop
PDF
Research Project Primus
PDF
IIT JAM Mathematical Statistics - MS 2022 | Sourav Sir's Classes
PDF
T.I.M.E. JEE Advanced 2013 Solution Paper1
PPT
NUMERICAL METHODS -Iterative methods(indirect method)
PDF
Hideitsu Hino
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
Automated theorem proving for special functions: the next phase
Stochastic Hydrology Lecture 1: Introduction
Lecture 2: Stochastic Hydrology
Introduction to Mathematical Probability
Lecture 3: Stochastic Hydrology
Second-order Cosmological Perturbations Engendered by Point-like Masses
Numerical Methods: Solution of system of equations
Hierarchical matrix techniques for maximum likelihood covariance estimation
Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...
Duel of cosmological screening lengths
Unit iv complex integration
Response Surface in Tensor Train format for Uncertainty Quantification
On Optimization of Manufacturing of a Sense-amplifier Based Flip-flop
Research Project Primus
IIT JAM Mathematical Statistics - MS 2022 | Sourav Sir's Classes
T.I.M.E. JEE Advanced 2013 Solution Paper1
NUMERICAL METHODS -Iterative methods(indirect method)
Hideitsu Hino
Ad

Viewers also liked (19)

PPT
Статистичний аналіз ЗНО 2009 - 2011
PPT
Кластерний аналіз даних методом k-середніх в R
PPT
Деякі графічні засоби R
PPTX
Часові ряди: випадкова складова
PPT
ОПЫТ ИСПОЛЬЗОВАНИЯ ЭЛЕКТРОННЫХ КУРСОВ ПО АНАЛИЗУ ДАННЫХ
PPT
Нові методи статистичного аналізу складних систем_ Львів 2012
PPT
ЯКІСТЬ ВИЩОЇ ОСВІТИ ТА СУЧАСНІ ПІДХОДИ ДО ЇЇ ВИМІРЮВАННЯ
PPT
Робота з файлами даних в R, блоки виразів, цикли, функції
PPTX
Миссия университетов
PPT
Plot function in R
PPT
Statistical analysis of world university rankings (report for PDMU-2010)
PPT
Statistical analysis of university rankings
PPTX
Часові ряди: моделі
PPT
Starting work with R
PPT
Функція plot() в R
PPT
Cluster analysis using k-means method in R
PPT
Критерий максимакса
PPT
Нові застосування статистичних методів в прикладних дослідженнях
PPT
Критерий максимина
Статистичний аналіз ЗНО 2009 - 2011
Кластерний аналіз даних методом k-середніх в R
Деякі графічні засоби R
Часові ряди: випадкова складова
ОПЫТ ИСПОЛЬЗОВАНИЯ ЭЛЕКТРОННЫХ КУРСОВ ПО АНАЛИЗУ ДАННЫХ
Нові методи статистичного аналізу складних систем_ Львів 2012
ЯКІСТЬ ВИЩОЇ ОСВІТИ ТА СУЧАСНІ ПІДХОДИ ДО ЇЇ ВИМІРЮВАННЯ
Робота з файлами даних в R, блоки виразів, цикли, функції
Миссия университетов
Plot function in R
Statistical analysis of world university rankings (report for PDMU-2010)
Statistical analysis of university rankings
Часові ряди: моделі
Starting work with R
Функція plot() в R
Cluster analysis using k-means method in R
Критерий максимакса
Нові застосування статистичних методів в прикладних дослідженнях
Критерий максимина
Ad

Similar to Identification of the Mathematical Models of Complex Relaxation Processes in Solids (20)

PPT
PPT
HUST-talk-1.pptof uncertainty quantification. Volume 6. Springer, 2017. SFK08...
PDF
Discrete Nonlinear Optimal Control of S/C Formations Near The L1 and L2 poi...
PDF
Rosser's theorem
PDF
Talk at SciCADE2013 about "Accelerated Multiple Precision ODE solver base on ...
PDF
05_AJMS_332_21.pdf
PDF
Bayesian inference on mixtures
PDF
The Queue Length of a GI M 1 Queue with Set Up Period and Bernoulli Working V...
PDF
Litvinenko low-rank kriging +FFT poster
PDF
Smoothed Particle Galerkin Method Formulation.pdf
PPT
002 ray modeling dynamic systems
PPT
Ray : modeling dynamic systems
PPT
002 ray modeling dynamic systems
PDF
Phase diagram at finite T & Mu in strong coupling limit of lattice QCD
PDF
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...
PDF
Data sparse approximation of the Karhunen-Loeve expansion
PDF
Delayed acceptance for Metropolis-Hastings algorithms
PDF
Formations Near The Libration Points: Design Strategies Using Natural And Non...
PPTX
Digital Signal Processing
PPTX
Time-Response Lecture
HUST-talk-1.pptof uncertainty quantification. Volume 6. Springer, 2017. SFK08...
Discrete Nonlinear Optimal Control of S/C Formations Near The L1 and L2 poi...
Rosser's theorem
Talk at SciCADE2013 about "Accelerated Multiple Precision ODE solver base on ...
05_AJMS_332_21.pdf
Bayesian inference on mixtures
The Queue Length of a GI M 1 Queue with Set Up Period and Bernoulli Working V...
Litvinenko low-rank kriging +FFT poster
Smoothed Particle Galerkin Method Formulation.pdf
002 ray modeling dynamic systems
Ray : modeling dynamic systems
002 ray modeling dynamic systems
Phase diagram at finite T & Mu in strong coupling limit of lattice QCD
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...
Data sparse approximation of the Karhunen-Loeve expansion
Delayed acceptance for Metropolis-Hastings algorithms
Formations Near The Libration Points: Design Strategies Using Natural And Non...
Digital Signal Processing
Time-Response Lecture

More from Vladimir Bakhrushin (19)

PPT
Decision-making on assessment of higher education institutions under uncertainty
PPT
Якими бути стандартам вищої освіти для докторів філософії
PPT
Академічна автономія і трансформація української освіти
PPT
Оптимізація в освіті і управлінні
PPTX
Мій 2015
PPT
Українські університети: Сучасні виклики та можливі відповіді
PPT
Два проекти закону україни
PPT
Окремі аспекти реформування освіти України з погляду системного підходу
PPT
Decision-making in education based on multi-criteria ranking of alternatives
PPT
Деякі проблеми прийняття рішень в освіті
PPTX
Закон про освіту
PPT
Описова статистика в R
PPTX
Files,blocks and functions in R
PPT
Парадоксы голосования
PPTX
Начало работы в R
PPTX
Початок роботи в R: змінні, вектори та матриці
PPTX
Часові ряди: основні поняття та характеристики
PPTX
Критерий Сэвиджа
PPT
Критерий Гурвица
Decision-making on assessment of higher education institutions under uncertainty
Якими бути стандартам вищої освіти для докторів філософії
Академічна автономія і трансформація української освіти
Оптимізація в освіті і управлінні
Мій 2015
Українські університети: Сучасні виклики та можливі відповіді
Два проекти закону україни
Окремі аспекти реформування освіти України з погляду системного підходу
Decision-making in education based on multi-criteria ranking of alternatives
Деякі проблеми прийняття рішень в освіті
Закон про освіту
Описова статистика в R
Files,blocks and functions in R
Парадоксы голосования
Начало работы в R
Початок роботи в R: змінні, вектори та матриці
Часові ряди: основні поняття та характеристики
Критерий Сэвиджа
Критерий Гурвица

Recently uploaded (20)

PDF
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
PPTX
MYSQL Presentation for SQL database connectivity
PDF
Unlocking AI with Model Context Protocol (MCP)
PPTX
ACSFv1EN-58255 AWS Academy Cloud Security Foundations.pptx
PDF
Electronic commerce courselecture one. Pdf
PDF
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
PDF
Review of recent advances in non-invasive hemoglobin estimation
PDF
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
PDF
Spectral efficient network and resource selection model in 5G networks
PPT
Teaching material agriculture food technology
PDF
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
PPTX
Spectroscopy.pptx food analysis technology
PDF
Dropbox Q2 2025 Financial Results & Investor Presentation
PDF
MIND Revenue Release Quarter 2 2025 Press Release
PDF
Network Security Unit 5.pdf for BCA BBA.
PDF
Reach Out and Touch Someone: Haptics and Empathic Computing
PDF
KodekX | Application Modernization Development
PDF
Per capita expenditure prediction using model stacking based on satellite ima...
PPTX
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
PPTX
sap open course for s4hana steps from ECC to s4
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
MYSQL Presentation for SQL database connectivity
Unlocking AI with Model Context Protocol (MCP)
ACSFv1EN-58255 AWS Academy Cloud Security Foundations.pptx
Electronic commerce courselecture one. Pdf
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
Review of recent advances in non-invasive hemoglobin estimation
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
Spectral efficient network and resource selection model in 5G networks
Teaching material agriculture food technology
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
Spectroscopy.pptx food analysis technology
Dropbox Q2 2025 Financial Results & Investor Presentation
MIND Revenue Release Quarter 2 2025 Press Release
Network Security Unit 5.pdf for BCA BBA.
Reach Out and Touch Someone: Haptics and Empathic Computing
KodekX | Application Modernization Development
Per capita expenditure prediction using model stacking based on satellite ima...
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
sap open course for s4hana steps from ECC to s4

Identification of the Mathematical Models of Complex Relaxation Processes in Solids

  • 1. Identification of theIdentification of the Mathematical Models ofMathematical Models of Complex Relaxation ProcessesComplex Relaxation Processes in Solidsin Solids Bakhrushin V.E.Bakhrushin V.E. University of HumanitiesUniversity of Humanities “ZISMG”, Zaporozhye, Ukraine“ZISMG”, Zaporozhye, Ukraine
  • 2. Relaxation processes: - internal friction; - dispersion of modulus; - stress relaxation; - elastic aftereffect. Parameters: - interstitial concentrations for different states; - interstitial solubility; - local diffusion coefficients; - activation energies for jumps.
  • 3. Identification tasks 1. To choose the type of mathematical model: ideal Debay peak (model of the standard linear body); the sum of ideal peaks (processes); enhanced Debay peak; the sum of enhanced peaks; the sum of peaks + background. 2. To determine the quantity of relaxation processes 3. To determine the parameters of relaxation processes
  • 4. ( ) n 1 1 1 1 i 0 0i i 1 0i E E 1 1 Q T Q exp Q cosh RT R T T − − − − =     = − + −  ÷ ÷      ∑ 0i i 0i kT E RT ln hf = Model of spectrum at Snoeck relaxation area: 1 0Q ,E− – background intensity and activation energy; 1 0i 0iQ ,T− – i-th peak height and temperature – i-th peak activation energy f – sample vibration frequency
  • 5. Parameters, which must be determined are: 1 0i 0in,Q ,T− or 1 0i in,Q ,E− ( )0,14139 0,003245 0T 12,89967 2,706674f 0,04547 0,04929f E,= + + − + An error for 300 – 800 К interval at f = 20 – 60 Hz is not more, then 1 % From Wert & Marx formula such approximation may be obtained: ( )( ) m 2 1 1 j j j 1 S Q Q T min− − = = − →∑ ( )( ) 2 1 1 m j j 1 2 j 1 j Q Q T S min − − = − = → σ ∑
  • 6. ( ) ( ) 2 exp z/ z  − β  ψ = β π ( )mz ln /= τ τ z2β = σ Peak enhance may be taken into account by the model of log-normal distribution of relaxation time:
  • 7. max max id δ ρ = δ 2 0,0853 0,197 0,970ρ = ϕ + ϕ + n 1 1 1 i 0i i 1 0i E 1 1 Q Q cosh R T T − − − =    = −  ÷ ρ   ∑ In this case: ( )mlnϕ = ωτ For ρ value from N.P. Kushnareva & V.S. Petchersky data such approximation may be obtained:
  • 8. Graphic decomposition 2 peaks without error -8 -4 0 4 1,4 1,7 2 2,3 arcch(Q-1 m/Q-1 ) 103 /T
  • 9. 4 peaks + error -6 -3 0 3 6 1,2 1,5 1,8 2,1 2,4 arcch(Q-1 m/Q-1 )
  • 10. Linear least-squares method: ( ) n 1 j i i j i i 1 x A cosh [B (x c )]− = ϕ = −∑ 1 i 0i j j i 0iA Q , x 1/T , c 1/T− = = = i i i 1 k B ln c hfc =
  • 11. ( ) ( ) ( ) ( ) ( ) ( ) n j j j j 1 1 n j j j j 1 2 n j j j j 1 n x y x 0; A x y x 0; A x y x 0, A = = = ∂ϕ  − ϕ =  ∂ ∂ϕ  − ϕ =  ∂ ∂ϕ  − ϕ =  ∂ ∑ ∑ ∑ LLLLLLLLLLLL
  • 12. ( )j 1 i j i ij i x cosh [B (x c )] F A − ∂ϕ = − = ∂ n n n n 2 1 1j 2 1j 2 j n 1j nj j 1j j 1 j 1 j 1 j 1 n n n n 2 1 2 j 1j 2 2 j n 2 j nj j 2 j j 1 j 1 j 1 j 1 1 nj 1j 2 nj A F A F F A F F y F ; A F F A F A F F y F ; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A F F A F = = = = = = = = + + + = + + + = + ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ L L n n n n 2 2 j n nj j nj j 1 j 1 j 1 j 1 F A F y F = = = = + + =∑ ∑ ∑ ∑L
  • 13. 1 11 2 12 n 1n 1 1 21 2 22 n 2n 21 1 n1 2 n2 n nn n A W A W ... A W Z ; A W A W ... A W Z ; . . . . . . . . . . . . . . . . . . . . . . . . . . A W A W ... A W Z , + + + =  + + + =    + + + = n 1 1 ik i k j 1 j i j k 1 1 1 1 W cosh B cosh B x c x c − − =          = − − ÷ ÷  ÷  ÷  ÷ ÷         ∑ n 1 i i i j 1 j i 1 1 Z y cosh B x c − =    = −  ÷ ÷     ∑
  • 14. The advantages of linear least-squares method: - simple realization; - sufficient accuracy (up to 10 % for the main peaks heights) Method disadvantages: - linearization error; - necessity of peak temperatures preliminary definition; - possibility to obtain an ill-condition system; - supposition of uniformly precise of the data; - supposition of absolute accuracy of temperature measurements; - possibility of obtaining the negative values of peak heights.
  • 15. The method of gradient descent (linearized least square method) Main differences: - an expression of ideal peak is linearized by Taylor series expansion in the neighborhood of some point (initial estimate) with abandonment of only linear terms; - the possibility to choose the different types of objective function (cancellation of supposition that the data have the same errors) [L. Crer et. al, 1969; M.S. Ahmad et. al, 1971; O.N. Razumov et. al., 1974; A.I. Efimov et. al., 1982.]
  • 16. ( )( ) ( ) 1 1 1m j j 2 j 1 j k Q Q T Q T 0, k 1,2,...q a − − − = − ∂ = = σ ∂ ∑ { }1 1 1 0 01 0n 1 n 01 0na E,Q ,Q ,...,Q ,E ,...,E ,T ,...,T− − − = q 3n 2= + ( )( ) 2 1 1 m j j 1 2 j 1 j Q Q T S min − − = − = → σ ∑ From we can obtain: at general case, q 3n= without background, q 2n= for ideal Debay peaks.
  • 17. After linearization we obtain: ( ) ( ) m 0 1 k k k mkm 1 a a a M Z ,− = ∆ = − = ∑l ( ) ( )1 1m k 2 j 1 j k Q T Q T1 M , a a − − =  ∂ ∂ =  ÷ ÷σ ∂ ∂  ∑l l ( )( ) ( ) 1 1 1m j j 2 j 1 j Q Q T Q T Z , a − − − = − ∂ = σ ∂ ∑l l where: derivatives are determined in 0 ka
  • 18. Adjusted values: 0 k k ka a a , 0 1.= + γ∆ < γ ≤ From the definition of ka∆ follows, that it corresponds with the general formula of gradient search methods: 0 k k 1a a gradS .= −β Gradient methods realize an iteration procedure, in which such stopping conditions may be used: p p 1 k ka a ;− − < ε p p 1 1 1S S ;− − < δ 1gradS ;< ξ , , 0.ε δ ξ >
  • 19. Problems and disadvantages: - poor convergence at the case of large number of peaks; - possibility of iteration stopping at the critical point, which is not the point of minimum; - possibility of getting into a loop, when the objective functional S is ravine; - absence of realization at standard libraries of the most popular software packages; - М matrix must be positively defined at the every step of iterations
  • 20. ( ) ( )(k 1) (k) 1 (k) (k) H ,+ − = −X X X G X Quasi-Newton algorithm { }1 1 1 0 01 0n 1 n 01 0na E,Q ,Q ,...,Q ,E ,...,E ,T ,...,T− − − = 2 2 2 2 1 1 2 1 q 2 2 2 2 2 1 2 2 q 2 2 2 2 q 1 q 2 q S S S ... a a a a a S S S ... a a a a aH ... ... ... ... S S S ... a a a a a  ∂ ∂ ∂  ÷ ∂ ∂ ∂ ∂ ∂ ÷  ÷∂ ∂ ∂  ÷ ∂ ∂ ∂ ∂ ∂=  ÷  ÷  ÷  ÷∂ ∂ ∂  ÷ ∂ ∂ ∂ ∂ ∂  1 2 q S a S aG ... S a ∂   ÷∂  ÷ ∂ ÷  ÷∂=  ÷  ÷  ÷∂  ÷  ÷∂ 
  • 21. ij ij h , i j; c 0, i j.  = =  ≠ n 1 T 1 k k k k 1 P z , − = = ∑ v v ° 1 1 1 1H C PC , − − − = zk are eigenvalues and vk are eigenvectors of matrix: Grinshtadt technique: 1 1 P C HC ,− − = It is necessary to provide the positive definiteness of Hesse matrix or to find an approximation of Н-1
  • 22. and F is a Fisher criterion value for the corresponding numbers of degrees of freedom and significance level, ∆2 - sum of errors squares (relative errors) of experimental points. Adequacy criteria for spectrum models: 2 S F≤ ∆ 2 F S ∆ ≤ ( )0,052 S F F 2,0...2,5> ≈ ⇒ ∆ number of model parameters must be increased; 2 F S ∆ > ⇒ number of model parameters must be decreased.
  • 23. Quasi-unimodelity (an absence of physically different minimums) of objective functional, that is all minimums of objective functional correspond to the same physical model of a spectrum. Deviation from quasi-unimodality may be caused with: - the presence of excess peaks in the model; - absence of some essential peak in the model; - presence at the real spectrum of some collateral peak, which height is close to measurement error.
  • 24. Absence of model residuals serial correlation (Darbin & Watson criterion): ( ) m 2 j j 1 j 2 m 2 t j 1 e e d , e − = = − = ∑ ∑ ( )1 1 j j je Q Q T− − = − - model residuals. d 2≈ - serial correlation is absent; d 0→ d 4≈ - positive serial correlation; - negative serial correlation (there are excess peaks).
  • 25. 0 5 10 500 600 700 800 Q-1 ·103 T, K Given data (4 peaks + error)
  • 26. Initial approach (4 peaks) σ=0,1
  • 27. 0 4 8 12 500 600 700 800 T, K Q-1 ·103 The result of decomposition S=0,30 F=0,74
  • 28. -0,25 -0,1 0,05 0,2 500 600 700 800 ∆Q-1 ·103 T, K Residuals d=2,18
  • 29. 0 4 8 12 500 600 700 800 T, K Q-1 ·103 Initial approach 1 (3 peaks) σ=0,1
  • 30. 0 4 8 12 500 600 700 800 T, K Q-1 ·103 The result of decomposition 1 (3 peaks) S=20,52 F=50,31
  • 31. -2 -1 0 1 500 600 700 800 ∆Q-1 ·103 T, K Residuals d=0,33
  • 32. 0 4 8 12 500 600 700 800 T, K Q-1 ·103 Initial approach 2 (3 peaks) σ=0,1
  • 33. 0 4 8 12 500 600 700 800 T, K Q-1 ·103 The result of decomposition 2 (3 peaks) S=13,58 F=33,28
  • 34. -2 -1 0 1 500 600 700 800 ∆Q-1 ·103 T, K Residuals d=0,54
  • 35. 0 4 8 12 500 600 700 800 Q-1 ·103 T, K Initial approach 1 (5 peaks) σ=0,1
  • 36. Initial approach 2 (5 peaks) 0 4 8 12 500 600 700 800 Q-1 ·103 T, K σ=0,1
  • 37. Given 3_1 3_2 4 5_1 5_2 T1 570 571,3 578,6 569,4 569,4 569,4 T2 620 632,5 619,8 619,8 619,8 T3 690 698,1 685,5 690,2 690,2 690,2 T4 750 742,4 749,2 749,2 749,2 T5 499,6 718,2 Q1 6 6,3 7,4 5,9 5,9 5,9 Q2 3 3,5 3,1 3,1 3,1 Q3 12 13,0 12,2 12,0 12,0 12,0 Q4 3 3,6 2,9 2,9 2,9 Q5 0,0 0,0 σ=0,1
  • 38. 0 4 8 12 500 600 700 800 T, K Q-1 ·103 σ=0,3Initial approach 1 (4 peaks)
  • 39. 0 4 8 12 500 600 700 800 T, K Q-1 ·103 Initial approach 2 (4 peaks) σ=0,3
  • 40. 0 4 8 12 500 600 700 800 T, K Q-1 ·103 Initial approach 3 (4 peaks) σ=0,3
  • 41. 0 4 8 12 500 600 700 800 T, K Q-1 ·103 The result of decomposition s=3,01 F=0,76
  • 42. -0,5 -0,2 0,1 0,4 500 600 700 800 ∆Q-1 ·103 T, K d=1,20 Residuals
  • 43. 0 4 8 12 500 600 700 800 T, K Q-1 ·103 Initial approach 1 (3 peaks) σ=0,3
  • 44. 0 4 8 12 500 600 700 800 T, K Q-1 ·103 Initial approach 2 (3 peaks) σ=0,3
  • 45. 0 4 8 12 500 600 700 800 T, K Q-1 ·103 Initial approach 3 (3 peaks) σ=0,3
  • 46. The result of decomposition 0 4 8 12 500 600 700 800 T, K Q-1 ·103 s=15,87 F=3,99
  • 47. -2,5 -1 0,5 500 600 700 800 ∆Q-1 ·103 T, K Residuals d=0,57
  • 48. 0 4 8 12 500 600 700 800 Q-1 ·103 T, K Initial approach 1 (5 peaks) σ=0,3
  • 49. 0 4 8 12 500 600 700 800 Q-1 ·103 T, K The result of decomposition s=2,92 F=0,74
  • 50. -0,5 -0,2 0,1 0,4 0,7 500 600 700 800 ∆Q-1 ·103 T, K Residuals d=1,21
  • 51. 0 4 8 12 500 600 700 800 Q-1 ·103 T, K Initial approach 2 (5 peaks) σ=0,3
  • 52. 0 4 8 12 500 600 700 800 Q-1 ·103 T, K The result of decomposition s=1,41 F=0,35
  • 53. -0,5 -0,2 0,1 0,4 0,7 500 600 700 800 ∆Q-1 ·103 T, K Residuals d=2,47
  • 54. Given 3 4 5_1 5_2 T1 570 578,7 569,8 571,2 569,7 T2 620 621,8 622,8 621,3 T3 690 686,5 691,2 691,2 690,6 T4 750 749,2 757,1 757,2 751,7 T5 537,5 851,0 Q1 6 7,2 5,9 5,7 5,8 Q2 3 3,0 2,9 2,9 Q3 12 12,4 12,2 12,2 12,0 Q4 3 3,6 2,9 2,9 2,9 Q5 0,3 0,6 σ=0,3
  • 55. 0 10 20 450 550 650 750 Q-1 ·103 T, K 0,18 0,36 0,42 0,60 [N], at.%: Nb – 2 at.% W – N (3 peaks, 1 result)
  • 56. -3,5 -2,5 -1,5 -0,5 0,5 1,5 2,5 450 550 650 750 ∆Q-1 ·103 T, K d: 0,69; 0,52 1,94; 1,14 Residuals
  • 57. 0 10 20 450 550 650 750 Q-1 ·103 T, K 0,18 0,36 0,42 0,60 [N], at.%: Nb – 2 at.% W – N (3 peaks, 2 result)
  • 58. -3,5 -2,5 -1,5 -0,5 0,5 1,5 2,5 450 550 650 750 ∆Q -1 ·103 T, K d: 0,85; 1,33 1,88; 1,27 Residuals
  • 59. 0 10 20 450 550 650 750 Q-1 ·103 T, K [N], at.%: 0,18 0,36 0,42 0,60 Nb – 2 at.% W – N (4 peaks)
  • 60. -2,2 -1,2 -0,2 0,8 1,8 2,8 450 550 650 750 ∆Q-1 ·103 d: 1,83; 2,10 2,84; 1,67 Residuals
  • 61. 0 10 20 450 550 650 750 T, K Q-1 ·103 [N], at.%: 0,18 0,36 0,42 0,60 Nb – 2 at.% W – N (5 peaks, 1 result)
  • 62. Residuals -2 -1 0 1 2 450 550 650 750 ∆Q -1 ·103 T, K d: 1,60; 2,36 3,09; 1,83
  • 63. 0 10 20 450 550 650 750 T, K Q-1 ·103 [N], at.%: 0,18 0,36 0,42 0,60 Nb – 2 at.% W – N (5 peaks, 2 result)
  • 64. -2 -1 0 1 2 450 550 650 750 ∆Q-1 ·103 T, K d: 2,54; 2,36 2,96; 2,25 Residuals
  • 65. T1 T2 T3 T4 Т5 S F 3_1 539,1 657,2 685,2 70,1 2,0 3_2 647,1 673,6 748,7 86,5 1,6 4 537,9 650,9 674,7 749,0 43,3 3,3 5_1 528,8 656,9 676,4 748,0 593,0 35,7 4,0 5_2 535,5 641,4 674,4 745,5 665,5 34,1 4,2 Q1 Q2 Q3 Q4 Q5 3_1 2,2 18,2 13,4 3_2 9,3 21,3 2,7 4 2,1 10,8 19,5 2,6 5_1 1,5 13,6 15,9 2,6 2,1 5_2 2,0 7,0 17,9 2,6 5,8
  • 66. Nb – 12 at.% W Nb – 6 at.% W 4 peaks 5 peaks 4 peaks1 set 2 set E1, kJ/mol 102,2 86 E2, kJ/mol 109,5 111,5 110,1 109,8 E3, kJ/mol 116,3 116,9 116,5 116,5 E4, kJ/mol 128,9 129,6 129,1 128,3 E5, kJ/mol 1456 145,9 145,9 145,9
  • 67. 0 0,3 0,6 0,9 500 600 700 800 Nb – 2 at.% Hf – 0,32 at.% N (3 peaks): E = 1,47; 1,61; 1,76 kJ/mol; d = 0,90; F = 1,73.
  • 68. 0 0,3 0,6 0,9 500 600 700 800 Nb – 2 at.% Hf – 0,32 at.% N (4 peaks): E = 1,29; 1,48; 1,62; 1,79 kJ/mol; d = 1,26; F = 2,64.
  • 69. 0 0,3 0,6 0,9 500 600 700 800 Nb – 2 at.% Hf – 0,32 at.% N (5 peaks, 1 result): E = 1,44; 1,54; 1,63; 1,77; 1,91 kJ/mol; d = 1,06; F = 3,21.
  • 70. 0 0,3 0,6 0,9 500 600 700 800 Nb – 2 at.% Hf – 0,32 at.% N (5 peaks, 2 result): E = 1,26; 1,46; 1,57; 1,64; 1,80 kJ/mol; d = 1,55; F = 3,58.
  • 71. n N i i 1 0i i 2 2 2 i i 0i i M(T) M M (T); M M (T) ; 1 4 f E 1 1 exp R T T . 2 f =    = − ∆   ∆ ∆ = + π τ      −  ÷    τ = π ∑ The temperature dependence of dynamic elastic modulus in a case of n processes, which satisfy the model of standard linear body, may be determined from a system: MN – non-relaxed modulus.
  • 72. Model parameters, which must be identified, are: 0i 0iM ,T .∆ ( ) ( ) m 2 1 exp j j j 1 S M T M T min, =  = − → ∑ We are to solve such minimization problem: ( )exp jM Twhere are experimental data for modulus at Tj. (*)
  • 73. Functional (*) has a great number of minimums, so the result of minimization strongly depends on initial assumption. Adequate model may be obtained by using as T0i initial values the results of relaxation spectrum decomposition and setting initial values as0iM∆ 1 0i N 0iM 2M Q .− ∆ = T0i values after minimization are very close with the initial ones, and values change essentially. But there is a correlation (r = 0,90 – 0,97) between partial Snoek peaks heights and results for : 0iM∆ 0i 1 0i H M 2,00 0,15. Q M− ∆ = ± 0iM∆
  • 74. Nb – 12 at.% W – N [N], at.%:  - 0,11; ■ – 0,16; ▲ – 0,22; ♦ - 0,31