SlideShare a Scribd company logo
Introduction
Results
May the force not be with you
Screening Modifications of Gravity and Disformal Couplings
Miguel Zumalac´arregui
Instituto de F´ısica Te´orica (IFT-UAM-CSIC) → ITP - Uni. Heidelberg
Refs: PRL 109 241102 (1205.3167) and PRD 87 083010 (1210.8016)
with Tomi S. Koivisto and David F. Mota
University of Geneva (May 2013)
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Theories of Gravity
Screening Mechanisms
The Frontiers of Gravity
Ostrogradski’s Theorem (1850)
Theories with L ⊃
∂nq
∂tn
, n ≥ 2 are unstable∗
L(q(t), ˙q, ¨q) →
∂L
∂q
−
d
dt
∂L
∂ ˙q
+
d2
dt2
∂L
∂¨q
= 0
q, ˙q, ¨q,
...
q → Q1, Q2, P1,P2
H = P1Q2 + terms independent of P1
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Theories of Gravity
Screening Mechanisms
The Frontiers of Gravity
Ostrogradski’s Theorem (1850)
Theories with L ⊃
∂nq
∂tn
, n ≥ 2 are unstable∗
L(q(t), ˙q, ¨q) →
∂L
∂q
−
d
dt
∂L
∂ ˙q
+
d2
dt2
∂L
∂¨q
= 0
q, ˙q, ¨q,
...
q → Q1, Q2, P1,P2
H = P1Q2 + terms independent of P1
∗ Loophole: Th’s with second order equations of motion
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Theories of Gravity
Screening Mechanisms
Einstein’s Theory
Lovelock’s Theorem (1971)
gµν + Local + 4-D + Lorentz Theory with 2nd order Eqs.
√
−g
1
16πG
(R − 2Λ)
Ways out - Clifton et al. (Phys.Rept. 2012)
Additional fields −→
£
¢
 
¡
φ , Aµ, hµν...
“Higher derivatives” −→ f(R)...
Extra dimensions −→ DGP, Kaluza-Klein...
Weird stuff −→ Non-local, Lorentz violating...
Scalars fields: Simple + certain limits from other theories
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Theories of Gravity
Screening Mechanisms
Scalar Tensor-Theories
Horndenski’s Theory (1974)
gµν +
£
¢
 
¡
φ + Local + 4-D + Lorentz Theory with 2nd order Eqs.
⇒ 4 free functions Gi(φ, X), X ≡ −1
2φ,µφ,µ
LH = G2 − G3 φ + G4R + G4,X ( φ)2
− φ;µνφ;µν
+ G5Gµνφ;µν
−
G5,X
6
( φ)3
− 3( φ)φ;µνφ;µν
+ 2φ ;ν
;µ φ ;λ
;ν φ ;µ
;λ
Jordan-Brans-Dicke: G4 = φ
16πG, G2 = X
ω(φ) − V (φ)
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Theories of Gravity
Screening Mechanisms
Scalar Tensor-Theories
Horndenski’s Theory (1974)
gµν +
£
¢
 
¡
φ + Local + 4-D + Lorentz Theory with 2nd order Eqs.
⇒ 4 free functions Gi(φ, X), X ≡ −1
2φ,µφ,µ
LH = G2 − G3 φ + G4R + G4,X ( φ)2
− φ;µνφ;µν
+ G5Gµνφ;µν
−
G5,X
6
( φ)3
− 3( φ)φ;µνφ;µν
+ 2φ ;ν
;µ φ ;λ
;ν φ ;µ
;λ
Jordan-Brans-Dicke: G4 = φ
16πG, G2 = X
ω(φ) − V (φ)
Kinetic Gravity Braiding - Deffayet et al. JCAP 2010
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Theories of Gravity
Screening Mechanisms
Scalar Tensor-Theories
Horndenski’s Theory (1974)
gµν +
£
¢
 
¡
φ + Local + 4-D + Lorentz Theory with 2nd order Eqs.
⇒ 4 free functions Gi(φ, X), X ≡ −1
2φ,µφ,µ
LH = G2 − G3 φ + G4R + G4,X ( φ)2
− φ;µνφ;µν
+ G5Gµνφ;µν
−
G5,X
6
( φ)3
− 3( φ)φ;µνφ;µν
+ 2φ ;ν
;µ φ ;λ
;ν φ ;µ
;λ
Jordan-Brans-Dicke: G4 = φ
16πG, G2 = X
ω(φ) − V (φ)
Kinetic Gravity Braiding - Deffayet et al. JCAP 2010
Deriv. couplings G4(X)
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Theories of Gravity
Screening Mechanisms
Scalar Tensor-Theories
Horndenski’s Theory (1974)
gµν +
£
¢
 
¡
φ + Local + 4-D + Lorentz Theory with 2nd order Eqs.
⇒ 4 free functions Gi(φ, X), X ≡ −1
2φ,µφ,µ
LH = G2 − G3 φ + G4R + G4,X ( φ)2
− φ;µνφ;µν
+ G5Gµνφ;µν
−
G5,X
6
( φ)3
− 3( φ)φ;µνφ;µν
+ 2φ ;ν
;µ φ ;λ
;ν φ ;µ
;λ
Jordan-Brans-Dicke: G4 = φ
16πG, G2 = X
ω(φ) − V (φ)
Kinetic Gravity Braiding - Deffayet et al. JCAP 2010
Deriv. couplings G4(X), G5 = 0
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Theories of Gravity
Screening Mechanisms
Frames and Forces
f(R) + Lm ,
vv
φ=f , V =R
((
φR + Lm + Lφ ,
uu
gµν ↔φ−1˜gµν
**
˜R + Lm[φ−1
˜gµν] + ˜Lφ
Jordan frame Einstein frame
√
−g
R
16πG
+
√
−γLm γµν[φ, gµν]
matter metric
, · · · +
√
−gLφ
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Theories of Gravity
Screening Mechanisms
Frames and Forces
f(R) + Lm ,
vv
φ=f , V =R
((
φR + Lm + Lφ ,
uu
gµν ↔φ−1˜gµν
**
˜R + Lm[φ−1
˜gµν] + ˜Lφ
Jordan frame Einstein frame
√
−g
R
16πG
+
√
−γLm γµν[φ, gµν]
matter metric
, · · · +
√
−gLφ
Point Particle:
¨xα
= − Γα
µν + Kα
µν
γαλ
( (µγν)λ−1
2 λγµν )
˙xµ
˙xν
⇒ Fi
φ = Ki
00 +O(vi
/c) ≈ f[φ] i
φ
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Theories of Gravity
Screening Mechanisms
Subtle the Force can be
Fi
φ ≈ f[φ] iφ
“You must feel the Force around you;
here, between you, me, the tree, the rock,
everywhere, yes”
Master Yoda
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Theories of Gravity
Screening Mechanisms
Subtle the Force can be
Fi
φ ≈ f[φ] iφ
“You must feel the Force around you;
here, between you, me, the tree, the rock,
everywhere, yes”
Master Yoda
No Fφ observed in Solar System
Screening Mechanisms
Fφ
FG
1 when
ρ ρ0
r H−1
0
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Theories of Gravity
Screening Mechanisms
Screening Mechanisms
§
¦
¤
¥
ρ ρ0 Chameleon Screening - Khoury & Veltman (PRL 2004)
Yukawa force: φ ∝ 1
r e−φ/mφ with mφ(ρ) increases with ρ
(cf. Symmetron - Hinterbichler & Khoury PRL 2010)
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Theories of Gravity
Screening Mechanisms
Screening Mechanisms
§
¦
¤
¥
ρ ρ0 Chameleon Screening - Khoury & Veltman (PRL 2004)
Yukawa force: φ ∝ 1
r e−φ/mφ with mφ(ρ) increases with ρ
(cf. Symmetron - Hinterbichler & Khoury PRL 2010)
§
¦
¤
¥
r H−1
0 Vainshtein Screening - Vainshtein (PLB 1972)
L ⊃ (∂φ) + φX/m2
+ αφTm Non-linear derivative interactions
⇒ φ + m−2
( φ)2
− φ;µν φ;µν
= αMδ(r)
φ ∝
r−1 if r rV
√
r if r rV
Vainshtein radius rV ∝ (GM/m2)1/3
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Theories of Gravity
Screening Mechanisms
Screening Mechanisms
§
¦
¤
¥
ρ ρ0 Chameleon Screening - Khoury & Veltman (PRL 2004)
Yukawa force: φ ∝ 1
r e−φ/mφ with mφ(ρ) increases with ρ
(cf. Symmetron - Hinterbichler & Khoury PRL 2010)
§
¦
¤
¥
r H−1
0 Vainshtein Screening - Vainshtein (PLB 1972)
L ⊃ (∂φ) + φX/m2
+ αφTm Non-linear derivative interactions
⇒ φ + m−2
( φ)2
− φ;µν φ;µν
= αMδ(r)
φ ∝
r−1 if r rV
√
r if r rV
Vainshtein radius rV ∝ (GM/m2)1/3
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Theories of Gravity
Screening Mechanisms
Screening Mechanisms
§
¦
¤
¥
ρ ρ0 Chameleon Screening - Khoury & Veltman (PRL 2004)
Yukawa force: φ ∝ 1
r e−φ/mφ with mφ(ρ) increases with ρ
(cf. Symmetron - Hinterbichler & Khoury PRL 2010)
§
¦
¤
¥
r H−1
0 Vainshtein Screening - Vainshtein (PLB 1972)
L ⊃ (∂φ) + φX/m2
+ αφTm Non-linear derivative interactions
⇒ φ + m−2
( φ)2
− φ;µν φ;µν
= αMδ(r)
φ ∝
r−1 if r rV
√
r if r rV
Vainshtein radius rV ∝ (GM/m2)1/3
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Theories of Gravity
Screening Mechanisms
Form of the Matter Metric
√
−g R
16πG +
√
−γLm γµν[φ, gµν]
matter metric
, · · · +
√
−gLφ
Disformal Relations - Bekenstein (PRD 1992)
γµν = C(φ)gµν
conformal
+ D(φ)φ,µφ,ν
disformal
d¯s2
γ = Cds2
g + D(φ,µdxµ
)2
C = 1 local rescaling, same causal structure
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Theories of Gravity
Screening Mechanisms
Form of the Matter Metric
√
−g R
16πG +
√
−γLm γµν[φ, gµν]
matter metric
, · · · +
√
−gLφ
Disformal Relations - Bekenstein (PRD 1992)
γµν = C(φ)gµν
conformal
+ D(φ)φ,µφ,ν
disformal
d¯s2
γ = Cds2
g + D(φ,µdxµ
)2
C = 1 local rescaling, same causal structure
D = 0 modified causal structure
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Theories of Gravity
Screening Mechanisms
Form of the Matter Metric
√
−g R
16πG +
√
−γLm γµν[φ, gµν]
matter metric
, · · · +
√
−gLφ
Disformal Relations - Bekenstein (PRD 1992)
γµν = C(φ)gµν
conformal
+ D(φ)φ,µφ,ν
disformal
d¯s2
γ = Cds2
g + D(φ,µdxµ
)2
C = 1 local rescaling, same causal structure
D = 0 modified causal structure
¯γ00 ∝ 1 − D
C
˙φ2 → Slow roll - MZ, Koivisto et al. (JCAP 2010)
+ relativistic MOND, VSL, Galileons...
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Disformally Related Frames
Screening the Force
Disformally Related Theories - MZ, Koivisto, Mota (PRD 2013)
γµν = C(φ)gµν + D(φ)φ,µφ,ν
Einstein Frame: LEF =
√
−gR[gµν] +
√
−γLM (γµν, ψ)
Einstein
gµν → 1
C gµν − D
C φ,µφ,ν

Jordan
Jordan Frame: LJF =
√
−γR[γµν] +
√
−gLM (gµν, ψ)
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Disformally Related Frames
Screening the Force
Disformally Related Theories - MZ, Koivisto, Mota (PRD 2013)
γµν = C(φ)gµν + D(φ)φ,µφ,ν
Einstein Frame: LEF =
√
−gR[gµν] +
√
−γLM (γµν, ψ)
Einstein
gµν → 1
C gµν − D
C φ,µφ,ν

Jordan
Jordan Frame: LJF =
√
−γR[γµν] +
√
−gLM (gµν, ψ)
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Disformally Related Frames
Screening the Force
Disformally Related Theories - MZ, Koivisto, Mota (PRD 2013)
γµν = C(φ)gµν + D(φ)φ,µφ,ν
Einstein Frame: LEF =
√
−gR[gµν] +
√
−γLM (γµν, ψ)
Einstein
gµν →C−1gµν
))
gµν →gµν − D
C
φ,µφ,ν
uu
gµν → 1
C gµν − D
C φ,µφ,ν

D ⊂ matteroo
§
¦
¤
¥Galileon
))
Disformal
uu
D ⊂ gravity //
OO
Jordan
Jordan Frame: LJF =
√
−γR[γµν] +
√
−gLM (gµν, ψ)
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Disformally Related Frames
Screening the Force
The Galileon Frame
Compute
√
−γ ¯R[γµν] for
§
¦
¤
¥
γµν = gµν + π,µπ,ν (π ≡ D(φ)dφ)
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Disformally Related Frames
Screening the Force
The Galileon Frame
Compute
√
−γ ¯R[γµν] for
§
¦
¤
¥
γµν = gµν + π,µπ,ν (π ≡ D(φ)dφ)
Disformal Curvature
√
−γR[γµν] =
√
−g
1
˜γ
R[gµν] − ˜γ ( π)2
− π;µνπ;µν
+ µξµ
with ˜γ−1 ≡ g/γ = 1 + π,µπ,µ
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Disformally Related Frames
Screening the Force
The Galileon Frame
Compute
√
−γ ¯R[γµν] for
§
¦
¤
¥
γµν = gµν + π,µπ,ν (π ≡ D(φ)dφ)
Disformal Curvature
√
−γR[γµν] =
√
−g
1
˜γ
R[gµν] − ˜γ ( π)2
− π;µνπ;µν
+ µξµ
with ˜γ−1 ≡ g/γ = 1 + π,µπ,µ
Quartic DBI Galileon
π = brane coordinate in 5th dim.
- De Rham  Tolley (JCAP 2010)
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Disformally Related Frames
Screening the Force
Disformally Related Theories - MZ, Koivisto, Mota (PRD 2013)
γµν = C(φ)gµν + D(φ)φ,µφ,ν
Einstein Frame: LEF =
√
−gR[gµν] +
√
−γLM (γµν, ψ)
§
¦
¤
¥Einstein
gµν →C−1gµν
))
gµν →gµν − D
C
φ,µφ,ν
uu
gµν → 1
C gµν − D
C φ,µφ,ν

D ⊂ matteroo

Galileon
))
Disformal
uu
D ⊂ gravity //
OO
Jordan
Jordan Frame: LJF =
√
−γR[γµν] +
√
−gLM (gµν, ψ)
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Disformally Related Frames
Screening the Force
The Einstein Frame
LEF =
√
−g
R
16πG
+ Lφ +
√
−γLM (γµν, ψ)
γµν = C(φ)gµν + D(φ)φ,µφ,ν
Gµν = 8πG(Tµν
m + Tµν
φ )
Matter-field interaction: µTµν
m = −Qφ,ν
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Disformally Related Frames
Screening the Force
The Einstein Frame
LEF =
√
−g
R
16πG
+ Lφ +
√
−γLM (γµν, ψ)
γµν = C(φ)gµν + D(φ)φ,µφ,ν
Gµν = 8πG(Tµν
m + Tµν
φ )
Matter-field interaction: µTµν
m = −Qφ,ν
Q =
D
C
µ (Tµν
m φ,ν) −
C
2C
Tm +
D
2C
−
DC
C2
φ,µφ,νTµν
m
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Disformally Related Frames
Screening the Force
The Einstein Frame
LEF =
√
−g
R
16πG
+ Lφ +
√
−γLM (γµν, ψ)
γµν = C(φ)gµν + D(φ)φ,µφ,ν
Gµν = 8πG(Tµν
m + Tµν
φ )
Matter-field interaction: µTµν
m = −Qφ,ν
Q =
D
C
µ (Tµν
m φ,ν) −
C
2C
Tm +
D
2C
−
DC
C2
φ,µφ,νTµν
m
Kinetic mixing Conformal Disformal
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Disformally Related Frames
Screening the Force
Consequences of Kinetic Mixing - Koivisto, Mota, MZ (PRL 2012)
Static matter ρ(x) + non-rel. p = 0
1 +
Dρ
C − 2DX
¨φ + F( φ,µ, φ,µ, ρ) = 0
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Disformally Related Frames
Screening the Force
Consequences of Kinetic Mixing - Koivisto, Mota, MZ (PRL 2012)
Static matter ρ(x) + non-rel. p = 0
1 +
Dρ
C − 2DX
¨φ + F( φ,µ, φ,µ, ρ) = 0
Disformal Screening Mechanism
¨φ ≈ −
D
2D
˙φ2
+ C
˙φ2
C
−
1
2D
(If Dρ → ∞)
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Disformally Related Frames
Screening the Force
Consequences of Kinetic Mixing - Koivisto, Mota, MZ (PRL 2012)
Static matter ρ(x) + non-rel. p = 0
1 +
Dρ
C − 2DX
¨φ + F( φ,µ, φ,µ, ρ) = 0
Disformal Screening Mechanism
¨φ ≈ −
D
2D
˙φ2
+ C
˙φ2
C
−
1
2D
(If Dρ → ∞)
φ(x, t)
§
¦
¤
¥
independent of ρ(x) and ∂iφ
⇒ No φ between M1, M2 ⇒
§
¦
¤
¥No fifth force!
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Disformally Related Frames
Screening the Force
Disformal Screening: Potential Signatures
Assumptions:
Static ∂tρ = 0
Pressureless Dp  X ≡ C − 2DX
Neglect p
ρ , p
ρ
∂φ
∂tφ
2
, X
Dρ , X
DρV /¨φ , Γµ
00φ,µ/¨φ ∼ 0
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Disformally Related Frames
Screening the Force
Disformal Screening: Potential Signatures
Assumptions:
Static ∂tρ = 0
Pressureless Dp  X ≡ C − 2DX
Neglect p
ρ , p
ρ
∂φ
∂tφ
2
, X
Dρ , X
DρV /¨φ , Γµ
00φ,µ/¨φ ∼ 0
Potential Signatures
Matter velocity flows: T0i → Terms ∝ φ;0i and ˙φ φ,i
Suppressed by v/c → Binary pulsars?
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Disformally Related Frames
Screening the Force
Disformal Screening: Potential Signatures
Assumptions:
Static ∂tρ = 0
Pressureless Dp  X ≡ C − 2DX
Neglect p
ρ , p
ρ
∂φ
∂tφ
2
, X
Dρ , X
DρV /¨φ , Γµ
00φ,µ/¨φ ∼ 0
Potential Signatures
Matter velocity flows: T0i → Terms ∝ φ;0i and ˙φ φ,i
Suppressed by v/c → Binary pulsars?
Pressure: Instability and effects on radiation
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Disformally Related Frames
Screening the Force
Disformal Screening: Potential Signatures
Assumptions:
Static ∂tρ = 0
Pressureless Dp  X ≡ C − 2DX
Neglect p
ρ , p
ρ
∂φ
∂tφ
2
, X
Dρ , X
DρV /¨φ , Γµ
00φ,µ/¨φ ∼ 0
Potential Signatures
Matter velocity flows: T0i → Terms ∝ φ;0i and ˙φ φ,i
Suppressed by v/c → Binary pulsars?
Pressure: Instability and effects on radiation
Strong gravitational fields: Γµ
00φ,µ not suppressed by Dρ
Γr
00 = GM
r3 (r − 2GM) → Black holes?
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Disformally Related Frames
Screening the Force
Disformal Screening: Potential Signatures
Assumptions:
Static ∂tρ = 0
Pressureless Dp  X ≡ C − 2DX
Neglect p
ρ , p
ρ
∂φ
∂tφ
2
, X
Dρ , X
DρV /¨φ , Γµ
00φ,µ/¨φ ∼ 0
Potential Signatures
Matter velocity flows: T0i → Terms ∝ φ;0i and ˙φ φ,i
Suppressed by v/c → Binary pulsars?
Pressure: Instability and effects on radiation
Strong gravitational fields: Γµ
00φ,µ not suppressed by Dρ
Γr
00 = GM
r3 (r − 2GM) → Black holes?
Spatial Field Gradients: Evolution independent of ∂iφ
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Disformally Related Frames
Screening the Force
The Vainshtein Radius - Vainshtein (PLB 1972)
Non-linear derivative interactions L ⊃ + φX/m2
+ αφTm
⇒ φ + m−2
( φ)2
− φ;µν φ;µν
= αMδ(r)
φ ∝
r−1 if r rV
√
r if r rV
Vainshtein radius rV ∝ (GM/m2)1/3
Disformal coupling: L ⊃ −˜γ ( φ)2
− φ;µν φ;µν
(Jordan Fr.)
φ = 0 ⇒ φ =
S
r
Einstein Fr.
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Disformally Related Frames
Screening the Force
The Vainshtein Radius - Vainshtein (PLB 1972)
Non-linear derivative interactions L ⊃ + φX/m2
+ αφTm
⇒ φ + m−2
( φ)2
− φ;µν φ;µν
= αMδ(r)
φ ∝
r−1 if r rV
√
r if r rV
Vainshtein radius rV ∝ (GM/m2)1/3
Disformal coupling: L ⊃ −˜γ ( φ)2
− φ;µν φ;µν
(Jordan Fr.)
φ =
−QµνδTµν
m
C + D(φ,r)2
⇒ φ =
S
r
(if r → ∞)
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Disformally Related Frames
Screening the Force
The Vainshtein Radius - Vainshtein (PLB 1972)
Non-linear derivative interactions L ⊃ + φX/m2
+ αφTm
⇒ φ + m−2
( φ)2
− φ;µν φ;µν
= αMδ(r)
φ ∝
r−1 if r rV
√
r if r rV
Vainshtein radius rV ∝ (GM/m2)1/3
Disformal coupling: L ⊃ −˜γ ( φ)2
− φ;µν φ;µν
(Jordan Fr.)
φ =
−QµνδTµν
m
C + D(φ,r)2
⇒ φ =
S
r
(if r → ∞)
D  0 ⇒ asymptotic φ0 = S
r breaks down at ˜rV = DS2
C
1/4
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Conclusions
Life beyond the conformal coupling: Dφ,µφ,ν
→ don’t be a conformist!
New frames: Galileon  Disformal
Einstein Frame: simpler Eqs.  physical insight
Screening mechanisms:
Disformal: Dρ → ∞ field eq. independent of ρ
Vainshtein: r rV ⇒ Fφ FG
Open questions  potential applications (e.g. Cosmology)
May the force not be with you!
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Backup Slides
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Properties of the Field Equation
Canonical scalar field Lφ = X − V , solve for φ
Mµν
µ νφ +
C
C − 2DX
QµνTµν
m − V = 0
Mµν
≡ gµν
−
D Tµν
m
C − 2DX
, Qµν ≡
C
2C
gµν +
C D
C2
−
D
2C
φ,µφ,ν
Coupling to (Einstein F) perfect fluid Tµ
ν = diag(ρ, p, p, p)
M0
0 = 1 + Dρ
C−2DX , D, ρ  0 ⇒ no ghosts
Mi
i = 1 − Dp
C−2DX , ⇒ potential instability if p  C/D − X
- Does it occur dynamically?
- Consider non-relativistic coupled species Mi
i  0
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
(Some) Cosmology
˙ρ + 3Hρ = Q0
˙φ ,
- Pure Conformal Q
(c)
0 = C
2C ρ
- Pure Disformal Q
(d)
0 ≈ ρφ
D
2D (1 + wφ) − V
2V (1 − wφ)
Simple models give
good background expansion with Λ = 0
too much growth:
Geff
G
− 1 =
Q2
0
4πGρ2
But much room for viable models
Miguel Zumalac´arregui May the force not be with you

More Related Content

PDF
Using blurred images to assess damage in bridge structures?
PDF
Phase diagram at finite T & Mu in strong coupling limit of lattice QCD
PDF
Natalini nse slide_giu2013
PDF
Understanding lattice Boltzmann boundary conditions through moments
PDF
Quantitative norm convergence of some ergodic averages
PDF
The lattice Boltzmann equation: background and boundary conditions
PDF
On Twisted Paraproducts and some other Multilinear Singular Integrals
PDF
The lattice Boltzmann equation: background, boundary conditions, and Burnett-...
Using blurred images to assess damage in bridge structures?
Phase diagram at finite T & Mu in strong coupling limit of lattice QCD
Natalini nse slide_giu2013
Understanding lattice Boltzmann boundary conditions through moments
Quantitative norm convergence of some ergodic averages
The lattice Boltzmann equation: background and boundary conditions
On Twisted Paraproducts and some other Multilinear Singular Integrals
The lattice Boltzmann equation: background, boundary conditions, and Burnett-...

What's hot (20)

PDF
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
PDF
Boundedness of the Twisted Paraproduct
PDF
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...
PDF
PDF
Bellman functions and Lp estimates for paraproducts
PDF
Multilinear Twisted Paraproducts
PDF
Estimates for a class of non-standard bilinear multipliers
PDF
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
PDF
Hiroyuki Sato
PDF
Scattering theory analogues of several classical estimates in Fourier analysis
PDF
Tales on two commuting transformations or flows
PDF
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...
PDF
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
PDF
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
PDF
Tetsunao Matsuta
PPT
Matrices ii
PDF
Stochastic Frank-Wolfe for Constrained Finite Sum Minimization @ Montreal Opt...
PDF
Solovay Kitaev theorem
PDF
A Note on the Derivation of the Variational Inference Updates for DILN
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
Boundedness of the Twisted Paraproduct
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...
Bellman functions and Lp estimates for paraproducts
Multilinear Twisted Paraproducts
Estimates for a class of non-standard bilinear multipliers
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
Hiroyuki Sato
Scattering theory analogues of several classical estimates in Fourier analysis
Tales on two commuting transformations or flows
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
Tetsunao Matsuta
Matrices ii
Stochastic Frank-Wolfe for Constrained Finite Sum Minimization @ Montreal Opt...
Solovay Kitaev theorem
A Note on the Derivation of the Variational Inference Updates for DILN
Ad

Similar to May the Force NOT be with you (20)

PDF
MUMS Opening Workshop - An Overview of Reduced-Order Models and Emulators (ED...
PDF
Spectral sum rules for conformal field theories
PDF
Maximum likelihood estimation of regularisation parameters in inverse problem...
PDF
QMC: Operator Splitting Workshop, Perturbed (accelerated) Proximal-Gradient A...
PDF
ENFPC 2010
PDF
[DL輪読会]GANとエネルギーベースモデル
PDF
Alexei Starobinsky - Inflation: the present status
PDF
CLIM Transition Workshop - Semiparametric Models for Extremes - Surya Tokdar,...
PDF
Numerical integration based on the hyperfunction theory
PDF
Accelerating Pseudo-Marginal MCMC using Gaussian Processes
PDF
QMC: Operator Splitting Workshop, Proximal Algorithms in Probability Spaces -...
PDF
Talk in BayesComp 2018
PDF
New Insights and Perspectives on the Natural Gradient Method
PDF
Bayesian Inference and Uncertainty Quantification for Inverse Problems
PDF
Neutrosophic Soft Topological Spaces on New Operations
PDF
Problem for the gravitational field
PDF
Stochastic Alternating Direction Method of Multipliers
PDF
Controlled sequential Monte Carlo
PDF
A Fast Algorithm for Solving Scalar Wave Scattering Problem by Billions of Pa...
 
PDF
Estimation of the score vector and observed information matrix in intractable...
MUMS Opening Workshop - An Overview of Reduced-Order Models and Emulators (ED...
Spectral sum rules for conformal field theories
Maximum likelihood estimation of regularisation parameters in inverse problem...
QMC: Operator Splitting Workshop, Perturbed (accelerated) Proximal-Gradient A...
ENFPC 2010
[DL輪読会]GANとエネルギーベースモデル
Alexei Starobinsky - Inflation: the present status
CLIM Transition Workshop - Semiparametric Models for Extremes - Surya Tokdar,...
Numerical integration based on the hyperfunction theory
Accelerating Pseudo-Marginal MCMC using Gaussian Processes
QMC: Operator Splitting Workshop, Proximal Algorithms in Probability Spaces -...
Talk in BayesComp 2018
New Insights and Perspectives on the Natural Gradient Method
Bayesian Inference and Uncertainty Quantification for Inverse Problems
Neutrosophic Soft Topological Spaces on New Operations
Problem for the gravitational field
Stochastic Alternating Direction Method of Multipliers
Controlled sequential Monte Carlo
A Fast Algorithm for Solving Scalar Wave Scattering Problem by Billions of Pa...
 
Estimation of the score vector and observed information matrix in intractable...
Ad

Recently uploaded (20)

PDF
Hazard Identification & Risk Assessment .pdf
PPTX
ELIAS-SEZIURE AND EPilepsy semmioan session.pptx
PDF
Empowerment Technology for Senior High School Guide
PPTX
Onco Emergencies - Spinal cord compression Superior vena cava syndrome Febr...
PDF
FOISHS ANNUAL IMPLEMENTATION PLAN 2025.pdf
PDF
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
PDF
Computing-Curriculum for Schools in Ghana
PPTX
202450812 BayCHI UCSC-SV 20250812 v17.pptx
PDF
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 1)
PDF
1.3 FINAL REVISED K-10 PE and Health CG 2023 Grades 4-10 (1).pdf
PPTX
Unit 4 Computer Architecture Multicore Processor.pptx
PPTX
TNA_Presentation-1-Final(SAVE)) (1).pptx
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PDF
CISA (Certified Information Systems Auditor) Domain-Wise Summary.pdf
PDF
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
PDF
AI-driven educational solutions for real-life interventions in the Philippine...
PDF
What if we spent less time fighting change, and more time building what’s rig...
PPTX
Introduction to Building Materials
PDF
Vision Prelims GS PYQ Analysis 2011-2022 www.upscpdf.com.pdf
PDF
Paper A Mock Exam 9_ Attempt review.pdf.
Hazard Identification & Risk Assessment .pdf
ELIAS-SEZIURE AND EPilepsy semmioan session.pptx
Empowerment Technology for Senior High School Guide
Onco Emergencies - Spinal cord compression Superior vena cava syndrome Febr...
FOISHS ANNUAL IMPLEMENTATION PLAN 2025.pdf
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
Computing-Curriculum for Schools in Ghana
202450812 BayCHI UCSC-SV 20250812 v17.pptx
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 1)
1.3 FINAL REVISED K-10 PE and Health CG 2023 Grades 4-10 (1).pdf
Unit 4 Computer Architecture Multicore Processor.pptx
TNA_Presentation-1-Final(SAVE)) (1).pptx
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
CISA (Certified Information Systems Auditor) Domain-Wise Summary.pdf
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
AI-driven educational solutions for real-life interventions in the Philippine...
What if we spent less time fighting change, and more time building what’s rig...
Introduction to Building Materials
Vision Prelims GS PYQ Analysis 2011-2022 www.upscpdf.com.pdf
Paper A Mock Exam 9_ Attempt review.pdf.

May the Force NOT be with you

  • 1. Introduction Results May the force not be with you Screening Modifications of Gravity and Disformal Couplings Miguel Zumalac´arregui Instituto de F´ısica Te´orica (IFT-UAM-CSIC) → ITP - Uni. Heidelberg Refs: PRL 109 241102 (1205.3167) and PRD 87 083010 (1210.8016) with Tomi S. Koivisto and David F. Mota University of Geneva (May 2013) Miguel Zumalac´arregui May the force not be with you
  • 2. Introduction Results Theories of Gravity Screening Mechanisms The Frontiers of Gravity Ostrogradski’s Theorem (1850) Theories with L ⊃ ∂nq ∂tn , n ≥ 2 are unstable∗ L(q(t), ˙q, ¨q) → ∂L ∂q − d dt ∂L ∂ ˙q + d2 dt2 ∂L ∂¨q = 0 q, ˙q, ¨q, ... q → Q1, Q2, P1,P2 H = P1Q2 + terms independent of P1 Miguel Zumalac´arregui May the force not be with you
  • 3. Introduction Results Theories of Gravity Screening Mechanisms The Frontiers of Gravity Ostrogradski’s Theorem (1850) Theories with L ⊃ ∂nq ∂tn , n ≥ 2 are unstable∗ L(q(t), ˙q, ¨q) → ∂L ∂q − d dt ∂L ∂ ˙q + d2 dt2 ∂L ∂¨q = 0 q, ˙q, ¨q, ... q → Q1, Q2, P1,P2 H = P1Q2 + terms independent of P1 ∗ Loophole: Th’s with second order equations of motion Miguel Zumalac´arregui May the force not be with you
  • 4. Introduction Results Theories of Gravity Screening Mechanisms Einstein’s Theory Lovelock’s Theorem (1971) gµν + Local + 4-D + Lorentz Theory with 2nd order Eqs. √ −g 1 16πG (R − 2Λ) Ways out - Clifton et al. (Phys.Rept. 2012) Additional fields −→ £ ¢   ¡ φ , Aµ, hµν... “Higher derivatives” −→ f(R)... Extra dimensions −→ DGP, Kaluza-Klein... Weird stuff −→ Non-local, Lorentz violating... Scalars fields: Simple + certain limits from other theories Miguel Zumalac´arregui May the force not be with you
  • 5. Introduction Results Theories of Gravity Screening Mechanisms Scalar Tensor-Theories Horndenski’s Theory (1974) gµν + £ ¢   ¡ φ + Local + 4-D + Lorentz Theory with 2nd order Eqs. ⇒ 4 free functions Gi(φ, X), X ≡ −1 2φ,µφ,µ LH = G2 − G3 φ + G4R + G4,X ( φ)2 − φ;µνφ;µν + G5Gµνφ;µν − G5,X 6 ( φ)3 − 3( φ)φ;µνφ;µν + 2φ ;ν ;µ φ ;λ ;ν φ ;µ ;λ Jordan-Brans-Dicke: G4 = φ 16πG, G2 = X ω(φ) − V (φ) Miguel Zumalac´arregui May the force not be with you
  • 6. Introduction Results Theories of Gravity Screening Mechanisms Scalar Tensor-Theories Horndenski’s Theory (1974) gµν + £ ¢   ¡ φ + Local + 4-D + Lorentz Theory with 2nd order Eqs. ⇒ 4 free functions Gi(φ, X), X ≡ −1 2φ,µφ,µ LH = G2 − G3 φ + G4R + G4,X ( φ)2 − φ;µνφ;µν + G5Gµνφ;µν − G5,X 6 ( φ)3 − 3( φ)φ;µνφ;µν + 2φ ;ν ;µ φ ;λ ;ν φ ;µ ;λ Jordan-Brans-Dicke: G4 = φ 16πG, G2 = X ω(φ) − V (φ) Kinetic Gravity Braiding - Deffayet et al. JCAP 2010 Miguel Zumalac´arregui May the force not be with you
  • 7. Introduction Results Theories of Gravity Screening Mechanisms Scalar Tensor-Theories Horndenski’s Theory (1974) gµν + £ ¢   ¡ φ + Local + 4-D + Lorentz Theory with 2nd order Eqs. ⇒ 4 free functions Gi(φ, X), X ≡ −1 2φ,µφ,µ LH = G2 − G3 φ + G4R + G4,X ( φ)2 − φ;µνφ;µν + G5Gµνφ;µν − G5,X 6 ( φ)3 − 3( φ)φ;µνφ;µν + 2φ ;ν ;µ φ ;λ ;ν φ ;µ ;λ Jordan-Brans-Dicke: G4 = φ 16πG, G2 = X ω(φ) − V (φ) Kinetic Gravity Braiding - Deffayet et al. JCAP 2010 Deriv. couplings G4(X) Miguel Zumalac´arregui May the force not be with you
  • 8. Introduction Results Theories of Gravity Screening Mechanisms Scalar Tensor-Theories Horndenski’s Theory (1974) gµν + £ ¢   ¡ φ + Local + 4-D + Lorentz Theory with 2nd order Eqs. ⇒ 4 free functions Gi(φ, X), X ≡ −1 2φ,µφ,µ LH = G2 − G3 φ + G4R + G4,X ( φ)2 − φ;µνφ;µν + G5Gµνφ;µν − G5,X 6 ( φ)3 − 3( φ)φ;µνφ;µν + 2φ ;ν ;µ φ ;λ ;ν φ ;µ ;λ Jordan-Brans-Dicke: G4 = φ 16πG, G2 = X ω(φ) − V (φ) Kinetic Gravity Braiding - Deffayet et al. JCAP 2010 Deriv. couplings G4(X), G5 = 0 Miguel Zumalac´arregui May the force not be with you
  • 9. Introduction Results Theories of Gravity Screening Mechanisms Frames and Forces f(R) + Lm , vv φ=f , V =R (( φR + Lm + Lφ , uu gµν ↔φ−1˜gµν ** ˜R + Lm[φ−1 ˜gµν] + ˜Lφ Jordan frame Einstein frame √ −g R 16πG + √ −γLm γµν[φ, gµν] matter metric , · · · + √ −gLφ Miguel Zumalac´arregui May the force not be with you
  • 10. Introduction Results Theories of Gravity Screening Mechanisms Frames and Forces f(R) + Lm , vv φ=f , V =R (( φR + Lm + Lφ , uu gµν ↔φ−1˜gµν ** ˜R + Lm[φ−1 ˜gµν] + ˜Lφ Jordan frame Einstein frame √ −g R 16πG + √ −γLm γµν[φ, gµν] matter metric , · · · + √ −gLφ Point Particle: ¨xα = − Γα µν + Kα µν γαλ ( (µγν)λ−1 2 λγµν ) ˙xµ ˙xν ⇒ Fi φ = Ki 00 +O(vi /c) ≈ f[φ] i φ Miguel Zumalac´arregui May the force not be with you
  • 11. Introduction Results Theories of Gravity Screening Mechanisms Subtle the Force can be Fi φ ≈ f[φ] iφ “You must feel the Force around you; here, between you, me, the tree, the rock, everywhere, yes” Master Yoda Miguel Zumalac´arregui May the force not be with you
  • 12. Introduction Results Theories of Gravity Screening Mechanisms Subtle the Force can be Fi φ ≈ f[φ] iφ “You must feel the Force around you; here, between you, me, the tree, the rock, everywhere, yes” Master Yoda No Fφ observed in Solar System Screening Mechanisms Fφ FG 1 when ρ ρ0 r H−1 0 Miguel Zumalac´arregui May the force not be with you
  • 13. Introduction Results Theories of Gravity Screening Mechanisms Screening Mechanisms § ¦ ¤ ¥ ρ ρ0 Chameleon Screening - Khoury & Veltman (PRL 2004) Yukawa force: φ ∝ 1 r e−φ/mφ with mφ(ρ) increases with ρ (cf. Symmetron - Hinterbichler & Khoury PRL 2010) Miguel Zumalac´arregui May the force not be with you
  • 14. Introduction Results Theories of Gravity Screening Mechanisms Screening Mechanisms § ¦ ¤ ¥ ρ ρ0 Chameleon Screening - Khoury & Veltman (PRL 2004) Yukawa force: φ ∝ 1 r e−φ/mφ with mφ(ρ) increases with ρ (cf. Symmetron - Hinterbichler & Khoury PRL 2010) § ¦ ¤ ¥ r H−1 0 Vainshtein Screening - Vainshtein (PLB 1972) L ⊃ (∂φ) + φX/m2 + αφTm Non-linear derivative interactions ⇒ φ + m−2 ( φ)2 − φ;µν φ;µν = αMδ(r) φ ∝ r−1 if r rV √ r if r rV Vainshtein radius rV ∝ (GM/m2)1/3 Miguel Zumalac´arregui May the force not be with you
  • 15. Introduction Results Theories of Gravity Screening Mechanisms Screening Mechanisms § ¦ ¤ ¥ ρ ρ0 Chameleon Screening - Khoury & Veltman (PRL 2004) Yukawa force: φ ∝ 1 r e−φ/mφ with mφ(ρ) increases with ρ (cf. Symmetron - Hinterbichler & Khoury PRL 2010) § ¦ ¤ ¥ r H−1 0 Vainshtein Screening - Vainshtein (PLB 1972) L ⊃ (∂φ) + φX/m2 + αφTm Non-linear derivative interactions ⇒ φ + m−2 ( φ)2 − φ;µν φ;µν = αMδ(r) φ ∝ r−1 if r rV √ r if r rV Vainshtein radius rV ∝ (GM/m2)1/3 Miguel Zumalac´arregui May the force not be with you
  • 16. Introduction Results Theories of Gravity Screening Mechanisms Screening Mechanisms § ¦ ¤ ¥ ρ ρ0 Chameleon Screening - Khoury & Veltman (PRL 2004) Yukawa force: φ ∝ 1 r e−φ/mφ with mφ(ρ) increases with ρ (cf. Symmetron - Hinterbichler & Khoury PRL 2010) § ¦ ¤ ¥ r H−1 0 Vainshtein Screening - Vainshtein (PLB 1972) L ⊃ (∂φ) + φX/m2 + αφTm Non-linear derivative interactions ⇒ φ + m−2 ( φ)2 − φ;µν φ;µν = αMδ(r) φ ∝ r−1 if r rV √ r if r rV Vainshtein radius rV ∝ (GM/m2)1/3 Miguel Zumalac´arregui May the force not be with you
  • 17. Introduction Results Theories of Gravity Screening Mechanisms Form of the Matter Metric √ −g R 16πG + √ −γLm γµν[φ, gµν] matter metric , · · · + √ −gLφ Disformal Relations - Bekenstein (PRD 1992) γµν = C(φ)gµν conformal + D(φ)φ,µφ,ν disformal d¯s2 γ = Cds2 g + D(φ,µdxµ )2 C = 1 local rescaling, same causal structure Miguel Zumalac´arregui May the force not be with you
  • 18. Introduction Results Theories of Gravity Screening Mechanisms Form of the Matter Metric √ −g R 16πG + √ −γLm γµν[φ, gµν] matter metric , · · · + √ −gLφ Disformal Relations - Bekenstein (PRD 1992) γµν = C(φ)gµν conformal + D(φ)φ,µφ,ν disformal d¯s2 γ = Cds2 g + D(φ,µdxµ )2 C = 1 local rescaling, same causal structure D = 0 modified causal structure Miguel Zumalac´arregui May the force not be with you
  • 19. Introduction Results Theories of Gravity Screening Mechanisms Form of the Matter Metric √ −g R 16πG + √ −γLm γµν[φ, gµν] matter metric , · · · + √ −gLφ Disformal Relations - Bekenstein (PRD 1992) γµν = C(φ)gµν conformal + D(φ)φ,µφ,ν disformal d¯s2 γ = Cds2 g + D(φ,µdxµ )2 C = 1 local rescaling, same causal structure D = 0 modified causal structure ¯γ00 ∝ 1 − D C ˙φ2 → Slow roll - MZ, Koivisto et al. (JCAP 2010) + relativistic MOND, VSL, Galileons... Miguel Zumalac´arregui May the force not be with you
  • 20. Introduction Results Disformally Related Frames Screening the Force Disformally Related Theories - MZ, Koivisto, Mota (PRD 2013) γµν = C(φ)gµν + D(φ)φ,µφ,ν Einstein Frame: LEF = √ −gR[gµν] + √ −γLM (γµν, ψ) Einstein gµν → 1 C gµν − D C φ,µφ,ν Jordan Jordan Frame: LJF = √ −γR[γµν] + √ −gLM (gµν, ψ) Miguel Zumalac´arregui May the force not be with you
  • 21. Introduction Results Disformally Related Frames Screening the Force Disformally Related Theories - MZ, Koivisto, Mota (PRD 2013) γµν = C(φ)gµν + D(φ)φ,µφ,ν Einstein Frame: LEF = √ −gR[gµν] + √ −γLM (γµν, ψ) Einstein gµν → 1 C gµν − D C φ,µφ,ν Jordan Jordan Frame: LJF = √ −γR[γµν] + √ −gLM (gµν, ψ) Miguel Zumalac´arregui May the force not be with you
  • 22. Introduction Results Disformally Related Frames Screening the Force Disformally Related Theories - MZ, Koivisto, Mota (PRD 2013) γµν = C(φ)gµν + D(φ)φ,µφ,ν Einstein Frame: LEF = √ −gR[gµν] + √ −γLM (γµν, ψ) Einstein gµν →C−1gµν )) gµν →gµν − D C φ,µφ,ν uu gµν → 1 C gµν − D C φ,µφ,ν D ⊂ matteroo § ¦ ¤ ¥Galileon )) Disformal uu D ⊂ gravity // OO Jordan Jordan Frame: LJF = √ −γR[γµν] + √ −gLM (gµν, ψ) Miguel Zumalac´arregui May the force not be with you
  • 23. Introduction Results Disformally Related Frames Screening the Force The Galileon Frame Compute √ −γ ¯R[γµν] for § ¦ ¤ ¥ γµν = gµν + π,µπ,ν (π ≡ D(φ)dφ) Miguel Zumalac´arregui May the force not be with you
  • 24. Introduction Results Disformally Related Frames Screening the Force The Galileon Frame Compute √ −γ ¯R[γµν] for § ¦ ¤ ¥ γµν = gµν + π,µπ,ν (π ≡ D(φ)dφ) Disformal Curvature √ −γR[γµν] = √ −g 1 ˜γ R[gµν] − ˜γ ( π)2 − π;µνπ;µν + µξµ with ˜γ−1 ≡ g/γ = 1 + π,µπ,µ Miguel Zumalac´arregui May the force not be with you
  • 25. Introduction Results Disformally Related Frames Screening the Force The Galileon Frame Compute √ −γ ¯R[γµν] for § ¦ ¤ ¥ γµν = gµν + π,µπ,ν (π ≡ D(φ)dφ) Disformal Curvature √ −γR[γµν] = √ −g 1 ˜γ R[gµν] − ˜γ ( π)2 − π;µνπ;µν + µξµ with ˜γ−1 ≡ g/γ = 1 + π,µπ,µ Quartic DBI Galileon π = brane coordinate in 5th dim. - De Rham Tolley (JCAP 2010) Miguel Zumalac´arregui May the force not be with you
  • 26. Introduction Results Disformally Related Frames Screening the Force Disformally Related Theories - MZ, Koivisto, Mota (PRD 2013) γµν = C(φ)gµν + D(φ)φ,µφ,ν Einstein Frame: LEF = √ −gR[gµν] + √ −γLM (γµν, ψ) § ¦ ¤ ¥Einstein gµν →C−1gµν )) gµν →gµν − D C φ,µφ,ν uu gµν → 1 C gµν − D C φ,µφ,ν D ⊂ matteroo Galileon )) Disformal uu D ⊂ gravity // OO Jordan Jordan Frame: LJF = √ −γR[γµν] + √ −gLM (gµν, ψ) Miguel Zumalac´arregui May the force not be with you
  • 27. Introduction Results Disformally Related Frames Screening the Force The Einstein Frame LEF = √ −g R 16πG + Lφ + √ −γLM (γµν, ψ) γµν = C(φ)gµν + D(φ)φ,µφ,ν Gµν = 8πG(Tµν m + Tµν φ ) Matter-field interaction: µTµν m = −Qφ,ν Miguel Zumalac´arregui May the force not be with you
  • 28. Introduction Results Disformally Related Frames Screening the Force The Einstein Frame LEF = √ −g R 16πG + Lφ + √ −γLM (γµν, ψ) γµν = C(φ)gµν + D(φ)φ,µφ,ν Gµν = 8πG(Tµν m + Tµν φ ) Matter-field interaction: µTµν m = −Qφ,ν Q = D C µ (Tµν m φ,ν) − C 2C Tm + D 2C − DC C2 φ,µφ,νTµν m Miguel Zumalac´arregui May the force not be with you
  • 29. Introduction Results Disformally Related Frames Screening the Force The Einstein Frame LEF = √ −g R 16πG + Lφ + √ −γLM (γµν, ψ) γµν = C(φ)gµν + D(φ)φ,µφ,ν Gµν = 8πG(Tµν m + Tµν φ ) Matter-field interaction: µTµν m = −Qφ,ν Q = D C µ (Tµν m φ,ν) − C 2C Tm + D 2C − DC C2 φ,µφ,νTµν m Kinetic mixing Conformal Disformal Miguel Zumalac´arregui May the force not be with you
  • 30. Introduction Results Disformally Related Frames Screening the Force Consequences of Kinetic Mixing - Koivisto, Mota, MZ (PRL 2012) Static matter ρ(x) + non-rel. p = 0 1 + Dρ C − 2DX ¨φ + F( φ,µ, φ,µ, ρ) = 0 Miguel Zumalac´arregui May the force not be with you
  • 31. Introduction Results Disformally Related Frames Screening the Force Consequences of Kinetic Mixing - Koivisto, Mota, MZ (PRL 2012) Static matter ρ(x) + non-rel. p = 0 1 + Dρ C − 2DX ¨φ + F( φ,µ, φ,µ, ρ) = 0 Disformal Screening Mechanism ¨φ ≈ − D 2D ˙φ2 + C ˙φ2 C − 1 2D (If Dρ → ∞) Miguel Zumalac´arregui May the force not be with you
  • 32. Introduction Results Disformally Related Frames Screening the Force Consequences of Kinetic Mixing - Koivisto, Mota, MZ (PRL 2012) Static matter ρ(x) + non-rel. p = 0 1 + Dρ C − 2DX ¨φ + F( φ,µ, φ,µ, ρ) = 0 Disformal Screening Mechanism ¨φ ≈ − D 2D ˙φ2 + C ˙φ2 C − 1 2D (If Dρ → ∞) φ(x, t) § ¦ ¤ ¥ independent of ρ(x) and ∂iφ ⇒ No φ between M1, M2 ⇒ § ¦ ¤ ¥No fifth force! Miguel Zumalac´arregui May the force not be with you
  • 33. Introduction Results Disformally Related Frames Screening the Force Disformal Screening: Potential Signatures Assumptions: Static ∂tρ = 0 Pressureless Dp X ≡ C − 2DX Neglect p ρ , p ρ ∂φ ∂tφ 2 , X Dρ , X DρV /¨φ , Γµ 00φ,µ/¨φ ∼ 0 Miguel Zumalac´arregui May the force not be with you
  • 34. Introduction Results Disformally Related Frames Screening the Force Disformal Screening: Potential Signatures Assumptions: Static ∂tρ = 0 Pressureless Dp X ≡ C − 2DX Neglect p ρ , p ρ ∂φ ∂tφ 2 , X Dρ , X DρV /¨φ , Γµ 00φ,µ/¨φ ∼ 0 Potential Signatures Matter velocity flows: T0i → Terms ∝ φ;0i and ˙φ φ,i Suppressed by v/c → Binary pulsars? Miguel Zumalac´arregui May the force not be with you
  • 35. Introduction Results Disformally Related Frames Screening the Force Disformal Screening: Potential Signatures Assumptions: Static ∂tρ = 0 Pressureless Dp X ≡ C − 2DX Neglect p ρ , p ρ ∂φ ∂tφ 2 , X Dρ , X DρV /¨φ , Γµ 00φ,µ/¨φ ∼ 0 Potential Signatures Matter velocity flows: T0i → Terms ∝ φ;0i and ˙φ φ,i Suppressed by v/c → Binary pulsars? Pressure: Instability and effects on radiation Miguel Zumalac´arregui May the force not be with you
  • 36. Introduction Results Disformally Related Frames Screening the Force Disformal Screening: Potential Signatures Assumptions: Static ∂tρ = 0 Pressureless Dp X ≡ C − 2DX Neglect p ρ , p ρ ∂φ ∂tφ 2 , X Dρ , X DρV /¨φ , Γµ 00φ,µ/¨φ ∼ 0 Potential Signatures Matter velocity flows: T0i → Terms ∝ φ;0i and ˙φ φ,i Suppressed by v/c → Binary pulsars? Pressure: Instability and effects on radiation Strong gravitational fields: Γµ 00φ,µ not suppressed by Dρ Γr 00 = GM r3 (r − 2GM) → Black holes? Miguel Zumalac´arregui May the force not be with you
  • 37. Introduction Results Disformally Related Frames Screening the Force Disformal Screening: Potential Signatures Assumptions: Static ∂tρ = 0 Pressureless Dp X ≡ C − 2DX Neglect p ρ , p ρ ∂φ ∂tφ 2 , X Dρ , X DρV /¨φ , Γµ 00φ,µ/¨φ ∼ 0 Potential Signatures Matter velocity flows: T0i → Terms ∝ φ;0i and ˙φ φ,i Suppressed by v/c → Binary pulsars? Pressure: Instability and effects on radiation Strong gravitational fields: Γµ 00φ,µ not suppressed by Dρ Γr 00 = GM r3 (r − 2GM) → Black holes? Spatial Field Gradients: Evolution independent of ∂iφ Miguel Zumalac´arregui May the force not be with you
  • 38. Introduction Results Disformally Related Frames Screening the Force The Vainshtein Radius - Vainshtein (PLB 1972) Non-linear derivative interactions L ⊃ + φX/m2 + αφTm ⇒ φ + m−2 ( φ)2 − φ;µν φ;µν = αMδ(r) φ ∝ r−1 if r rV √ r if r rV Vainshtein radius rV ∝ (GM/m2)1/3 Disformal coupling: L ⊃ −˜γ ( φ)2 − φ;µν φ;µν (Jordan Fr.) φ = 0 ⇒ φ = S r Einstein Fr. Miguel Zumalac´arregui May the force not be with you
  • 39. Introduction Results Disformally Related Frames Screening the Force The Vainshtein Radius - Vainshtein (PLB 1972) Non-linear derivative interactions L ⊃ + φX/m2 + αφTm ⇒ φ + m−2 ( φ)2 − φ;µν φ;µν = αMδ(r) φ ∝ r−1 if r rV √ r if r rV Vainshtein radius rV ∝ (GM/m2)1/3 Disformal coupling: L ⊃ −˜γ ( φ)2 − φ;µν φ;µν (Jordan Fr.) φ = −QµνδTµν m C + D(φ,r)2 ⇒ φ = S r (if r → ∞) Miguel Zumalac´arregui May the force not be with you
  • 40. Introduction Results Disformally Related Frames Screening the Force The Vainshtein Radius - Vainshtein (PLB 1972) Non-linear derivative interactions L ⊃ + φX/m2 + αφTm ⇒ φ + m−2 ( φ)2 − φ;µν φ;µν = αMδ(r) φ ∝ r−1 if r rV √ r if r rV Vainshtein radius rV ∝ (GM/m2)1/3 Disformal coupling: L ⊃ −˜γ ( φ)2 − φ;µν φ;µν (Jordan Fr.) φ = −QµνδTµν m C + D(φ,r)2 ⇒ φ = S r (if r → ∞) D 0 ⇒ asymptotic φ0 = S r breaks down at ˜rV = DS2 C 1/4 Miguel Zumalac´arregui May the force not be with you
  • 41. Introduction Results Conclusions Life beyond the conformal coupling: Dφ,µφ,ν → don’t be a conformist! New frames: Galileon Disformal Einstein Frame: simpler Eqs. physical insight Screening mechanisms: Disformal: Dρ → ∞ field eq. independent of ρ Vainshtein: r rV ⇒ Fφ FG Open questions potential applications (e.g. Cosmology) May the force not be with you! Miguel Zumalac´arregui May the force not be with you
  • 43. Introduction Results Properties of the Field Equation Canonical scalar field Lφ = X − V , solve for φ Mµν µ νφ + C C − 2DX QµνTµν m − V = 0 Mµν ≡ gµν − D Tµν m C − 2DX , Qµν ≡ C 2C gµν + C D C2 − D 2C φ,µφ,ν Coupling to (Einstein F) perfect fluid Tµ ν = diag(ρ, p, p, p) M0 0 = 1 + Dρ C−2DX , D, ρ 0 ⇒ no ghosts Mi i = 1 − Dp C−2DX , ⇒ potential instability if p C/D − X - Does it occur dynamically? - Consider non-relativistic coupled species Mi i 0 Miguel Zumalac´arregui May the force not be with you
  • 44. Introduction Results (Some) Cosmology ˙ρ + 3Hρ = Q0 ˙φ , - Pure Conformal Q (c) 0 = C 2C ρ - Pure Disformal Q (d) 0 ≈ ρφ D 2D (1 + wφ) − V 2V (1 − wφ) Simple models give good background expansion with Λ = 0 too much growth: Geff G − 1 = Q2 0 4πGρ2 But much room for viable models Miguel Zumalac´arregui May the force not be with you