SlideShare a Scribd company logo
8
Most read
13
Most read
15
Most read
Gamma & Beta Functions
I. Gamma Function
Definition
Γ(n) = 0∫∞
x n-1
e -x
dx ; n > 0
& Γ(n) = Γ(n+1) / n ; n Є R - Z≤0
Results:
(1) Γ(n+1) = n Γ(n) ; n > 0 , where Γ(1) = 1
(2) Γ(n+1) = n! ; n Є N ( convention: 0! = 1)
(3) Γ(n) Γ(1- n) = π /sin(nπ) ; 0 < n < 1
In Particular;
Γ(1/2) = √π
1
Examples:
Example(1)
Evaluate 0∫∞
x 4
e -x
dx
Solution
0∫∞
x 4
e -x
dx = 0∫∞
x 5-1
e -x
dx = Γ(5)
Γ(5) = Γ(4+1) = 4! = 4(3)(2)(1) = 24
Exercise
Evaluate 0∫∞
x 5
e -x
dx
Example(2)
Evaluate 0∫∞
x 1/2
e -x
dx
0∫∞
x 1/2
e -x
dx = 0∫∞
x 3/2-1
e -x
dx = Γ(3/2)
3/2 = ½ + 1
Γ(3/2) = Γ(½+ 1) = ½ Γ(½ ) = ½ √π
Exercise
Evaluate 0∫∞
x 3/2
e -x
dx
2
Example(3)
Evaluate 0∫∞
x 3/2
e -x
dx
0∫∞
x 3/2
e -x
dx = 0∫∞
x 5/2-1
e -x
dx = Γ(5/2)
5/2 = 3/2 + 1
Γ(5/2) = Γ(3/2+ 1) = 3/2 Γ(3/2 ) = 3/2 . ½ Γ(½ ) = 3/2 . ½ . √π = ¾ √π
Exercise
Evaluate 0∫∞
x 5/2
e -x
dx
Example(4)
Find Γ(-½)
(-½) + 1 = ½
Γ(-1/2) = Γ(-½ + 1) / (-½) = - 2 Γ(1/2 ) = - 2 √π
3
Example(5)
Find Γ(-3/2)
(-3/2) + 1 = - ½
Γ(-3/2) = Γ(-3/2 + 1) / (-3/2) = Γ(-1/2 ) / (-2/3) = ( - 2 √π ) / (-2/3) = 4 √π /3
Exercise
Evaluate Γ(-5/2)
4
II. Beta Function
Definition
B(m,n) = 0∫1
x m-1
(1 – x ) n-1
dx ; m > 0 & n > 0
Results:
(1) B(m,n) = Γ(m) Γ(n) / Γ(m+ n)
(2) B(m,n) = B(n,m)
(3) 0∫π/2
sin 2m-1
x . cos 2n-1
x dx = Γ(m) Γ(n) / 2 Γ(m+ n) ; m>0 & n>0
(4) 0∫∞
x q-1
/ (1+x) . dx = Γq) Γ(1-q) = Π / sin(qπ) ; 0<q<1
5
Examples:
Example(1)
Evaluate 0∫1
x4
(1 – x ) 3
dx
Solution
0∫1
x 4
(1 – x ) 3
dx = x 5-1
(1 – x ) 4-1
dx
= B(5,4) = Γ(5) Γ(4) / Γ(9) = 4! . 3! / 8! = 3!/(8.7.6.5) = 1/ (8.7.5) = 1/280
Exercise
Evaluate 0∫1
x2
(1 – x ) 6
dx
Example(2)
Evaluate I = 0∫1
[ 1 / 3
√[x2
(1 – x )] ] dx
Solution
I = 0∫1
x -2/3
(1 – x ) -1/3
dx = 0∫1
x 1/3 - 1
(1 – x ) 2/3 - 1
dx
= B(1/3,2/3) = Γ(1/3) Γ(2/3) / Γ(1)
Γ(1/3) Γ(2/3) = Γ(1/3) Γ(1- 1/3) = π /sin(π/3) = π / ( √3/2) = 2π / √3
6
Exercise
Evaluate I = 0∫1
[ 1 / 4
√[x3
(1 – x )] ] dx
Example(3)
Evaluate I = 0∫1
√x . (1 – x ) dx
Solution
I = 0∫1
x 1/2
(1 – x ) dx = 0∫1
x 3/2 - 1
(1 – x ) 2 - 1
dx
= B(3/2 , 2) = Γ(3/2) Γ(2) / Γ(7/2)
Γ(3/2) = ½ √π
Γ(5/2) = Γ(3/2+ 1) = (3/2) Γ(3/2 ) = (3/2) . ½ √π = 3√π / 4
Γ(7/2) = Γ(5/2+ 1) = (5/2) Γ(5/2 ) = (5/2) . (3√π / 4) = 15 √π / 8
Thus,
I = (½ √π ) . 1! / (15 √π / 8) = 4/15
Exercise
Evaluate I = 0∫1
√x5
. (1 – x ) dx
7
II. Using Gamma Function to Evaluate Integrals
Example(1)
Evaluate: I = 0∫∞
x 6
e -2x
dx
Solution:
Letting y = 2x, we get
I = (1/128) 0∫∞
y 6
e -y
dy = (1/128) Γ(7) = (1/128) 6! = 45/8
Example(2)
Evaluate: I = 0∫∞
√x e –x^3
dx
Solution:
Letting y = x3
, we get
I = (1/3) 0∫∞
y -1/2
e -y
dy = (1/3) Γ(1/2) = √π / 3
8
Example(3)
Evaluate: I = 0∫∞
xm
e – k x^n
dx
Solution:
Letting y = k xn
, we get
I = [ 1 / ( n . k (m+1)/n
) ] 0∫∞
y [(m+1)/n – 1]
e -y
dy = [ 1 / ( n . k (m+1)/n
) ] Γ[(m+1)/n ]
9
II. Using Beta Function to Evaluate Integrals
Formulas
(1) 0∫1
x m-1
(1 – x ) n-1
dx = B(m,n) = Γ(m) Γ(n) / 2 Γ(m+ n) ; m > 0 & n > 0
(3) 0∫π/2
sin 2m-1
x . cos 2n-1
x dx = (1/2) B(m,n) ; m>0 & n>0
(4) 0∫∞
x q-1
/ (1+x) . dx = Γ(q) Γ(1-q) = Π / sin(qπ) ; 0 < q < 1
Using Formula (1)
Example(1)
Evaluate: I = 0∫2
x2
/ √(2 – x ) . dx
Solution:
Letting x = 2y, we get
I = (8/√2) 0∫1
y 2
(1 – y ) -1/2
dy = (8/√2) . B(3 , 1/2 ) = 64√2 /15
10
Example(2)
Evaluate: I = 0∫a
x4
√ (a2
– x2
) . dx
Solution:
Letting x2
= a2
y , we get
I = (a6
/ 2) 0∫1
y 3/2
(1 – y )1/2
dy = (a6
/ 2) . B(5/2 , 3/2 ) = a6
/3 2
Exercise
Evaluate: I = 0∫2
x √ (8 – x3
) . dx
Hint
Lett x3
= 8y
Answer
I = (8/3) 0∫1
y-1/3
(1 – y ) 1/3
. dy = (8/3) B(2/3 , 4/3 ) = 16 π / ( 9 √3 )
11
Using Formula (3)
Example(3)
Evaluate: I = 0∫∞
dx / ( 1+x4
)
Solution:
Letting x4
= y , we get
I = (1 / 4) 0∫∞
y -3/4
dy / (1 + y ) = (1 / 4) . Γ (1/4) . Γ (1 - 1/4 )
= (1/4) . [ π / sin ( ¼ . π ) ] = π √2 / 4
Using Formula (2)
Example(4)
a. Evaluate: I = 0∫π/2
sin 3
. cos 2
x dx
b. Evaluate: I = 0∫π/2
sin 4
. cos 5
x dx
Solution:
12
a. Notice that: 2m - 1 = 3 → m = 2 & 2n - 1 = 2 → m = 3/ 2
I = (1 / 2) B( 2 , 3/2 ) = 8/15
b. I = (1 / 2) B( 5/2 , 3 ) = 8 /315
Example(5)
a. Evaluate: I = 0∫π/2
sin6
dx
b. Evaluate: I = 0∫π/2
cos6
x dx
Solution:
a. Notice that: 2m - 1 = 6 → m = 7/2 & 2n - 1 = 0 → m = 1/ 2
I = (1 / 2) B( 7/2 , 1/2 ) = 5π /32
b. I = (1 / 2) B( 1/2 , 7/2 ) = 5π /32
Example(6)
a. Evaluate: I = 0∫π
cos4
x dx
b. Evaluate: I = 0∫2π
sin8
dx
Solution:
a. I = 0∫π
cos4
x = 2 0∫π/2
cos4
x = 2 (1/2) B (1/2 , 5/2 ) = 3π / 8
b. I = I = 0∫π
sin8
x = 4 0∫π/2
sin8
x = 4 (1/2) B (9/2 , 1/2 ) = 35π / 64
13
Details
I.
Example(1)
Evaluate: I = 0∫∞
x 6
e -2x
dx
x = y/2
x 6
= y 6
/64
dx = (1/2)dy
x 6
e -2x
dx = y 6
/64 e –y
. (1/2)dy
Example(2)
I = 0∫∞
√x e –x^3
dx x=y1/3
√x= y1/6
dx=(1/3)y-2/3
dy
√x e –x^3
dx = y1/6
e –y
. (1/3)y-2/3
dy
Example(3)
Evaluate: I = 0∫∞
xm
e – k x^n
dx
y = k xn
x = y1/n
/ k1/n
xm
= ym/n
/ km/n
dx = (1/n) y(1/n-1)
/ k1/n
dy
xm
e – k x^n
dx = ( ym/n
/ km/n
) . e – y
. (1/n) y(1/n-1)
/ k1/n
dy
m/n + 1/n – 1 = (m+1)/n - 1
-m/n – 1/n = - (m+1)/n
I = [ 1 / ( n . k (m+1)/n
) ] 0∫∞
y [(m+1)/n – 1]
e -y
dy
14
II.
Example(1)
Example(1)
I = 0∫2
x2
/ √(2 – x ) . dx
x = 2y
dx=2dy
x2
= 4 y2
√(2 – x ) = √(2 – 2y ) =√2 √(1 – y )
x2
/ √(2 – x ) . dx = 4 y2
/ √2 √(1 – y ) 2dy
y=0 when x=0
y=1 when x=2
Example(2)
Evaluate: I = 0∫a
x4
√ (a2
– x2
) . dx
x2
= a2
y , we get
x4
= a4
y2
x= a y1/2
15
dx= (1/2)a y-1/2
dy
√ (a2
– x2
) = √ (a2
– a2
y ) = a (1 – y )1/2
x4
√ (a2
– x2
) . dx = a4
y2
a (1 – y )1/2
(1/2)a y-1/2
dy
y=0 when x=0
y=1 when x=a
Example(3)
I = 0∫∞
dx / ( 1+x4
)
x4
= y
x=y1/4
dy= (1/4) y-3/4
dy
dx / ( 1+x4
) = (1 / 4) y -3/4
dy / (1 + y )
16
Proofs of formulas (2) & (3)
Formula (2)
We have,
B(m,n) = 0∫1
x m-1
(1 – x ) n-1
dx
Let x = sin2
y
Then dy = 2 sinx cox dx
&
x m-1
(1 – x ) n-1
dx = (sin2
y)m-1
( cos2
y )n-1
( dy / 2 sinx cox )
= 2 sin 2m-1
y . cos 2n-1
y dy
When x=0 , we have y = 0
When x=1, we hae y = π/2
Thus,
I = 2 0∫π/2
sin 2m-1
y . cos 2n-1
y dy
I = 0∫π/2
sin 2m-1
y . cos 2n-1
y dy = B(m,n) / 2
17
Formula (3)
We have,
I = 0∫∞
x q-1
/ (1+x) dx
Let
y = x / (1+x)
Hence, x = y / 1-y
, 1 + x = 1 + (y / 1-y) = 1/(1-y)
& dx = - [ (1- y) – y(-1)] / (1-y)2
. dy= 1 / (1-y)2
. dy
whn x = 0 , we have y = 0
when x→∞ , we have y = lim x→∞ x / (1+x) = 1
Thus,
I = 0∫∞
[ x q-1
/ (1+x) ] dx = 0∫∞
[ ( y / 1-y ) q-1
/ (1/(1-y)) ] . 1 / (1-y)2
. dy
= 0∫1
[ y q-1
/ (1-y) -q
] dy
= B(q , 1-q) = Γ(q) Γ(1-q)
18
Proving that Γ(1/2 ) = √π
Γ(1/2) = 0∫∞
x 1/2-1
e -x
dx = 0∫∞
x -1/2
e -x
dx
Let y = x ½
x = y2
dx = 2y dy
Γ(1/2) = 0∫∞
y -1
e –y^2
2y dy
= 2 0∫∞
e –y^2
dy
=2 (√π / 2 ) = √π
19

More Related Content

PDF
Integration in the complex plane
PPTX
Complex variables
PPTX
Series solution to ordinary differential equations
PDF
Double integration
PPTX
APPLICATION OF PARTIAL DIFFERENTIATION
PPTX
Complex analysis
PDF
Power series
PDF
Complex function
Integration in the complex plane
Complex variables
Series solution to ordinary differential equations
Double integration
APPLICATION OF PARTIAL DIFFERENTIATION
Complex analysis
Power series
Complex function

What's hot (20)

DOCX
Btech_II_ engineering mathematics_unit2
PDF
Beta & Gamma Functions
PDF
B.Tech-II_Unit-II
PPTX
Complex integration
PPTX
Divergence,curl,gradient
PPT
Integral Calculus
PPTX
Cauchy integral theorem &amp; formula (complex variable & numerical method )
DOCX
B.tech ii unit-2 material beta gamma function
PPT
Legendre functions
PPTX
nth Derivatives.pptx
PPT
Linear vector space
PPTX
Beta and gamma function
DOCX
Application of vector integration
PDF
Galerkin method
PDF
Integration formulas
PDF
Gamma and betta function harsh shah
PPTX
Runge-Kutta methods with examples
PDF
Equation for reflection.pdf
PDF
Finite Difference Method
PDF
Gaussian quadratures
Btech_II_ engineering mathematics_unit2
Beta & Gamma Functions
B.Tech-II_Unit-II
Complex integration
Divergence,curl,gradient
Integral Calculus
Cauchy integral theorem &amp; formula (complex variable & numerical method )
B.tech ii unit-2 material beta gamma function
Legendre functions
nth Derivatives.pptx
Linear vector space
Beta and gamma function
Application of vector integration
Galerkin method
Integration formulas
Gamma and betta function harsh shah
Runge-Kutta methods with examples
Equation for reflection.pdf
Finite Difference Method
Gaussian quadratures
Ad

Similar to Gamma beta functions-1 (20)

PDF
1586746631GAMMA BETA FUNCTIONS.pdf
PDF
DOUBLE INTEGRAL.Introduction Numerical Problem Based on Lagrange’s Method of ...
PDF
Beta gamma functions
DOC
Gamma & Beta functions
PDF
Single page-integral-table
PDF
Integral table
PDF
Maths04
PDF
Lesson 27: Evaluating Definite Integrals
PDF
Lesson 27: Evaluating Definite Integrals
PDF
University of manchester mathematical formula tables
DOCX
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
PPTX
The Most Beautiful formula
PDF
Class ~12 Arihant Mathematics Handbook.pdf
PDF
Hand book of Howard Anton calculus exercises 8th edition
PDF
Lesson 28: The Fundamental Theorem of Calculus
PDF
Formulas de calculo
PDF
Tablas calculo
PDF
Formulario calculo
PDF
Formulario
1586746631GAMMA BETA FUNCTIONS.pdf
DOUBLE INTEGRAL.Introduction Numerical Problem Based on Lagrange’s Method of ...
Beta gamma functions
Gamma & Beta functions
Single page-integral-table
Integral table
Maths04
Lesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite Integrals
University of manchester mathematical formula tables
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
The Most Beautiful formula
Class ~12 Arihant Mathematics Handbook.pdf
Hand book of Howard Anton calculus exercises 8th edition
Lesson 28: The Fundamental Theorem of Calculus
Formulas de calculo
Tablas calculo
Formulario calculo
Formulario
Ad

Recently uploaded (20)

PDF
Pre independence Education in Inndia.pdf
PDF
Microbial disease of the cardiovascular and lymphatic systems
PPTX
PPH.pptx obstetrics and gynecology in nursing
PDF
O5-L3 Freight Transport Ops (International) V1.pdf
PDF
01-Introduction-to-Information-Management.pdf
PDF
FourierSeries-QuestionsWithAnswers(Part-A).pdf
PPTX
Cell Types and Its function , kingdom of life
PDF
Classroom Observation Tools for Teachers
PDF
RMMM.pdf make it easy to upload and study
PDF
Computing-Curriculum for Schools in Ghana
PPTX
Renaissance Architecture: A Journey from Faith to Humanism
PDF
VCE English Exam - Section C Student Revision Booklet
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PDF
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
PPTX
GDM (1) (1).pptx small presentation for students
PDF
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
PDF
Anesthesia in Laparoscopic Surgery in India
PDF
TR - Agricultural Crops Production NC III.pdf
PPTX
Final Presentation General Medicine 03-08-2024.pptx
Pre independence Education in Inndia.pdf
Microbial disease of the cardiovascular and lymphatic systems
PPH.pptx obstetrics and gynecology in nursing
O5-L3 Freight Transport Ops (International) V1.pdf
01-Introduction-to-Information-Management.pdf
FourierSeries-QuestionsWithAnswers(Part-A).pdf
Cell Types and Its function , kingdom of life
Classroom Observation Tools for Teachers
RMMM.pdf make it easy to upload and study
Computing-Curriculum for Schools in Ghana
Renaissance Architecture: A Journey from Faith to Humanism
VCE English Exam - Section C Student Revision Booklet
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
GDM (1) (1).pptx small presentation for students
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
Anesthesia in Laparoscopic Surgery in India
TR - Agricultural Crops Production NC III.pdf
Final Presentation General Medicine 03-08-2024.pptx

Gamma beta functions-1

  • 1. Gamma & Beta Functions I. Gamma Function Definition Γ(n) = 0∫∞ x n-1 e -x dx ; n > 0 & Γ(n) = Γ(n+1) / n ; n Є R - Z≤0 Results: (1) Γ(n+1) = n Γ(n) ; n > 0 , where Γ(1) = 1 (2) Γ(n+1) = n! ; n Є N ( convention: 0! = 1) (3) Γ(n) Γ(1- n) = π /sin(nπ) ; 0 < n < 1 In Particular; Γ(1/2) = √π 1
  • 2. Examples: Example(1) Evaluate 0∫∞ x 4 e -x dx Solution 0∫∞ x 4 e -x dx = 0∫∞ x 5-1 e -x dx = Γ(5) Γ(5) = Γ(4+1) = 4! = 4(3)(2)(1) = 24 Exercise Evaluate 0∫∞ x 5 e -x dx Example(2) Evaluate 0∫∞ x 1/2 e -x dx 0∫∞ x 1/2 e -x dx = 0∫∞ x 3/2-1 e -x dx = Γ(3/2) 3/2 = ½ + 1 Γ(3/2) = Γ(½+ 1) = ½ Γ(½ ) = ½ √π Exercise Evaluate 0∫∞ x 3/2 e -x dx 2
  • 3. Example(3) Evaluate 0∫∞ x 3/2 e -x dx 0∫∞ x 3/2 e -x dx = 0∫∞ x 5/2-1 e -x dx = Γ(5/2) 5/2 = 3/2 + 1 Γ(5/2) = Γ(3/2+ 1) = 3/2 Γ(3/2 ) = 3/2 . ½ Γ(½ ) = 3/2 . ½ . √π = ¾ √π Exercise Evaluate 0∫∞ x 5/2 e -x dx Example(4) Find Γ(-½) (-½) + 1 = ½ Γ(-1/2) = Γ(-½ + 1) / (-½) = - 2 Γ(1/2 ) = - 2 √π 3
  • 4. Example(5) Find Γ(-3/2) (-3/2) + 1 = - ½ Γ(-3/2) = Γ(-3/2 + 1) / (-3/2) = Γ(-1/2 ) / (-2/3) = ( - 2 √π ) / (-2/3) = 4 √π /3 Exercise Evaluate Γ(-5/2) 4
  • 5. II. Beta Function Definition B(m,n) = 0∫1 x m-1 (1 – x ) n-1 dx ; m > 0 & n > 0 Results: (1) B(m,n) = Γ(m) Γ(n) / Γ(m+ n) (2) B(m,n) = B(n,m) (3) 0∫π/2 sin 2m-1 x . cos 2n-1 x dx = Γ(m) Γ(n) / 2 Γ(m+ n) ; m>0 & n>0 (4) 0∫∞ x q-1 / (1+x) . dx = Γq) Γ(1-q) = Π / sin(qπ) ; 0<q<1 5
  • 6. Examples: Example(1) Evaluate 0∫1 x4 (1 – x ) 3 dx Solution 0∫1 x 4 (1 – x ) 3 dx = x 5-1 (1 – x ) 4-1 dx = B(5,4) = Γ(5) Γ(4) / Γ(9) = 4! . 3! / 8! = 3!/(8.7.6.5) = 1/ (8.7.5) = 1/280 Exercise Evaluate 0∫1 x2 (1 – x ) 6 dx Example(2) Evaluate I = 0∫1 [ 1 / 3 √[x2 (1 – x )] ] dx Solution I = 0∫1 x -2/3 (1 – x ) -1/3 dx = 0∫1 x 1/3 - 1 (1 – x ) 2/3 - 1 dx = B(1/3,2/3) = Γ(1/3) Γ(2/3) / Γ(1) Γ(1/3) Γ(2/3) = Γ(1/3) Γ(1- 1/3) = π /sin(π/3) = π / ( √3/2) = 2π / √3 6
  • 7. Exercise Evaluate I = 0∫1 [ 1 / 4 √[x3 (1 – x )] ] dx Example(3) Evaluate I = 0∫1 √x . (1 – x ) dx Solution I = 0∫1 x 1/2 (1 – x ) dx = 0∫1 x 3/2 - 1 (1 – x ) 2 - 1 dx = B(3/2 , 2) = Γ(3/2) Γ(2) / Γ(7/2) Γ(3/2) = ½ √π Γ(5/2) = Γ(3/2+ 1) = (3/2) Γ(3/2 ) = (3/2) . ½ √π = 3√π / 4 Γ(7/2) = Γ(5/2+ 1) = (5/2) Γ(5/2 ) = (5/2) . (3√π / 4) = 15 √π / 8 Thus, I = (½ √π ) . 1! / (15 √π / 8) = 4/15 Exercise Evaluate I = 0∫1 √x5 . (1 – x ) dx 7
  • 8. II. Using Gamma Function to Evaluate Integrals Example(1) Evaluate: I = 0∫∞ x 6 e -2x dx Solution: Letting y = 2x, we get I = (1/128) 0∫∞ y 6 e -y dy = (1/128) Γ(7) = (1/128) 6! = 45/8 Example(2) Evaluate: I = 0∫∞ √x e –x^3 dx Solution: Letting y = x3 , we get I = (1/3) 0∫∞ y -1/2 e -y dy = (1/3) Γ(1/2) = √π / 3 8
  • 9. Example(3) Evaluate: I = 0∫∞ xm e – k x^n dx Solution: Letting y = k xn , we get I = [ 1 / ( n . k (m+1)/n ) ] 0∫∞ y [(m+1)/n – 1] e -y dy = [ 1 / ( n . k (m+1)/n ) ] Γ[(m+1)/n ] 9
  • 10. II. Using Beta Function to Evaluate Integrals Formulas (1) 0∫1 x m-1 (1 – x ) n-1 dx = B(m,n) = Γ(m) Γ(n) / 2 Γ(m+ n) ; m > 0 & n > 0 (3) 0∫π/2 sin 2m-1 x . cos 2n-1 x dx = (1/2) B(m,n) ; m>0 & n>0 (4) 0∫∞ x q-1 / (1+x) . dx = Γ(q) Γ(1-q) = Π / sin(qπ) ; 0 < q < 1 Using Formula (1) Example(1) Evaluate: I = 0∫2 x2 / √(2 – x ) . dx Solution: Letting x = 2y, we get I = (8/√2) 0∫1 y 2 (1 – y ) -1/2 dy = (8/√2) . B(3 , 1/2 ) = 64√2 /15 10
  • 11. Example(2) Evaluate: I = 0∫a x4 √ (a2 – x2 ) . dx Solution: Letting x2 = a2 y , we get I = (a6 / 2) 0∫1 y 3/2 (1 – y )1/2 dy = (a6 / 2) . B(5/2 , 3/2 ) = a6 /3 2 Exercise Evaluate: I = 0∫2 x √ (8 – x3 ) . dx Hint Lett x3 = 8y Answer I = (8/3) 0∫1 y-1/3 (1 – y ) 1/3 . dy = (8/3) B(2/3 , 4/3 ) = 16 π / ( 9 √3 ) 11
  • 12. Using Formula (3) Example(3) Evaluate: I = 0∫∞ dx / ( 1+x4 ) Solution: Letting x4 = y , we get I = (1 / 4) 0∫∞ y -3/4 dy / (1 + y ) = (1 / 4) . Γ (1/4) . Γ (1 - 1/4 ) = (1/4) . [ π / sin ( ¼ . π ) ] = π √2 / 4 Using Formula (2) Example(4) a. Evaluate: I = 0∫π/2 sin 3 . cos 2 x dx b. Evaluate: I = 0∫π/2 sin 4 . cos 5 x dx Solution: 12
  • 13. a. Notice that: 2m - 1 = 3 → m = 2 & 2n - 1 = 2 → m = 3/ 2 I = (1 / 2) B( 2 , 3/2 ) = 8/15 b. I = (1 / 2) B( 5/2 , 3 ) = 8 /315 Example(5) a. Evaluate: I = 0∫π/2 sin6 dx b. Evaluate: I = 0∫π/2 cos6 x dx Solution: a. Notice that: 2m - 1 = 6 → m = 7/2 & 2n - 1 = 0 → m = 1/ 2 I = (1 / 2) B( 7/2 , 1/2 ) = 5π /32 b. I = (1 / 2) B( 1/2 , 7/2 ) = 5π /32 Example(6) a. Evaluate: I = 0∫π cos4 x dx b. Evaluate: I = 0∫2π sin8 dx Solution: a. I = 0∫π cos4 x = 2 0∫π/2 cos4 x = 2 (1/2) B (1/2 , 5/2 ) = 3π / 8 b. I = I = 0∫π sin8 x = 4 0∫π/2 sin8 x = 4 (1/2) B (9/2 , 1/2 ) = 35π / 64 13
  • 14. Details I. Example(1) Evaluate: I = 0∫∞ x 6 e -2x dx x = y/2 x 6 = y 6 /64 dx = (1/2)dy x 6 e -2x dx = y 6 /64 e –y . (1/2)dy Example(2) I = 0∫∞ √x e –x^3 dx x=y1/3 √x= y1/6 dx=(1/3)y-2/3 dy √x e –x^3 dx = y1/6 e –y . (1/3)y-2/3 dy Example(3) Evaluate: I = 0∫∞ xm e – k x^n dx y = k xn x = y1/n / k1/n xm = ym/n / km/n dx = (1/n) y(1/n-1) / k1/n dy xm e – k x^n dx = ( ym/n / km/n ) . e – y . (1/n) y(1/n-1) / k1/n dy m/n + 1/n – 1 = (m+1)/n - 1 -m/n – 1/n = - (m+1)/n I = [ 1 / ( n . k (m+1)/n ) ] 0∫∞ y [(m+1)/n – 1] e -y dy 14
  • 15. II. Example(1) Example(1) I = 0∫2 x2 / √(2 – x ) . dx x = 2y dx=2dy x2 = 4 y2 √(2 – x ) = √(2 – 2y ) =√2 √(1 – y ) x2 / √(2 – x ) . dx = 4 y2 / √2 √(1 – y ) 2dy y=0 when x=0 y=1 when x=2 Example(2) Evaluate: I = 0∫a x4 √ (a2 – x2 ) . dx x2 = a2 y , we get x4 = a4 y2 x= a y1/2 15
  • 16. dx= (1/2)a y-1/2 dy √ (a2 – x2 ) = √ (a2 – a2 y ) = a (1 – y )1/2 x4 √ (a2 – x2 ) . dx = a4 y2 a (1 – y )1/2 (1/2)a y-1/2 dy y=0 when x=0 y=1 when x=a Example(3) I = 0∫∞ dx / ( 1+x4 ) x4 = y x=y1/4 dy= (1/4) y-3/4 dy dx / ( 1+x4 ) = (1 / 4) y -3/4 dy / (1 + y ) 16
  • 17. Proofs of formulas (2) & (3) Formula (2) We have, B(m,n) = 0∫1 x m-1 (1 – x ) n-1 dx Let x = sin2 y Then dy = 2 sinx cox dx & x m-1 (1 – x ) n-1 dx = (sin2 y)m-1 ( cos2 y )n-1 ( dy / 2 sinx cox ) = 2 sin 2m-1 y . cos 2n-1 y dy When x=0 , we have y = 0 When x=1, we hae y = π/2 Thus, I = 2 0∫π/2 sin 2m-1 y . cos 2n-1 y dy I = 0∫π/2 sin 2m-1 y . cos 2n-1 y dy = B(m,n) / 2 17
  • 18. Formula (3) We have, I = 0∫∞ x q-1 / (1+x) dx Let y = x / (1+x) Hence, x = y / 1-y , 1 + x = 1 + (y / 1-y) = 1/(1-y) & dx = - [ (1- y) – y(-1)] / (1-y)2 . dy= 1 / (1-y)2 . dy whn x = 0 , we have y = 0 when x→∞ , we have y = lim x→∞ x / (1+x) = 1 Thus, I = 0∫∞ [ x q-1 / (1+x) ] dx = 0∫∞ [ ( y / 1-y ) q-1 / (1/(1-y)) ] . 1 / (1-y)2 . dy = 0∫1 [ y q-1 / (1-y) -q ] dy = B(q , 1-q) = Γ(q) Γ(1-q) 18
  • 19. Proving that Γ(1/2 ) = √π Γ(1/2) = 0∫∞ x 1/2-1 e -x dx = 0∫∞ x -1/2 e -x dx Let y = x ½ x = y2 dx = 2y dy Γ(1/2) = 0∫∞ y -1 e –y^2 2y dy = 2 0∫∞ e –y^2 dy =2 (√π / 2 ) = √π 19