SlideShare a Scribd company logo
Phase diagram at finite T & μ
in strong coupling limit of
lattice QCD
Supervisor: Kazuyuki Kanaya(金谷 和至)

201020283 Jae Don Choi(崔 在敦)
Spontaneously Broken QCD Chiral Symmetry
• the fermion part of QCD action (ordinary, continuum theory)

• If massless(m=0), there exists symmetry.

• This means that the action is invariant in 

• In sufficiently low temperature, . Symmetry is broken spontaneously.

• Finite temperature QCD.
SF
⇥
, ¯, A
⇤
=
Nf
X
f=1
Z
d4
x ¯(f)
(x)
⇣
µ (@µ + igAµ (x)) + m(f)
⌘
(f)
(x)
=
Nf
X
f=1
Z
d4
x ¯(f)
(x)↵,c
⇣
( µ)↵ ( cd@µ + igAµ (x)cd) + m(f)
↵ cd
⌘
(f)
(x) ,d
SU(Nf )L ⇥ SU(Nf )R
! ei✓ 5
Introduction
• We want to construct
effective mean field theory
for QCD phase diagram

• at strong coupling limit,
with 1 flavor staggered fermion

• Chiral Symmetry Restoration
Phase Transition ONLY

• In which temperature and chemical
potential, does our effective free
energy have local minimum at
<ψψ> = 0?

• In this model, without CSC phase
On the Starting Line: Lattice QCD
• 1 flavor staggered fermion (4 flavor in continuum limit), color SU(3)

• Detail of action
Z =
Z
D [U0, Uj, , ¯] exp
"
S
(⌧)
F S
(s)
F
X
x
m0 ¯a
x
a
x SG
#
S
(⌧)
F =
1
2
X
x
h
eµ
¯xU0,x x+ˆ0 e µ
¯x+ˆ0U†
0,x x
i
S
(s)
F =
1
2
X
x,j
⌘j,x
h
¯xUj,x x+ˆj ¯x+ˆjU†
j,x x
i
⌘j,x = ( 1)
x0+x1+···xj 1
(j = 1, 2, 3) .
SG =
2Nc
g2

1
trc
2Nc
⇥
Uµ⌫,x + U†
µ⌫,x
⇤
! 0 g2
! 1
Strong coupling limit
Process
• Start with partition function.

• Path integral of spatial link variable 

• Bosonization: to make bilinear form in quark for path integral of

• Mean field approximation in auxiliary fields

• Execute integral of quark & temporal link variable

• acquisition of effective free energy

• Analyze in temperature and chemical potential
Uj,x
U0,x
¯,
¯,
Introduction
• Analytical approach (Kawamoto et al. ’07)

• 1 flavor staggered fermion (4 flavor in continuum limit), color SU(3)

• Detail of action
Z =
Z
D [U0, Uj, , ¯] exp
"
S
(⌧)
F S
(s)
F
X
x
m0 ¯a
x
a
x SG
#
Strong coupling limit
a⌧ = as = 1
S
(⌧)
F = a3
sa⌧
X
x
"
eµa⌧
¯xU0,x x+ˆ0 e µa⌧
¯x+ˆ0U†
0,x x
2a⌧
#
S
(s)
F = a3
sa⌧
X
x,j
⌘j,x
"
¯xUj,x x+ˆj ¯x+ˆjU†
j,x x
2as
#
⌘j,x = ( 1)
x0+x1+···xj 1
(j = 1, 2, 3) .
SG =
2Nc
g2

1
trc
2Nc
⇥
Uµ⌫,x + U†
µ⌫,x
⇤
! 0 g2
! 1
SU(3) Group Integral with Spatial Link Variable
• Kluberg-Stern et al. (’83)
Mx = ¯a
x
a
x
Bx =
1
Nc!
"a1a2···aNc a1 a2
· · · aNc
¯Bx =
1
Nc!
"a1a2···aNc
¯aNc
· · · ¯a2
¯a1
Z
D [Uj] e S
(s)
F =
Z
D [Uj] exp
2
4 1
2
·
X
x,j
⌘j,x
⇣
¯xUj,x x+ˆj ¯x+ˆjU†
j,x x
⌘
3
5
= exp
2
4
X
x
1
4Nc
dX
j=1
MxMx+ˆj
X
x
( 1)
Nc(Nc 1)
2
dX
j=1
⇣⌘j,x
2
⌘Nc
h
¯BxBx+ˆj + ( 1)
Nc ¯Bx+ˆjBx
i
X
x
N2
c · (Nc 2)! Nc!
32 · N2
c · Nc!
dX
j=1
M2
xM2
x+ˆj
X
x
2 · Nc! N3
c · (Nc 2)!
128 · N4
c · Nc!
dX
j=1
M3
xM3
x+ˆj
3
5
Systematic 1/d Expansion I
• At d (space dimension) →∞, mean field theory becomes exact.

• demand the leading order term be O(1) at d→∞ : Rescale quark field

x ! d
1
4
x
Mx =
p
d · [¯a
x
a
x]
Bx = d
Nc
4 ·

1
Nc!
"a1a2···aNc a1 a2
· · · aNc
¯Bx = d
Nc
4 ·

1
Nc!
"a1a2···aNc
¯aNc
· · · ¯a2
¯a1
Systematic 1/d Expansion II
• Then our result looks like

• Kluberg-Stern et al. (’83) : Contribution of higher order terms to Vacuum Expectation Value of chiral
condensate(<ψψ>) is small at zero temperature(T=0). (In d=4, about 7%)

• Usually, Analyzed only in O(1): Damgaard et al.(’84), Nishida(’04), Miura et al.(’07), Nakano et al.(’10),... etc.

• We want to investigate the baryon effect: We adopt not only O(1) but also O(1/√d) for our effective action.
Z
D [Uj] e S
(s)
F = exp
2
4
X
x
1
d
dX
j=1
⇢
1 ·
✓
1
4Nc
· MxMx+ˆj
◆
+
1
p
dNc 2
·
✓
( 1)
Nc(Nc 1)
2
⇣⌘j,x
2
⌘Nc
·
⇣
¯BxBx+ˆj + ( 1)
Nc ¯Bx+ˆjBx
⌘◆
+
1
d
·
✓
N2
c · (Nc 2)! Nc!
32 · N2
c · Nc!
· M2
xM2
x+ˆj
◆
+
1
d2
·
✓
2 · Nc! N3
c · (Nc 2)!
128 · N4
c · Nc!
· M3
xM3
x+ˆj
◆
O(1)
O(1/√d) @ Nc=3
O(1/d)
O(1/d^2)
After the Path Integral of Spatial Link Variable
• So far, our partition function

• Propagators and inner product
VM,xy =
1
2d
dX
j=1
⇣
y,x+ˆj + y,x ˆj
⌘
VB,xy = ( 1)
Nc(Nc 1)
2
dX
j=1
⇣⌘j,x
2
⌘Nc
⇣
y,x+ˆj + ( 1)
Nc
y,x ˆj
⌘
(A, V B) =
X
x,y
AxVxyBy
Z =
Z
D [U0, Uj, , ¯] exp
"
S
(⌧)
F
X
x
m0 ¯a
x
a
x S
(s)
F
#
⇡
Z
D [U0, , ¯] exp
"
S
(⌧)
F
X
x
m0Mx +
d
2Nc
·
1
2
(M, VM M) + ¯B, VBB
#
Bosonization: Introducing Auxiliary Fields
• We want the bilinear form of quark → Hubbard-Stratonovich transformation
Da;x =
2
"abc
b
x
c
x +
1
3
¯a
xbx
D†
a;x =
2
"abc ¯c
x ¯b
x +
1
3
¯bx
a
x
d
2Nc
·
1
2
(M, VM M)
2
2
(M, M)
↵2
2
(M, M) =
1
2
⇣
M, eVM M
⌘
¯b, V 1
B b g!! ¯b, b =
⇣
¯b, eV 1
B b
⌘
e( ¯B,VBB) = det VB
Z
D
⇥
¯b, b
⇤
e (¯b,V 1
B b)+(¯b,B)+( ¯B,b)
e( ¯B,b)+(¯b,B) =
Z
d
⇥
a, †
a
⇤
exp
"
†
a, a +
X
x
†
a;xDa;x + D†
a;x a;x
2
2
(M, M) +
X
x
1
9 2
Mx
¯bxbx
#
e
P
x
1
9 2 Mx
¯bxbx
=
Z
D [!] exp
"
1
2
(!, !) ↵
X
x
Mx + g!
¯bxbx !x
↵2
2
(M, M)
#
e
1
2 (M,eVM M) =
Z
D [ ] exp

1
2
⇣
, eVM
⌘ ⇣
, eVM M
⌘
Z =
Z
D [U0, , ¯] exp
"
S
(⌧)
F +
d
2Nc
·
1
2
(M, VM M) + ¯B, VBB
X
x
m0Mx
#
g! =
1
9↵ 2
free parameters α, γ
Mean Field Approximation
• Bosonic auxiliary fields (Not baryon auxiliary fields!!!)

• After the approximation,

• parameter dependence in α, γ : later, indefiniteness of this model...
Z =
Z
D
⇥
U0, , ¯,¯b, b
⇤
⇥ det VB ⇥ exp

S
(q)
F
⇣
¯b, eV 1
B b
⌘
L3
✓
†
a a +
1
2
!2
+
a
2
2
◆
S
(q)
F = S
(⌧)
F +
X
x
(a + ↵! + m0) Mx
+
1
3
⇥ †
a (¯a
, b) + a
¯b, a
⇤
+
2
"cab
⇥ †
c
a
, b
+ c ¯b
, ¯a
⇤
=
1
L3
X
x
hMxi
! =
1
L3
X
x
⌦
↵Mx + g!
¯bxbx
↵
a =
1
L3
X
x
⌧
2
"abc
b
x
c
x +
1
3
¯a
xbx
a =
d
2Nc
2
+ ↵2
Effective Free Energy
• At φ=0: Analysis too complicated with nonzero diquark condensate

• without color superconductor phase in this approximation

• Exact integration over , and (gauge fixing with Polyakov gauge) 

• Integration over with spherical integrate approximation

• Acquiring the effective free energy!
Z = exp
⇥
L3
Fe↵
⇤
= exp

L3
✓
F
(b)
e↵ + F
(q)
e↵ +
1
2
!2
+
a
2
2
◆
Fe↵ =
1
2
a 2
+
1
2
"
1
3
5
a
(b)
0
✓
g!⇤
4
◆2
#
!2
+ F
(b)
e↵ (!) + F
(q)
e↵
=
1
2
a 2
+
1
2
a!!2
+ F
(q)
e↵ ( , !) + F
(b)
e↵ (!)
Effective Free energy II
• Final result of effective free energy
Z = exp
⇥
L3
Fe↵
⇤
= exp

L3
✓
F
(b)
e↵ + F
(q)
e↵ +
1
2
!2
+
a
2
2
◆
Fe↵ =
1
2
a 2
+
1
2
"
1
3
5
a
(b)
0
✓
g!⇤
4
◆2
#
!2
+ F
(b)
e↵ (!) + F
(q)
e↵
=
1
2
a 2
+
1
2
a!!2
+ F
(q)
e↵ ( , !) + F
(b)
e↵ (!)
F
(q)
e↵ ( , !) = T log
"
4
3
✓
cosh
Eq ( , !)
T
◆3
2
3
cosh
Eq ( , !)
T
+
1
3
cosh
Ncµ
T
#
F
(b)
e↵ (!) =
1
2
·
"
3
5
a
(b)
0
✓
g!⇤
4
◆2
#
!2
+
3
28
a
(b)
0
✓
g!⇤
4
◆4
!4
+ O !6
| {z }
= F
(b)
eff (!)
Conditions for Ensuring Mean Field Approximation
• Final partition function and full effective free energy density

• To justify mean field approximation,

=
1
L3
X
x
hMxi
! =
1
L3
X
x
⌦
↵Mx + g!
¯bxbx
↵
a =
d
2Nc
2
+ ↵2
> 0
a! = 1
3
5
a
(b)
0
✓
g!⇤
4
◆2
> 0
2
+ ↵2
<
d
2Nc
4
>
3
5
a
(b)
0
✓
⇤
4 · 9
◆2
1
↵2
.
Z = exp
⇥
L3
Fe↵
⇤
Fe↵ =
1
2
a 2
+
1
2
a!!2
+ F
(q)
e↵ ( , !) + F
(b)
e↵ (!)
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
a
0.1
0.2
0.3
0.4
0.5
0.6
0.7
g! =
1
9↵ 2
α
γ
aσ=0
aω=0
Equilibrium Condition
• Discussion is complicated with two
order parameters, σ, ω.

• If ΔFeff,(b)=O(ω^4) is ignorable,

• Suggestion for evaluation criteria

• With this, only one order parameter, σ !
@Fe↵
@
= a + a
@F
(q)
e↵
@mq
= 0
@Fe↵
@!
= a!! +
@ F
(b)
e↵
@!
+ ↵
@F
(q)
e↵
@mq
= 0
50%
95%
99%
99.5%
99.7%
⇡
a!
↵
!
α
γ
1
2 a!!2
F
(b)
e↵
1
2 a!!2
!=1
= 0.95 or 0.99, ...
Effective Free energy as a Function of σ
• (α, γ) = (0.2, 0.678233) : Kawamoto et al. (’07)
Feff / Tc
σ
Feff / Tc
σ
Feff / Tc
σ
2nd order phase transition
from T=0 (fixed at μ=0)
1st order phase transition
from μ=0 (fixed at T=0)
Around Tricritical point
from μ=0 (fixed at T=TTCP)
Indefiniteness from Parameter Dependence
• Lack of ability of prediction on the value of Tc → Consider the phase diagram in the unit of Tc (μc/Tc, TTCP/Tc, μTCP/Tc)

• The magnitudes of 1/Tc, TTCP/Tc, μTCP/Tc on the (α, γ) plane

• The magnitudes of 1/Tc, TTCP/Tc, μTCP/Tc on the (α, γ) plane, especially in credibility 0.95(95%, linear approx.) area.

Tc = Tc (↵, ) =
10
3
✓
a +
↵2
a!
◆
1/Tc TTCP/Tc μTCP/Tc
1/Tc TTCP/Tc μTCP/Tc
0.2
0.4
0.6
a 0.3
0.4
0.5
0.6
0.7
g
0
5
10
15
0.2
0.4
0.6
a 0.3
0.4
0.5
0.6
0.7
g
0.0
0.2
0.4
0.6
0.8
0.2
0.4
0.6
a 0.3
0.4
0.5
0.6
0.7
g
0.0
0.1
0.2
0.3
Indefiniteness from Parameter Dependence
• Lack of ability of prediction on the value of Tc → Consider the phase diagram in the unit of Tc (μc/Tc, TTCP/Tc, μTCP/Tc)

• The magnitudes of 1/Tc, TTCP/Tc, μTCP/Tc on the (α, γ) plane

• The magnitudes of 1/Tc, TTCP/Tc, μTCP/Tc on the (α, γ) plane, especially in credibility 0.95(95%, linear approx.) area.

Tc = Tc (↵, ) =
10
3
✓
a +
↵2
a!
◆
1/Tc TTCP/Tc μTCP/Tc
1/Tc TTCP/Tc μTCP/Tc
0.2
0.4
0.6
a 0.3
0.4
0.5
0.6
0.7
g
0
5
10
15
0.2
0.4
0.6
a 0.3
0.4
0.5
0.6
0.7
g
0.0
0.2
0.4
0.6
0.8
0.2
0.4
0.6
a 0.3
0.4
0.5
0.6
0.7
g
0.0
0.1
0.2
0.3
hardly vary over 0.95(linear approx.)!
Phase Diagram @linear approx.: 95%
0"
0.2"
0.4"
0.6"
0.8"
1"
1.2"
0" 0.1" 0.2" 0.3" 0.4" 0.5" 0.6"
T"/"Tc"
μ"/"Tc"
Rω=0.95"(95.0%)"
2nd"PT"
LocalMinimum"
1/T_c=10"
1/T_c=5"
1/T_c=3"
1/T_c=2"
1/T_c=1.5"
1/T_c=1.2"
1/T_c=1"
1/T_c=0.9"
1/T_c=0.8"
1/T_c=0.7"
Meson"only"
1/T_c=0.6"
N_t=4"MC"TCP"
N_t=4"MC"Mu_c"
CT"MC"TCP"
CT"MC"Mu_c"
de Forcrand et al.
PRL104 112005 (2010)
Nt=4 Monte Carlo
Rω=0.995
μ
T
de Forcrand et al.
arXiv:1111.1434 (2011)
Continuous time Monte Carlo
T
μRω=0.995
Summary and Future Works
• Analytical approach at strong coupling limit (mean field approximation)

• In spite of the model with meson only(Nishida ’04), this model has indefiniteness.

• Improvement of zero diquark condensate to nonzero.

• Considering diquark → Considering color superconductor phase

• The limitation of mean field analysis...?

• Auxiliary field Monte Carlo simulation: Ohnishi et al. (arXiv:1211.2282v1)

• Missing Link between mean field analysis & Monte Carlo simulation?

• At mean field analysis: Improvement of O(1/g^2), O(1/d) accuracy.
ありがとうございました。
Thank you very much.

More Related Content

PDF
Engineering formula sheet
PDF
Ece formula sheet
PDF
Signals and Systems Formula Sheet
PPT
002 ray modeling dynamic systems
PPT
3 recursive bayesian estimation
PPT
Laplace equation
PPT
Gamma function
Engineering formula sheet
Ece formula sheet
Signals and Systems Formula Sheet
002 ray modeling dynamic systems
3 recursive bayesian estimation
Laplace equation
Gamma function

What's hot (19)

PDF
University of manchester mathematical formula tables
PPT
Inner outer and spectral factorizations
PDF
Hermite integrators and Riordan arrays
PDF
Using blurred images to assess damage in bridge structures?
DOC
Gamma beta functions-1
PPTX
Mathematics of nyquist plot [autosaved] [autosaved]
PPT
Analytic dynamics
PPT
Reduced order observers
PDF
Chapter3 - Fourier Series Representation of Periodic Signals
PPTX
Chapter5
PDF
Gamma and betta function harsh shah
PPT
Control chap10
PPT
07 periodic functions and fourier series
PPT
Dynamic response to harmonic excitation
PDF
Mathematical formula tables
PDF
Convergence methods for approximated reciprocal and reciprocal-square-root
PDF
Notes.on.popularity.versus.similarity.model
PDF
Funcion gamma
PDF
May the Force NOT be with you
University of manchester mathematical formula tables
Inner outer and spectral factorizations
Hermite integrators and Riordan arrays
Using blurred images to assess damage in bridge structures?
Gamma beta functions-1
Mathematics of nyquist plot [autosaved] [autosaved]
Analytic dynamics
Reduced order observers
Chapter3 - Fourier Series Representation of Periodic Signals
Chapter5
Gamma and betta function harsh shah
Control chap10
07 periodic functions and fourier series
Dynamic response to harmonic excitation
Mathematical formula tables
Convergence methods for approximated reciprocal and reciprocal-square-root
Notes.on.popularity.versus.similarity.model
Funcion gamma
May the Force NOT be with you
Ad

Similar to Phase diagram at finite T & Mu in strong coupling limit of lattice QCD (20)

PDF
Achieving the Neel state in an optical lattice
PDF
Talk at CPOD2016
PDF
Wits Node Seminar: Dr Sunandan Gangopadhyay (NITheP Stellenbosch) TITLE: Path...
PPTX
Conformal Boundary conditions
PDF
M2 Internship report rare-earth nickelates
PDF
Exact Sum Rules for Vector Channel at Finite Temperature and its Applications...
PDF
Transport coefficients of QGP in strong magnetic fields
PPTX
2 CH111_2023_AKD_Lec_H-Atom Upto WFs.pptx
PDF
Finitetemperature Field Theory Principles And Applications 2nd Ed Joseph I Ka...
PDF
QCD Phase Diagram
PDF
Quantum correlations and entanglement in far-from-equilibrium spin systems
PDF
Statistics Homework Help
PDF
Multiple Linear Regression Homework Help
PDF
Microwave spectroscopy reveals the quantum geometric tensor of topological Jo...
PDF
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...
PDF
LN21_CKM of high energy physics and particle
PDF
Marginal Deformations and Non-Integrability
PDF
Solutions for Exercises in Quantum Mechanics for Scientists and Engineers by ...
PDF
Quantum Condensed Matter Physics Free Web Version Nayak C
Achieving the Neel state in an optical lattice
Talk at CPOD2016
Wits Node Seminar: Dr Sunandan Gangopadhyay (NITheP Stellenbosch) TITLE: Path...
Conformal Boundary conditions
M2 Internship report rare-earth nickelates
Exact Sum Rules for Vector Channel at Finite Temperature and its Applications...
Transport coefficients of QGP in strong magnetic fields
2 CH111_2023_AKD_Lec_H-Atom Upto WFs.pptx
Finitetemperature Field Theory Principles And Applications 2nd Ed Joseph I Ka...
QCD Phase Diagram
Quantum correlations and entanglement in far-from-equilibrium spin systems
Statistics Homework Help
Multiple Linear Regression Homework Help
Microwave spectroscopy reveals the quantum geometric tensor of topological Jo...
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...
LN21_CKM of high energy physics and particle
Marginal Deformations and Non-Integrability
Solutions for Exercises in Quantum Mechanics for Scientists and Engineers by ...
Quantum Condensed Matter Physics Free Web Version Nayak C
Ad

Recently uploaded (20)

PDF
Unveiling a 36 billion solar mass black hole at the centre of the Cosmic Hors...
PDF
SEHH2274 Organic Chemistry Notes 1 Structure and Bonding.pdf
PDF
Phytochemical Investigation of Miliusa longipes.pdf
PDF
An interstellar mission to test astrophysical black holes
PPTX
BIOMOLECULES PPT........................
PPTX
ANEMIA WITH LEUKOPENIA MDS 07_25.pptx htggtftgt fredrctvg
PPTX
Derivatives of integument scales, beaks, horns,.pptx
PPT
The World of Physical Science, • Labs: Safety Simulation, Measurement Practice
DOCX
Viruses (History, structure and composition, classification, Bacteriophage Re...
PDF
Biophysics 2.pdffffffffffffffffffffffffff
PDF
. Radiology Case Scenariosssssssssssssss
PPTX
G5Q1W8 PPT SCIENCE.pptx 2025-2026 GRADE 5
PPTX
Protein & Amino Acid Structures Levels of protein structure (primary, seconda...
PDF
Formation of Supersonic Turbulence in the Primordial Star-forming Cloud
PPTX
Comparative Structure of Integument in Vertebrates.pptx
PDF
VARICELLA VACCINATION: A POTENTIAL STRATEGY FOR PREVENTING MULTIPLE SCLEROSIS
PPTX
2Systematics of Living Organisms t-.pptx
PPTX
famous lake in india and its disturibution and importance
PPT
protein biochemistry.ppt for university classes
PPTX
ognitive-behavioral therapy, mindfulness-based approaches, coping skills trai...
Unveiling a 36 billion solar mass black hole at the centre of the Cosmic Hors...
SEHH2274 Organic Chemistry Notes 1 Structure and Bonding.pdf
Phytochemical Investigation of Miliusa longipes.pdf
An interstellar mission to test astrophysical black holes
BIOMOLECULES PPT........................
ANEMIA WITH LEUKOPENIA MDS 07_25.pptx htggtftgt fredrctvg
Derivatives of integument scales, beaks, horns,.pptx
The World of Physical Science, • Labs: Safety Simulation, Measurement Practice
Viruses (History, structure and composition, classification, Bacteriophage Re...
Biophysics 2.pdffffffffffffffffffffffffff
. Radiology Case Scenariosssssssssssssss
G5Q1W8 PPT SCIENCE.pptx 2025-2026 GRADE 5
Protein & Amino Acid Structures Levels of protein structure (primary, seconda...
Formation of Supersonic Turbulence in the Primordial Star-forming Cloud
Comparative Structure of Integument in Vertebrates.pptx
VARICELLA VACCINATION: A POTENTIAL STRATEGY FOR PREVENTING MULTIPLE SCLEROSIS
2Systematics of Living Organisms t-.pptx
famous lake in india and its disturibution and importance
protein biochemistry.ppt for university classes
ognitive-behavioral therapy, mindfulness-based approaches, coping skills trai...

Phase diagram at finite T & Mu in strong coupling limit of lattice QCD

  • 1. Phase diagram at finite T & μ in strong coupling limit of lattice QCD Supervisor: Kazuyuki Kanaya(金谷 和至) 201020283 Jae Don Choi(崔 在敦)
  • 2. Spontaneously Broken QCD Chiral Symmetry • the fermion part of QCD action (ordinary, continuum theory) • If massless(m=0), there exists symmetry. • This means that the action is invariant in • In sufficiently low temperature, . Symmetry is broken spontaneously. • Finite temperature QCD. SF ⇥ , ¯, A ⇤ = Nf X f=1 Z d4 x ¯(f) (x) ⇣ µ (@µ + igAµ (x)) + m(f) ⌘ (f) (x) = Nf X f=1 Z d4 x ¯(f) (x)↵,c ⇣ ( µ)↵ ( cd@µ + igAµ (x)cd) + m(f) ↵ cd ⌘ (f) (x) ,d SU(Nf )L ⇥ SU(Nf )R ! ei✓ 5
  • 3. Introduction • We want to construct effective mean field theory for QCD phase diagram • at strong coupling limit, with 1 flavor staggered fermion • Chiral Symmetry Restoration Phase Transition ONLY • In which temperature and chemical potential, does our effective free energy have local minimum at <ψψ> = 0? • In this model, without CSC phase
  • 4. On the Starting Line: Lattice QCD • 1 flavor staggered fermion (4 flavor in continuum limit), color SU(3) • Detail of action Z = Z D [U0, Uj, , ¯] exp " S (⌧) F S (s) F X x m0 ¯a x a x SG # S (⌧) F = 1 2 X x h eµ ¯xU0,x x+ˆ0 e µ ¯x+ˆ0U† 0,x x i S (s) F = 1 2 X x,j ⌘j,x h ¯xUj,x x+ˆj ¯x+ˆjU† j,x x i ⌘j,x = ( 1) x0+x1+···xj 1 (j = 1, 2, 3) . SG = 2Nc g2  1 trc 2Nc ⇥ Uµ⌫,x + U† µ⌫,x ⇤ ! 0 g2 ! 1 Strong coupling limit
  • 5. Process • Start with partition function. • Path integral of spatial link variable • Bosonization: to make bilinear form in quark for path integral of • Mean field approximation in auxiliary fields • Execute integral of quark & temporal link variable • acquisition of effective free energy • Analyze in temperature and chemical potential Uj,x U0,x ¯, ¯,
  • 6. Introduction • Analytical approach (Kawamoto et al. ’07) • 1 flavor staggered fermion (4 flavor in continuum limit), color SU(3) • Detail of action Z = Z D [U0, Uj, , ¯] exp " S (⌧) F S (s) F X x m0 ¯a x a x SG # Strong coupling limit a⌧ = as = 1 S (⌧) F = a3 sa⌧ X x " eµa⌧ ¯xU0,x x+ˆ0 e µa⌧ ¯x+ˆ0U† 0,x x 2a⌧ # S (s) F = a3 sa⌧ X x,j ⌘j,x " ¯xUj,x x+ˆj ¯x+ˆjU† j,x x 2as # ⌘j,x = ( 1) x0+x1+···xj 1 (j = 1, 2, 3) . SG = 2Nc g2  1 trc 2Nc ⇥ Uµ⌫,x + U† µ⌫,x ⇤ ! 0 g2 ! 1
  • 7. SU(3) Group Integral with Spatial Link Variable • Kluberg-Stern et al. (’83) Mx = ¯a x a x Bx = 1 Nc! "a1a2···aNc a1 a2 · · · aNc ¯Bx = 1 Nc! "a1a2···aNc ¯aNc · · · ¯a2 ¯a1 Z D [Uj] e S (s) F = Z D [Uj] exp 2 4 1 2 · X x,j ⌘j,x ⇣ ¯xUj,x x+ˆj ¯x+ˆjU† j,x x ⌘ 3 5 = exp 2 4 X x 1 4Nc dX j=1 MxMx+ˆj X x ( 1) Nc(Nc 1) 2 dX j=1 ⇣⌘j,x 2 ⌘Nc h ¯BxBx+ˆj + ( 1) Nc ¯Bx+ˆjBx i X x N2 c · (Nc 2)! Nc! 32 · N2 c · Nc! dX j=1 M2 xM2 x+ˆj X x 2 · Nc! N3 c · (Nc 2)! 128 · N4 c · Nc! dX j=1 M3 xM3 x+ˆj 3 5
  • 8. Systematic 1/d Expansion I • At d (space dimension) →∞, mean field theory becomes exact. • demand the leading order term be O(1) at d→∞ : Rescale quark field x ! d 1 4 x Mx = p d · [¯a x a x] Bx = d Nc 4 ·  1 Nc! "a1a2···aNc a1 a2 · · · aNc ¯Bx = d Nc 4 ·  1 Nc! "a1a2···aNc ¯aNc · · · ¯a2 ¯a1
  • 9. Systematic 1/d Expansion II • Then our result looks like • Kluberg-Stern et al. (’83) : Contribution of higher order terms to Vacuum Expectation Value of chiral condensate(<ψψ>) is small at zero temperature(T=0). (In d=4, about 7%) • Usually, Analyzed only in O(1): Damgaard et al.(’84), Nishida(’04), Miura et al.(’07), Nakano et al.(’10),... etc. • We want to investigate the baryon effect: We adopt not only O(1) but also O(1/√d) for our effective action. Z D [Uj] e S (s) F = exp 2 4 X x 1 d dX j=1 ⇢ 1 · ✓ 1 4Nc · MxMx+ˆj ◆ + 1 p dNc 2 · ✓ ( 1) Nc(Nc 1) 2 ⇣⌘j,x 2 ⌘Nc · ⇣ ¯BxBx+ˆj + ( 1) Nc ¯Bx+ˆjBx ⌘◆ + 1 d · ✓ N2 c · (Nc 2)! Nc! 32 · N2 c · Nc! · M2 xM2 x+ˆj ◆ + 1 d2 · ✓ 2 · Nc! N3 c · (Nc 2)! 128 · N4 c · Nc! · M3 xM3 x+ˆj ◆ O(1) O(1/√d) @ Nc=3 O(1/d) O(1/d^2)
  • 10. After the Path Integral of Spatial Link Variable • So far, our partition function • Propagators and inner product VM,xy = 1 2d dX j=1 ⇣ y,x+ˆj + y,x ˆj ⌘ VB,xy = ( 1) Nc(Nc 1) 2 dX j=1 ⇣⌘j,x 2 ⌘Nc ⇣ y,x+ˆj + ( 1) Nc y,x ˆj ⌘ (A, V B) = X x,y AxVxyBy Z = Z D [U0, Uj, , ¯] exp " S (⌧) F X x m0 ¯a x a x S (s) F # ⇡ Z D [U0, , ¯] exp " S (⌧) F X x m0Mx + d 2Nc · 1 2 (M, VM M) + ¯B, VBB #
  • 11. Bosonization: Introducing Auxiliary Fields • We want the bilinear form of quark → Hubbard-Stratonovich transformation Da;x = 2 "abc b x c x + 1 3 ¯a xbx D† a;x = 2 "abc ¯c x ¯b x + 1 3 ¯bx a x d 2Nc · 1 2 (M, VM M) 2 2 (M, M) ↵2 2 (M, M) = 1 2 ⇣ M, eVM M ⌘ ¯b, V 1 B b g!! ¯b, b = ⇣ ¯b, eV 1 B b ⌘ e( ¯B,VBB) = det VB Z D ⇥ ¯b, b ⇤ e (¯b,V 1 B b)+(¯b,B)+( ¯B,b) e( ¯B,b)+(¯b,B) = Z d ⇥ a, † a ⇤ exp " † a, a + X x † a;xDa;x + D† a;x a;x 2 2 (M, M) + X x 1 9 2 Mx ¯bxbx # e P x 1 9 2 Mx ¯bxbx = Z D [!] exp " 1 2 (!, !) ↵ X x Mx + g! ¯bxbx !x ↵2 2 (M, M) # e 1 2 (M,eVM M) = Z D [ ] exp  1 2 ⇣ , eVM ⌘ ⇣ , eVM M ⌘ Z = Z D [U0, , ¯] exp " S (⌧) F + d 2Nc · 1 2 (M, VM M) + ¯B, VBB X x m0Mx # g! = 1 9↵ 2 free parameters α, γ
  • 12. Mean Field Approximation • Bosonic auxiliary fields (Not baryon auxiliary fields!!!) • After the approximation, • parameter dependence in α, γ : later, indefiniteness of this model... Z = Z D ⇥ U0, , ¯,¯b, b ⇤ ⇥ det VB ⇥ exp  S (q) F ⇣ ¯b, eV 1 B b ⌘ L3 ✓ † a a + 1 2 !2 + a 2 2 ◆ S (q) F = S (⌧) F + X x (a + ↵! + m0) Mx + 1 3 ⇥ † a (¯a , b) + a ¯b, a ⇤ + 2 "cab ⇥ † c a , b + c ¯b , ¯a ⇤ = 1 L3 X x hMxi ! = 1 L3 X x ⌦ ↵Mx + g! ¯bxbx ↵ a = 1 L3 X x ⌧ 2 "abc b x c x + 1 3 ¯a xbx a = d 2Nc 2 + ↵2
  • 13. Effective Free Energy • At φ=0: Analysis too complicated with nonzero diquark condensate • without color superconductor phase in this approximation • Exact integration over , and (gauge fixing with Polyakov gauge) • Integration over with spherical integrate approximation • Acquiring the effective free energy! Z = exp ⇥ L3 Fe↵ ⇤ = exp  L3 ✓ F (b) e↵ + F (q) e↵ + 1 2 !2 + a 2 2 ◆ Fe↵ = 1 2 a 2 + 1 2 " 1 3 5 a (b) 0 ✓ g!⇤ 4 ◆2 # !2 + F (b) e↵ (!) + F (q) e↵ = 1 2 a 2 + 1 2 a!!2 + F (q) e↵ ( , !) + F (b) e↵ (!)
  • 14. Effective Free energy II • Final result of effective free energy Z = exp ⇥ L3 Fe↵ ⇤ = exp  L3 ✓ F (b) e↵ + F (q) e↵ + 1 2 !2 + a 2 2 ◆ Fe↵ = 1 2 a 2 + 1 2 " 1 3 5 a (b) 0 ✓ g!⇤ 4 ◆2 # !2 + F (b) e↵ (!) + F (q) e↵ = 1 2 a 2 + 1 2 a!!2 + F (q) e↵ ( , !) + F (b) e↵ (!) F (q) e↵ ( , !) = T log " 4 3 ✓ cosh Eq ( , !) T ◆3 2 3 cosh Eq ( , !) T + 1 3 cosh Ncµ T # F (b) e↵ (!) = 1 2 · " 3 5 a (b) 0 ✓ g!⇤ 4 ◆2 # !2 + 3 28 a (b) 0 ✓ g!⇤ 4 ◆4 !4 + O !6 | {z } = F (b) eff (!)
  • 15. Conditions for Ensuring Mean Field Approximation • Final partition function and full effective free energy density • To justify mean field approximation, = 1 L3 X x hMxi ! = 1 L3 X x ⌦ ↵Mx + g! ¯bxbx ↵ a = d 2Nc 2 + ↵2 > 0 a! = 1 3 5 a (b) 0 ✓ g!⇤ 4 ◆2 > 0 2 + ↵2 < d 2Nc 4 > 3 5 a (b) 0 ✓ ⇤ 4 · 9 ◆2 1 ↵2 . Z = exp ⇥ L3 Fe↵ ⇤ Fe↵ = 1 2 a 2 + 1 2 a!!2 + F (q) e↵ ( , !) + F (b) e↵ (!) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 a 0.1 0.2 0.3 0.4 0.5 0.6 0.7 g! = 1 9↵ 2 α γ aσ=0 aω=0
  • 16. Equilibrium Condition • Discussion is complicated with two order parameters, σ, ω. • If ΔFeff,(b)=O(ω^4) is ignorable, • Suggestion for evaluation criteria • With this, only one order parameter, σ ! @Fe↵ @ = a + a @F (q) e↵ @mq = 0 @Fe↵ @! = a!! + @ F (b) e↵ @! + ↵ @F (q) e↵ @mq = 0 50% 95% 99% 99.5% 99.7% ⇡ a! ↵ ! α γ 1 2 a!!2 F (b) e↵ 1 2 a!!2 !=1 = 0.95 or 0.99, ...
  • 17. Effective Free energy as a Function of σ • (α, γ) = (0.2, 0.678233) : Kawamoto et al. (’07) Feff / Tc σ Feff / Tc σ Feff / Tc σ 2nd order phase transition from T=0 (fixed at μ=0) 1st order phase transition from μ=0 (fixed at T=0) Around Tricritical point from μ=0 (fixed at T=TTCP)
  • 18. Indefiniteness from Parameter Dependence • Lack of ability of prediction on the value of Tc → Consider the phase diagram in the unit of Tc (μc/Tc, TTCP/Tc, μTCP/Tc) • The magnitudes of 1/Tc, TTCP/Tc, μTCP/Tc on the (α, γ) plane • The magnitudes of 1/Tc, TTCP/Tc, μTCP/Tc on the (α, γ) plane, especially in credibility 0.95(95%, linear approx.) area. Tc = Tc (↵, ) = 10 3 ✓ a + ↵2 a! ◆ 1/Tc TTCP/Tc μTCP/Tc 1/Tc TTCP/Tc μTCP/Tc 0.2 0.4 0.6 a 0.3 0.4 0.5 0.6 0.7 g 0 5 10 15 0.2 0.4 0.6 a 0.3 0.4 0.5 0.6 0.7 g 0.0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 a 0.3 0.4 0.5 0.6 0.7 g 0.0 0.1 0.2 0.3
  • 19. Indefiniteness from Parameter Dependence • Lack of ability of prediction on the value of Tc → Consider the phase diagram in the unit of Tc (μc/Tc, TTCP/Tc, μTCP/Tc) • The magnitudes of 1/Tc, TTCP/Tc, μTCP/Tc on the (α, γ) plane • The magnitudes of 1/Tc, TTCP/Tc, μTCP/Tc on the (α, γ) plane, especially in credibility 0.95(95%, linear approx.) area. Tc = Tc (↵, ) = 10 3 ✓ a + ↵2 a! ◆ 1/Tc TTCP/Tc μTCP/Tc 1/Tc TTCP/Tc μTCP/Tc 0.2 0.4 0.6 a 0.3 0.4 0.5 0.6 0.7 g 0 5 10 15 0.2 0.4 0.6 a 0.3 0.4 0.5 0.6 0.7 g 0.0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 a 0.3 0.4 0.5 0.6 0.7 g 0.0 0.1 0.2 0.3 hardly vary over 0.95(linear approx.)!
  • 20. Phase Diagram @linear approx.: 95% 0" 0.2" 0.4" 0.6" 0.8" 1" 1.2" 0" 0.1" 0.2" 0.3" 0.4" 0.5" 0.6" T"/"Tc" μ"/"Tc" Rω=0.95"(95.0%)" 2nd"PT" LocalMinimum" 1/T_c=10" 1/T_c=5" 1/T_c=3" 1/T_c=2" 1/T_c=1.5" 1/T_c=1.2" 1/T_c=1" 1/T_c=0.9" 1/T_c=0.8" 1/T_c=0.7" Meson"only" 1/T_c=0.6" N_t=4"MC"TCP" N_t=4"MC"Mu_c" CT"MC"TCP" CT"MC"Mu_c"
  • 21. de Forcrand et al. PRL104 112005 (2010) Nt=4 Monte Carlo Rω=0.995 μ T
  • 22. de Forcrand et al. arXiv:1111.1434 (2011) Continuous time Monte Carlo T μRω=0.995
  • 23. Summary and Future Works • Analytical approach at strong coupling limit (mean field approximation) • In spite of the model with meson only(Nishida ’04), this model has indefiniteness. • Improvement of zero diquark condensate to nonzero. • Considering diquark → Considering color superconductor phase • The limitation of mean field analysis...? • Auxiliary field Monte Carlo simulation: Ohnishi et al. (arXiv:1211.2282v1) • Missing Link between mean field analysis & Monte Carlo simulation? • At mean field analysis: Improvement of O(1/g^2), O(1/d) accuracy.