The document defines the gamma and beta functions and provides examples of using them to evaluate integrals. The gamma function Γ(n) generalizes the factorial function to real and complex numbers. It satisfies properties like Γ(n+1)=nΓ(n). The beta function B(m,n) defines integrals over the interval [0,1]. It relates to the gamma function as B(m,n)=Γ(m)Γ(n)/Γ(m+n). Several integrals are evaluated using these functions, including changing variables to match their definitions. Proofs are also given for relationships between beta function integrals over [0,1] and [0,π/2].