SlideShare a Scribd company logo
4
Most read
9
Most read
12
Most read
Unit-2 GAMMA, BETA FUNCTION
RAI UNIVERSITY, AHMEDABAD 1
Course: B.Tech- II
Subject: Engineering Mathematics II
Unit-2
RAI UNIVERSITY, AHMEDABAD
Unit-2 GAMMA, BETA FUNCTION
RAI UNIVERSITY, AHMEDABAD 2
Unit-II: GAMMA, BETA FUNCTION
Sr. No. Name of the Topic Page No.
1 Definition of Gamma function 2
2 Examples Based on Gamma Function 3
3 Beta function 5
4 Relation between Beta and Gamma Functions 5
5 Dirichlet’s Integral 9
6 Application to Area & Volume: Liouville’s
extension of dirichlet theorem
11
7 Reference Book 13
Unit-2 GAMMA, BETA FUNCTION
RAI UNIVERSITY, AHMEDABAD 3
GAMMA, BETA FUNCTION
 The Gamma function and Beta functions belong to the category of the
special transcendental functions and are defined in terms of improper
definite integrals.
1.1 Definition of Gamma function :
The gamma function is denoted and defined by the integral
Γ𝑚 = ∫ 𝑒−𝑥
𝑥 𝑚−1
𝑑𝑥 (𝑚 > 0)
∞
0
1.2 Properties of Gamma function :
1) Γ( 𝑚 + 1) = 𝑚Γ𝑚
2) Γ( 𝑚 + 1) = 𝑚! When m is a positive integer.
3) Γ( 𝑚 + 𝑎) = ( 𝑚 + 𝑎 − 1)( 𝑚 + 𝑎 − 2)……… 𝑎Γ𝑎, when n is a
positive integer.
4) Γ𝑚 = 2 ∫ 𝑒−𝑥2
𝑥2𝑚−1
𝑑𝑥 ( 𝑚 > 0)
∞
0
5)
Γ𝑚
𝑡 𝑚
= ∫ 𝑒−𝑡𝑥
𝑥 𝑚−1
𝑑𝑥 ( 𝑚 > 0)
∞
0
6) Γ
1
2
= √ 𝜋
7) ∫ 𝑒−𝑥2
𝑑𝑥 =
√𝜋
2
∞
0
8) ∫ 𝑥 𝑛
(𝑙𝑜𝑔 𝑥) 𝑚
𝑑𝑥 =
(−1) 𝑚
( 𝑛+1) 𝑚+1
Γ(𝑚 + 1)
1
0
2.1 Examples Based on Gamma Function:
Example 1: Evaluate 𝚪(−
𝟏
𝟐
).
Unit-2 GAMMA, BETA FUNCTION
RAI UNIVERSITY, AHMEDABAD 4
Solution: We know that Γ( 𝑚 + 1) = 𝑚Γ𝑚
 Γ (−
1
2
+ 1) = −
1
2
Γ (−
1
2
)
 Γ (
1
2
) = −
1
2
Γ(−
1
2
)
 √ 𝜋 = −
1
2
Γ (−
1
2
)
∴ 𝚪(−
𝟏
𝟐
) = −𝟐√ 𝝅. __________Ans.
Example 2: Evaluate ∫ √ 𝒙𝟒
𝒆−√𝒙
𝒅𝒙
∞
𝟎
Solution: Let 𝐼 = ∫ 𝑥
1
4 𝑒−√𝑥
𝑑𝑥
∞
0
__________(i)
Putting √ 𝑥 = 𝑡 ⟹ 𝑥 = 𝑡2
so that 𝑑𝑥 = 2𝑡 in (i), we get
𝐼 = ∫ 𝑡1 2⁄
𝑒−𝑡
2𝑡 𝑑𝑡
∞
0
= 2∫ 𝑡3 2⁄
𝑒−𝑡
𝑑𝑡
∞
0
= 2∫ 𝑡
5
2
−1
𝑒−𝑡
𝑑𝑡
∞
0
= 2Γ(
5
2
)
= (2 ×
3
2
)Γ (
3
2
)
= (2 ×
3
2
×
1
2
)Γ (
1
2
)
=
3
2
√ 𝜋
∴ ∫ √ 𝒙𝟒
𝒆−√𝒙
𝒅𝒙
∞
𝟎
=
𝟑
𝟐
√ 𝝅 ________Ans.
Example 3: Evaluate ∫
𝒙 𝒂
𝒂 𝒙
𝒅𝒙
∞
𝟎
.
Solution: Let 𝐼 = ∫
𝑥 𝑎
𝑎 𝑥
𝑑𝑥
∞
0
_______ (i)
Unit-2 GAMMA, BETA FUNCTION
RAI UNIVERSITY, AHMEDABAD 5
Putting 𝑎 𝑥
= 𝑒 𝑡
⟹ 𝑥 log 𝑎 = 𝑡
⟹ 𝑥 =
1
log 𝑎
⟹ 𝑑𝑥 =
𝑑𝑡
log 𝑎
in (i), we have
𝐼 = ∫ (
𝑡
log 𝑎
)
𝑎
𝑒−𝑡∞
0
𝑑𝑡
log 𝑎
=
1
(log 𝑎) 𝑎+1 ∫ 𝑒−𝑡
𝑡 𝑎
𝑑𝑡
∞
0
=
1
(log 𝑎) 𝑎+1 ∫ 𝑡( 𝑎+1)−1
𝑒−𝑡
𝑑𝑡
∞
0
=
1
(log 𝑎) 𝑎+1
Γ(𝑎 + 1)
∴ ∫
𝒙 𝒂
𝒂 𝒙
𝒅𝒙
∞
𝟎
=
𝟏
( 𝐥𝐨𝐠 𝒂) 𝒂+𝟏
𝚪(𝒂 + 𝟏) ________ Ans.
Example 4: Prove that ∫ ( 𝒙 𝒍𝒐𝒈𝒙) 𝟒
𝒅𝒙 =
𝟒!
𝟓 𝟓
𝟏
𝟎
Solution: We know that
∫ 𝑥 𝑛
(𝑙𝑜𝑔 𝑥) 𝑚
𝑑𝑥 =
(−1) 𝑚
( 𝑛+1) 𝑚+1
Γ(𝑚 + 1)
1
0
_______(i)
Now, ∫ ( 𝑥 𝑙𝑜𝑔𝑥)4
𝑑𝑥 =
1
0
∫ 𝑥41
0
( 𝑙𝑜𝑔𝑥)4
𝑑𝑥
Putting 𝑛 = 𝑚 = 4 in (i), we get
∫ 𝑥4
1
0
( 𝑙𝑜𝑔𝑥)4
𝑑𝑥 =
(−1)4
(4 + 1)4+1
Γ(4 + 1)
=
Γ5
55
=
4!
55
__________ proved.
2.2 EXERCISE:
Unit-2 GAMMA, BETA FUNCTION
RAI UNIVERSITY, AHMEDABAD 6
1) Evaluate: (a) Γ(−
3
2
) (b) Γ (
7
2
) (c)Γ(0)
2) ∫ 𝑒−ℎ2 𝑥2
𝑑𝑥
∞
0
3) ∫
𝑑𝑥
√−𝑙𝑜𝑔𝑥
1
0
4) ∫ ( 𝑥 𝑙𝑜𝑔𝑥)3
𝑑𝑥
1
0
3.1 BETA FUNCTION:
Definition: The Beta function denoted by 𝛽( 𝑚, 𝑛) or 𝐵(𝑚, 𝑛) is defined as
𝐵( 𝑚, 𝑛) = ∫ 𝑥 𝑚−1
(1 − 𝑥) 𝑛−1
𝑑𝑥, (𝑚 > 0, 𝑛 > 0)
1
0
3.2 Properties of Beta function:
1) B(m,n)= B(n,m)
2) 𝐵( 𝑚, 𝑛) = 2 ∫ 𝑠𝑖𝑛2𝑚−1
𝜃 𝑐𝑜𝑠2𝑛−1
𝜃 𝑑𝜃
𝜋
2⁄
0
3) 𝐵( 𝑚, 𝑛) = ∫
𝑥 𝑚−1
(1+𝑥) 𝑚+𝑛
𝑑𝑥
∞
0
4) 𝐵( 𝑚, 𝑛) = ∫
𝑥 𝑚−1+𝑥 𝑛−1
(1+𝑥) 𝑚+𝑛
𝑑𝑥
1
0
4.1 RelationbetweenBeta and Gamma Functions:
Relation between Beta and gamma functions is
𝛽( 𝑚, 𝑛) =
Γm .Γn
Γ(m+n)
 Using above relation we can derive following results:
 ∫ 𝑠𝑖𝑛 𝑝
𝜃 𝑐𝑜𝑠 𝑝
𝜃 𝑑𝜃 =
1
2
𝛽 (
𝑝+1
2
,
𝑞+1
2
) =
Γ(
𝑝+1
2
).(
𝑞+1
2
)
2Γ(
𝑝+𝑞+2
2
)
𝜋
2⁄
0
 Γ (
1
2
) = √ 𝜋
 Euler’s formula:
Γ𝑛 . Γ(1 − 𝑛) =
𝜋
sin 𝑛𝜋
 Duplication formula:
Unit-2 GAMMA, BETA FUNCTION
RAI UNIVERSITY, AHMEDABAD 7
Γ𝑛 . Γ(𝑛 +
1
2
) =
√𝜋 Γ(2𝑛)
22𝑛−1
4.2 EXAMPLES:
Example 1: Evaluate ∫ 𝒙 𝟒
(𝟏− √ 𝒙)
𝟓
𝒅𝒙
𝟏
𝟎
Solution: Let √ 𝑥 = 𝑡 ⟹ 𝑥 = 𝑡2
so that 𝑑𝑥 = 2𝑡 𝑑𝑡
∫ 𝑥4
(1− √ 𝑥)
5
𝑑𝑥 =
1
0
∫( 𝑡2)4 (1 − 𝑡)5
(2𝑡 𝑑𝑡)
1
0
= 2 ∫ 𝑡9
(1 − 𝑡)5
𝑑𝑡
1
0
= 2 𝐵(10,6)
= 2
Γ10 Γ6
Γ16
= 2 ×
9!5!
15!
=
2×1×2×3×4×5
15×14×13×12×11×10
=
1
11×13×7×15
=
1
15015
∴ ∫ 𝑥4
(1 − √ 𝑥)
5
𝑑𝑥 =
1
0
1
15015
_________ Ans.
Example 2: Find the value of 𝚪 (
𝟏
𝟐
).
Solution: We know that,
∫ 𝑠𝑖𝑛 𝑝
𝜃 𝑐𝑜𝑠 𝑝
𝜃 𝑑𝜃 =
Γ(
𝑝+1
2
).(
𝑞+1
2
)
2Γ(
𝑝+𝑞+2
2
)
𝜋
2⁄
0
Putting 𝑝 = 𝑞 = 0, we get ∫ 𝑑𝜃 =
𝚪(
𝟏
𝟐
) 𝚪(
𝟏
𝟐
)
2 𝚪𝟏
𝜋
2
0
 [ 𝜃]0
𝜋 2⁄
=
1
2
(Γ
1
2
)
2
Unit-2 GAMMA, BETA FUNCTION
RAI UNIVERSITY, AHMEDABAD 8

𝜋
2
=
1
2
(Γ
1
2
)
2
 (Γ
1
2
)
2
= 𝜋
 Γ (
1
2
) = √ 𝜋 _______Ans.
Example 3: show that ∫ √ 𝒄𝒐𝒕𝜽 𝒅𝜽 =
𝟏
𝟐
𝚪(
𝟏
𝟒
) 𝚪 (
𝟑
𝟒
)
𝝅
𝟐
𝟎
Solution: We know that,
∫ 𝑠𝑖𝑛 𝑝
𝜃 𝑐𝑜𝑠 𝑝
𝜃 𝑑𝜃 =
Γ(
𝑝+1
2
).(
𝑞+1
2
)
2Γ(
𝑝+𝑞+2
2
)
𝜋
2⁄
0
∫ √ 𝑐𝑜𝑡𝜃𝑑𝜃 = ∫
𝑐𝑜𝑠1 2⁄
𝜃
𝑠𝑖𝑛1 2⁄ 𝜃
𝑑𝜃
𝜋
2
0
𝜋
2
0
= ∫ 𝑠𝑖𝑛−1 2⁄
𝜃
𝜋
2
0
𝑐𝑜𝑠1 2⁄
𝜃 𝑑𝜃
On applying formula (1), we have
∫ √ 𝑐𝑜𝑡𝜃𝑑𝜃 =
Γ(
−
1
2
+1
2
) Γ(
1
2
+1
2
)
2Γ(
−
1
2
+
1
2
+2
2
)
𝜋
2
0
=
Γ(
1
4
) Γ(
3
4
)
2 Γ(1)
=
1
2
Γ (
1
4
)Γ (
3
4
)
∴ ∫ √ 𝑐𝑜𝑡𝜃 𝑑𝜃 =
1
2
Γ (
1
4
)Γ (
3
4
)
𝜋
2
0
__________Ans.
Example 4: Evaluate ∫ ( 𝟏 + 𝒙) 𝒑−𝟏 ( 𝟏 − 𝒙) 𝒒−𝟏
𝒅𝒙
+𝟏
−𝟏
Solution: Put 𝑥 = 2cos 2𝜃, then 𝑑𝑥 = −2sin 2𝜃 𝑑𝜃 in
∫ (1 + 𝑥) 𝑝−1 (1 − 𝑥) 𝑞−1
𝑑𝑥
+1
−1
= ∫ (1 + 𝑐𝑜𝑠2𝜃) 𝑝−1(1 − 𝑐𝑜𝑠2𝜃) 𝑞−1(−2𝑠𝑖𝑛2𝜃)
0
𝜋
2
= ∫ (1 + 2𝑐𝑜𝑠2
𝜃 − 1) 𝑝−1(1 − 1 + 2𝑠𝑖𝑛2
𝜃) 𝑞−1(−4𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 𝑑𝜃)
0
𝜋
2
= 4∫ 2 𝑝−1
𝑐𝑜𝑠2𝑝−2
𝜃 . 2 𝑞−1
𝑠𝑖𝑛2𝑞−2
𝜃 . 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 𝑑𝜃
𝜋
2
0
Unit-2 GAMMA, BETA FUNCTION
RAI UNIVERSITY, AHMEDABAD 9
= 2 𝑝+𝑞
∫ 𝑠𝑖𝑛2𝑞−1
𝜃 𝑐𝑜𝑠2𝑝−1
𝜃
∞
0
𝑑𝜃
= 2 𝑝+𝑞
Γ(
2𝑞
2
) Γ(
2𝑝
2
)
2Γ(
2𝑝+2𝑞
2
)
= 2 𝑝+𝑞−1 Γ( 𝑝) Γ( 𝑞)
Γ( 𝑝+𝑞)
__________Ans.
Example 5: Show that 𝚪( 𝒏) 𝚪( 𝟏− 𝒏) =
𝝅
𝒔𝒊𝒏 𝒏𝝅
(𝟎 < 𝑛 < 1)
Solution: We know that
𝛽( 𝑚, 𝑛) = ∫
𝑥 𝑛−1
(1 + 𝑥) 𝑚+𝑛
𝑑𝑥
∞
0
Γ𝑚 Γ𝑛
Γ(𝑚+𝑛)
= ∫
𝑥 𝑛−1
(1+𝑥) 𝑚+𝑛
𝑑𝑥
∞
0
Putting 𝑚 + 𝑛 = 1 𝑜𝑟 𝑚 = 1 − 𝑛, we get
Γ(1−𝑛) Γ𝑛
Γ1
= ∫
𝑥 𝑛−1
(1+𝑥)1
𝑑𝑥
∞
0
Γ(1 − 𝑛)Γ𝑛 = ∫
𝑥 𝑛−1
1+𝑥
𝑑𝑥
∞
0
[∵ ∫
𝑥 𝑛−1
1+𝑥
𝑑𝑥
∞
0
=
𝜋
𝑠𝑖𝑛 𝑛𝜋
]
∴ Γ( 𝑛)Γ(1− 𝑛) =
𝜋
𝑠𝑖𝑛 𝑛𝜋
______proved.
4.3 EXERCISE:
1) Evaluate ∫ (1 − 𝑥3)−1 2⁄
𝑑𝑥
1
0
2) Evaluate ∫
𝑥 𝑚−1+𝑥 𝑛−1
(1+𝑥) 𝑚+𝑛
𝑑𝑥
1
0
3) Evaluate ∫ (
𝑥3
1−𝑥3
)
1
2
𝑑𝑥
1
0
4) Prove that Γ (
1
4
) Γ (
3
4
) = 𝜋√2
5) Show that 𝛽( 𝑝, 𝑞) = 𝛽( 𝑝 + 1, 𝑞) + (𝑝, 𝑞 + 1)
5.1 DIRICHLET’S INTEGRAL:
If 𝑙, 𝑚, 𝑛 are all positive, then the triple integral
∭ 𝑥 𝑙−1
𝑦 𝑚−1
𝑧 𝑛−1
𝑑𝑥 𝑑𝑦 𝑑𝑧
𝑉
=
Γ(l)Γ(m)Γ(n)
Γ(𝑙 + 𝑚 + 𝑛 + 1)
Unit-2 GAMMA, BETA FUNCTION
RAI UNIVERSITY, AHMEDABAD 10
Where V is the region 𝑥 ≥ 0, 𝑦 ≥ 0, 𝑧 ≥ 0 and 𝑥 + 𝑦 + 𝑧 ≤ 1.
Note:
∭ 𝑥 𝑙−1
𝑦 𝑚−1
𝑧 𝑛−1
𝑑𝑥 𝑑𝑦 𝑑𝑧𝑉
=
Γ(l)Γ(m)Γ(n)
Γ(𝑙+𝑚+𝑛+1)
ℎ𝑙+𝑚+𝑛
Where V is the domain, 𝑥 ≥ 0, 𝑦 ≥ 0, 𝑧 ≥ 0 and 𝑥 + 𝑦 + 𝑧 ≤ ℎ
5.2 Corollary: Dirichlet’s theorem for n variables, the theorem status that
∭…∫ 𝑥1
𝑙1−1
𝑥2
𝑙2−1
… 𝑥 𝑛
𝑙 𝑛−1
𝑑𝑥1 𝑑𝑥2 𝑑𝑥3 … 𝑑𝑥 𝑛
=
Γ𝑙1Γ𝑙2Γ𝑙3 … Γ𝑙 𝑛
Γ(1 + 𝑙1 + 𝑙2 + ⋯+ 𝑙 𝑛)
ℎ𝑙1+𝑙2+⋯+𝑙 𝑛
Example 1: Prove that ∫
𝒙 𝟒(𝟏+𝒙 𝟓)
(𝟏+𝒙 𝟏𝟓)
𝒅𝒙 =
𝟏
𝟓𝟎𝟎𝟓
∞
𝟎
Solution: Let 𝐼 = ∫
𝒙 𝟒(𝟏+𝒙 𝟓)
(𝟏+𝒙) 𝟏𝟓
𝒅𝒙
∞
𝟎
 𝐼 = ∫
𝑥4
(1+𝑥)15
𝑑𝑥
∞
0
+ ∫
𝑥9
(1+𝑥)15
𝑑𝑥
∞
0
 𝐼 = 𝐼1 + 𝐼2 __________ (i)
Now, put 𝑥 =
𝑡
1+𝑡
, when 𝑥 = 0, 𝑡 = 0; when 𝑥 = ∞, 𝑡 = 1
1 + 𝑥 = 1 +
𝑡
1−𝑡
=
1
1−𝑡
 𝑑𝑥 =
𝑑𝑡
(1−𝑡)2
∴ 𝐼1 = ∫ (
𝑡
1−𝑡
)
4
. (1 − 𝑡)15
.
1
(1−𝑡)2
𝑑𝑡
1
0
= ∫ 𝑡4
(1− 𝑡)9
𝑑𝑡
1
0
= 𝛽(5,10) _______(2)
And 𝐼2 = ∫ (
𝑡
1−𝑡
)
9
. (1 − 𝑡)15
.
1
(1−𝑡)2
𝑑𝑡
1
0
Unit-2 GAMMA, BETA FUNCTION
RAI UNIVERSITY, AHMEDABAD 11
= ∫ 𝑡9
(1− 𝑡)4
𝑑𝑡
1
0
= 𝛽(10,5) ________(3)
∴ 𝐼 = 𝐼1 + 𝐼2
= 𝛽(5,10) + 𝛽(10,5) [Using(2) and (3)]
= 𝛽(5,10) + 𝛽(5,10) [𝛽( 𝑚, 𝑛) = 𝛽(𝑛, 𝑚)]
= 2𝛽(5,10)
=
2Γ5Γ10
Γ15
=
2×4!×9!
14!
=
2×4×3×2×1×9!
14×13×12×11×10×9!
=
1
5005
_______ Proved.
5.3 EXERCISE:
1) Find the value of ∫
𝑥3−2𝑥4+𝑥5
(1+𝑥)7
𝑑𝑥
1
0
2) Show that ∫
𝑥 𝑚−1(1−𝑥) 𝑛−1
(𝑎+𝑥) 𝑚+𝑛
𝑑𝑥 =
𝛽(𝑚,𝑛)
𝑎 𝑛(1+𝑎) 𝑚
1
0
3) 𝛽( 𝑚 + 1, 𝑛) =
𝑚
𝑚+𝑛
𝛽(𝑚, 𝑛)
6.1 Application to Area & Volume:
 Liouville’s extension of dirichlet theorem:
Unit-2 GAMMA, BETA FUNCTION
RAI UNIVERSITY, AHMEDABAD 12
∭ 𝑓(𝑥 + 𝑦 + 𝑧)𝑥 𝑙−1
𝑦 𝑚−1
𝑧 𝑛−1
𝑑𝑥 𝑑𝑦 𝑑𝑧
=
Γ(l)Γ(m)Γ(n)
Γ(l + m + n)
∫ 𝑓( 𝑢) 𝑢𝑙+𝑚+𝑛−1
𝑑𝑢
ℎ2
ℎ1
Example1: Show that ∭
𝒅𝒙 𝒅𝒚 𝒅𝒛
(𝒙+𝒚+𝒛+𝟏) 𝟑
=
𝟏
𝟐
𝒍𝒐𝒈𝟐−
𝟓
𝟏𝟔
, the integral being
takenthroughout the volume bounded by
𝒙 = 𝟎, 𝒚 = 𝟎, 𝒛 = 𝟎, 𝒙 + 𝒚 + 𝒛 = 𝟏.
Solution: By Liouville’s theorem when 0 < 𝑥 + 𝑦 + 𝑧 < 1
∭
𝑑𝑥 𝑑𝑦 𝑑𝑧
(𝑥+𝑦+𝑧+1)3
= ∭
𝑥 𝑙−1 𝑦 𝑚−1 𝑧 𝑛−1 𝑑𝑥 𝑑𝑦 𝑑𝑧
(𝑥+𝑦+𝑧+1)3
(0 ≤ 𝑥 + 𝑦 + 𝑧 ≤ 1)
=
Γ1Γ1Γ1
Γ(l+m+n)
∫
1
(u+1)3
u3−1
du
1
0
=
1
2
∫
𝑢2
(𝑢+1)3
𝑑𝑢
1
0
= ∫ [
1
𝑢+1
−
2
(𝑢+1)2
+
1
(𝑢+1)3
] 𝑑𝑢
1
0
(Partial fractions)
=
1
2
[log( 𝑢 + 1) +
2
𝑢+1
−
1
2(𝑢+1)2
]
0
1
=
1
2
[𝑙𝑜𝑔2 + 2(
1
2
− 1) − (
1
8
−
1
2
)]
=
1
2
𝑙𝑜𝑔2 −
5
16
∴ ∭
𝒅𝒙 𝒅𝒚 𝒅𝒛
(𝒙+𝒚+𝒛+𝟏) 𝟑
=
𝟏
𝟐
𝒍𝒐𝒈𝟐−
𝟓
𝟏𝟔
_______Proved.
Example 2: Find the mass of an octant of the ellipsoid
𝒙 𝟐
𝒂 𝟐
+
𝒚 𝟐
𝒃 𝟐
+
𝒛 𝟐
𝒄 𝟐
= 𝟏,
the density at any point being 𝝆 = 𝒌 𝒙 𝒚 𝒛.
Solution: Mass = ∭ 𝜌 𝑑𝑣
= ∭( 𝑘 𝑥 𝑦 𝑧) 𝑑𝑥 𝑑𝑦 𝑑𝑧
Unit-2 GAMMA, BETA FUNCTION
RAI UNIVERSITY, AHMEDABAD 13
= 𝑘 ∭( 𝑥 𝑑𝑥)( 𝑦 𝑑𝑥)(𝑧 𝑑𝑧) _______(1)
Putting
𝑥2
𝑎2
= 𝑢,
𝑦2
𝑏2
= 𝑣,
𝑧2
𝑐2
= 𝑤 and 𝑢 + 𝑣 + 𝑤 = 1
So that
2𝑥 𝑑𝑥
𝑎2
= 𝑑𝑢,
2𝑦 𝑑𝑦
𝑏2
= 𝑑𝑣,
2𝑧 𝑑𝑧
𝑐2
= 𝑑𝑤
Mass= 𝑘∭ (
𝑎2 𝑑𝑢
2
)(
𝑏2 𝑑𝑣
2
)(
𝑐2 𝑑𝑤
2
)
=
𝑘 𝑎2 𝑏2 𝑐2
8
∭ 𝑑𝑢 𝑑𝑣 𝑑𝑤, Where 𝑢 + 𝑣 + 𝑤 ≤ 1
=
𝑘 𝑎2 𝑏2 𝑐2
8
∭ 𝑢𝑙−1
𝑣 𝑙−1
𝑤 𝑙−1
𝑑𝑢 𝑑𝑣 𝑑𝑤
=
𝑘 𝑎2 𝑏2 𝑐2
8
Γ1Γ1Γ1
Γ3+1
=
𝑘 𝑎2 𝑏2 𝑐2
8×6
=
𝑘 𝑎2 𝑏2 𝑐2
48
∴ 𝑴𝒂𝒔𝒔 =
𝒌 𝒂 𝟐 𝒃 𝟐 𝒄 𝟐
𝟒𝟖
Ans.
Unit-2 GAMMA, BETA FUNCTION
RAI UNIVERSITY, AHMEDABAD 14
6.2 EXERCISE:
1) Find the value of ∭ 𝑙𝑜𝑔( 𝑥 + 𝑦 + 𝑧) 𝑑𝑥 𝑑𝑦 𝑑𝑧 the integral extending
over all positive and zero values of 𝑥, 𝑦, 𝑧 subject to the condition 𝑥 +
𝑦 + 𝑧 < 1.
2) Evaluate ∭
√1−𝑥2−𝑦2−𝑧2
1+𝑥2+𝑦2+𝑧2
𝑑𝑥 𝑑𝑦 𝑑𝑧, integral being taken over all
positive values of 𝑥, 𝑦, 𝑧 such that 𝑥2
+ 𝑦2
+ 𝑧2
≤ 1.
3) Find the area and the mass contained m the first quadrant enclosed by
the curve (
𝑥
𝑎
)
𝛼
+ (
𝑦
𝑏
)
𝛽
= 1 𝑤ℎ𝑒𝑟𝑒 𝛼 > 0, 𝛽 > 0 given that density at
any point 𝑝(𝑥𝑦) is 𝑘 √ 𝑥𝑦.
7.1 REFERENCEBOOK:
1) Introduction to Engineering Mathematics
By H. K. DASS. & Dr. RAMA VERMA
2) Higher Engineering Mathematics
By B.V.RAMANA
3) A text bookof Engineering Mathematics
By N.P.BALI
4) www1.gantep.edu.tr/~olgar/C6.SP.pdf

More Related Content

DOC
Gamma beta functions-1
DOCX
B.tech ii unit-2 material beta gamma function
PDF
Gamma and betta function harsh shah
PPTX
Beta and gamma function
PPTX
system linear equations and matrices
PPTX
APPLICATION OF PARTIAL DIFFERENTIATION
PPT
Set theory
PPT
Newton divided difference interpolation
Gamma beta functions-1
B.tech ii unit-2 material beta gamma function
Gamma and betta function harsh shah
Beta and gamma function
system linear equations and matrices
APPLICATION OF PARTIAL DIFFERENTIATION
Set theory
Newton divided difference interpolation

What's hot (20)

DOC
Gamma & Beta functions
PDF
Beta & Gamma Functions
PPT
1551 limits and continuity
PPTX
Gram-Schmidt process linear algbera
PPTX
Lagrange multiplier
PPTX
Maths-->>Eigenvalues and eigenvectors
PDF
B.Tech-II_Unit-V
PPS
Trigonometric Functions and their Graphs
PPTX
Pascal triangle and binomial theorem
PDF
Lecture-4 Reduction of Quadratic Form.pdf
PDF
Galerkin method
PPTX
2.7 more parabolas a&amp; hyperbolas (optional) t
PPT
3 bessel's functions
PPTX
Mathematical induction
PPTX
Integral calculus
PPT
Gamma function
PPTX
5.3 integration by substitution dfs-102
PPT
NUMERICAL METHODS -Iterative methods(indirect method)
PPTX
Vcla.ppt COMPOSITION OF LINEAR TRANSFORMATION KERNEL AND RANGE OF LINEAR TR...
PPTX
HERMITE SERIES
Gamma & Beta functions
Beta & Gamma Functions
1551 limits and continuity
Gram-Schmidt process linear algbera
Lagrange multiplier
Maths-->>Eigenvalues and eigenvectors
B.Tech-II_Unit-V
Trigonometric Functions and their Graphs
Pascal triangle and binomial theorem
Lecture-4 Reduction of Quadratic Form.pdf
Galerkin method
2.7 more parabolas a&amp; hyperbolas (optional) t
3 bessel's functions
Mathematical induction
Integral calculus
Gamma function
5.3 integration by substitution dfs-102
NUMERICAL METHODS -Iterative methods(indirect method)
Vcla.ppt COMPOSITION OF LINEAR TRANSFORMATION KERNEL AND RANGE OF LINEAR TR...
HERMITE SERIES
Ad

Similar to Btech_II_ engineering mathematics_unit2 (20)

PDF
B.Tech-II_Unit-II
PDF
DOUBLE INTEGRAL.Introduction Numerical Problem Based on Lagrange’s Method of ...
PDF
Beta gamma functions
PPTX
The gamma function
PDF
1586746631GAMMA BETA FUNCTIONS.pdf
PDF
Beta gamma functions
PPTX
PresentaciónPresentación-integrales-integrales.pptx
PPTX
Gamma function
PDF
Funcion gamma
PPTX
Gamma function
PDF
Bc4103338340
PPTX
MATRICES AND CALCULUS.pptx
PDF
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
PPTX
Ppt of aem some special function
PPTX
Multiple Integrals, Gamma and Beta Functions.pptx_20250531_235537_0000.pptx
PPTX
Statistical Inference Part II: Types of Sampling Distribution
PDF
Integration (Part 1)bbbbbbbbb_SA (1).pdf
PDF
Evaluating definite integrals
PDF
Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)
B.Tech-II_Unit-II
DOUBLE INTEGRAL.Introduction Numerical Problem Based on Lagrange’s Method of ...
Beta gamma functions
The gamma function
1586746631GAMMA BETA FUNCTIONS.pdf
Beta gamma functions
PresentaciónPresentación-integrales-integrales.pptx
Gamma function
Funcion gamma
Gamma function
Bc4103338340
MATRICES AND CALCULUS.pptx
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
Ppt of aem some special function
Multiple Integrals, Gamma and Beta Functions.pptx_20250531_235537_0000.pptx
Statistical Inference Part II: Types of Sampling Distribution
Integration (Part 1)bbbbbbbbb_SA (1).pdf
Evaluating definite integrals
Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)
Ad

More from Rai University (20)

PDF
Brochure Rai University
PPT
Mm unit 4point2
PPT
Mm unit 4point1
PPT
Mm unit 4point3
PPT
Mm unit 3point2
PPTX
Mm unit 3point1
PPTX
Mm unit 2point2
PPT
Mm unit 2 point 1
PPT
Mm unit 1point3
PPT
Mm unit 1point2
PPTX
Mm unit 1point1
DOCX
Bdft ii, tmt, unit-iii, dyeing & types of dyeing,
PPTX
Bsc agri 2 pae u-4.4 publicrevenue-presentation-130208082149-phpapp02
PPTX
Bsc agri 2 pae u-4.3 public expenditure
PPTX
Bsc agri 2 pae u-4.2 public finance
PPS
Bsc agri 2 pae u-4.1 introduction
PPT
Bsc agri 2 pae u-3.3 inflation
PPTX
Bsc agri 2 pae u-3.2 introduction to macro economics
PPTX
Bsc agri 2 pae u-3.1 marketstructure
PPTX
Bsc agri 2 pae u-3 perfect-competition
Brochure Rai University
Mm unit 4point2
Mm unit 4point1
Mm unit 4point3
Mm unit 3point2
Mm unit 3point1
Mm unit 2point2
Mm unit 2 point 1
Mm unit 1point3
Mm unit 1point2
Mm unit 1point1
Bdft ii, tmt, unit-iii, dyeing & types of dyeing,
Bsc agri 2 pae u-4.4 publicrevenue-presentation-130208082149-phpapp02
Bsc agri 2 pae u-4.3 public expenditure
Bsc agri 2 pae u-4.2 public finance
Bsc agri 2 pae u-4.1 introduction
Bsc agri 2 pae u-3.3 inflation
Bsc agri 2 pae u-3.2 introduction to macro economics
Bsc agri 2 pae u-3.1 marketstructure
Bsc agri 2 pae u-3 perfect-competition

Recently uploaded (20)

PDF
VCE English Exam - Section C Student Revision Booklet
PDF
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
PDF
Sports Quiz easy sports quiz sports quiz
PDF
O5-L3 Freight Transport Ops (International) V1.pdf
PPTX
Lesson notes of climatology university.
PDF
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
PDF
FourierSeries-QuestionsWithAnswers(Part-A).pdf
PDF
Pre independence Education in Inndia.pdf
PDF
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
PDF
TR - Agricultural Crops Production NC III.pdf
PPTX
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
PDF
102 student loan defaulters named and shamed – Is someone you know on the list?
PPTX
BOWEL ELIMINATION FACTORS AFFECTING AND TYPES
PPTX
master seminar digital applications in india
PPTX
Microbial diseases, their pathogenesis and prophylaxis
PDF
RMMM.pdf make it easy to upload and study
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PDF
Microbial disease of the cardiovascular and lymphatic systems
PDF
Computing-Curriculum for Schools in Ghana
PPTX
PPH.pptx obstetrics and gynecology in nursing
VCE English Exam - Section C Student Revision Booklet
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
Sports Quiz easy sports quiz sports quiz
O5-L3 Freight Transport Ops (International) V1.pdf
Lesson notes of climatology university.
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
FourierSeries-QuestionsWithAnswers(Part-A).pdf
Pre independence Education in Inndia.pdf
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
TR - Agricultural Crops Production NC III.pdf
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
102 student loan defaulters named and shamed – Is someone you know on the list?
BOWEL ELIMINATION FACTORS AFFECTING AND TYPES
master seminar digital applications in india
Microbial diseases, their pathogenesis and prophylaxis
RMMM.pdf make it easy to upload and study
Module 4: Burden of Disease Tutorial Slides S2 2025
Microbial disease of the cardiovascular and lymphatic systems
Computing-Curriculum for Schools in Ghana
PPH.pptx obstetrics and gynecology in nursing

Btech_II_ engineering mathematics_unit2

  • 1. Unit-2 GAMMA, BETA FUNCTION RAI UNIVERSITY, AHMEDABAD 1 Course: B.Tech- II Subject: Engineering Mathematics II Unit-2 RAI UNIVERSITY, AHMEDABAD
  • 2. Unit-2 GAMMA, BETA FUNCTION RAI UNIVERSITY, AHMEDABAD 2 Unit-II: GAMMA, BETA FUNCTION Sr. No. Name of the Topic Page No. 1 Definition of Gamma function 2 2 Examples Based on Gamma Function 3 3 Beta function 5 4 Relation between Beta and Gamma Functions 5 5 Dirichlet’s Integral 9 6 Application to Area & Volume: Liouville’s extension of dirichlet theorem 11 7 Reference Book 13
  • 3. Unit-2 GAMMA, BETA FUNCTION RAI UNIVERSITY, AHMEDABAD 3 GAMMA, BETA FUNCTION  The Gamma function and Beta functions belong to the category of the special transcendental functions and are defined in terms of improper definite integrals. 1.1 Definition of Gamma function : The gamma function is denoted and defined by the integral Γ𝑚 = ∫ 𝑒−𝑥 𝑥 𝑚−1 𝑑𝑥 (𝑚 > 0) ∞ 0 1.2 Properties of Gamma function : 1) Γ( 𝑚 + 1) = 𝑚Γ𝑚 2) Γ( 𝑚 + 1) = 𝑚! When m is a positive integer. 3) Γ( 𝑚 + 𝑎) = ( 𝑚 + 𝑎 − 1)( 𝑚 + 𝑎 − 2)……… 𝑎Γ𝑎, when n is a positive integer. 4) Γ𝑚 = 2 ∫ 𝑒−𝑥2 𝑥2𝑚−1 𝑑𝑥 ( 𝑚 > 0) ∞ 0 5) Γ𝑚 𝑡 𝑚 = ∫ 𝑒−𝑡𝑥 𝑥 𝑚−1 𝑑𝑥 ( 𝑚 > 0) ∞ 0 6) Γ 1 2 = √ 𝜋 7) ∫ 𝑒−𝑥2 𝑑𝑥 = √𝜋 2 ∞ 0 8) ∫ 𝑥 𝑛 (𝑙𝑜𝑔 𝑥) 𝑚 𝑑𝑥 = (−1) 𝑚 ( 𝑛+1) 𝑚+1 Γ(𝑚 + 1) 1 0 2.1 Examples Based on Gamma Function: Example 1: Evaluate 𝚪(− 𝟏 𝟐 ).
  • 4. Unit-2 GAMMA, BETA FUNCTION RAI UNIVERSITY, AHMEDABAD 4 Solution: We know that Γ( 𝑚 + 1) = 𝑚Γ𝑚  Γ (− 1 2 + 1) = − 1 2 Γ (− 1 2 )  Γ ( 1 2 ) = − 1 2 Γ(− 1 2 )  √ 𝜋 = − 1 2 Γ (− 1 2 ) ∴ 𝚪(− 𝟏 𝟐 ) = −𝟐√ 𝝅. __________Ans. Example 2: Evaluate ∫ √ 𝒙𝟒 𝒆−√𝒙 𝒅𝒙 ∞ 𝟎 Solution: Let 𝐼 = ∫ 𝑥 1 4 𝑒−√𝑥 𝑑𝑥 ∞ 0 __________(i) Putting √ 𝑥 = 𝑡 ⟹ 𝑥 = 𝑡2 so that 𝑑𝑥 = 2𝑡 in (i), we get 𝐼 = ∫ 𝑡1 2⁄ 𝑒−𝑡 2𝑡 𝑑𝑡 ∞ 0 = 2∫ 𝑡3 2⁄ 𝑒−𝑡 𝑑𝑡 ∞ 0 = 2∫ 𝑡 5 2 −1 𝑒−𝑡 𝑑𝑡 ∞ 0 = 2Γ( 5 2 ) = (2 × 3 2 )Γ ( 3 2 ) = (2 × 3 2 × 1 2 )Γ ( 1 2 ) = 3 2 √ 𝜋 ∴ ∫ √ 𝒙𝟒 𝒆−√𝒙 𝒅𝒙 ∞ 𝟎 = 𝟑 𝟐 √ 𝝅 ________Ans. Example 3: Evaluate ∫ 𝒙 𝒂 𝒂 𝒙 𝒅𝒙 ∞ 𝟎 . Solution: Let 𝐼 = ∫ 𝑥 𝑎 𝑎 𝑥 𝑑𝑥 ∞ 0 _______ (i)
  • 5. Unit-2 GAMMA, BETA FUNCTION RAI UNIVERSITY, AHMEDABAD 5 Putting 𝑎 𝑥 = 𝑒 𝑡 ⟹ 𝑥 log 𝑎 = 𝑡 ⟹ 𝑥 = 1 log 𝑎 ⟹ 𝑑𝑥 = 𝑑𝑡 log 𝑎 in (i), we have 𝐼 = ∫ ( 𝑡 log 𝑎 ) 𝑎 𝑒−𝑡∞ 0 𝑑𝑡 log 𝑎 = 1 (log 𝑎) 𝑎+1 ∫ 𝑒−𝑡 𝑡 𝑎 𝑑𝑡 ∞ 0 = 1 (log 𝑎) 𝑎+1 ∫ 𝑡( 𝑎+1)−1 𝑒−𝑡 𝑑𝑡 ∞ 0 = 1 (log 𝑎) 𝑎+1 Γ(𝑎 + 1) ∴ ∫ 𝒙 𝒂 𝒂 𝒙 𝒅𝒙 ∞ 𝟎 = 𝟏 ( 𝐥𝐨𝐠 𝒂) 𝒂+𝟏 𝚪(𝒂 + 𝟏) ________ Ans. Example 4: Prove that ∫ ( 𝒙 𝒍𝒐𝒈𝒙) 𝟒 𝒅𝒙 = 𝟒! 𝟓 𝟓 𝟏 𝟎 Solution: We know that ∫ 𝑥 𝑛 (𝑙𝑜𝑔 𝑥) 𝑚 𝑑𝑥 = (−1) 𝑚 ( 𝑛+1) 𝑚+1 Γ(𝑚 + 1) 1 0 _______(i) Now, ∫ ( 𝑥 𝑙𝑜𝑔𝑥)4 𝑑𝑥 = 1 0 ∫ 𝑥41 0 ( 𝑙𝑜𝑔𝑥)4 𝑑𝑥 Putting 𝑛 = 𝑚 = 4 in (i), we get ∫ 𝑥4 1 0 ( 𝑙𝑜𝑔𝑥)4 𝑑𝑥 = (−1)4 (4 + 1)4+1 Γ(4 + 1) = Γ5 55 = 4! 55 __________ proved. 2.2 EXERCISE:
  • 6. Unit-2 GAMMA, BETA FUNCTION RAI UNIVERSITY, AHMEDABAD 6 1) Evaluate: (a) Γ(− 3 2 ) (b) Γ ( 7 2 ) (c)Γ(0) 2) ∫ 𝑒−ℎ2 𝑥2 𝑑𝑥 ∞ 0 3) ∫ 𝑑𝑥 √−𝑙𝑜𝑔𝑥 1 0 4) ∫ ( 𝑥 𝑙𝑜𝑔𝑥)3 𝑑𝑥 1 0 3.1 BETA FUNCTION: Definition: The Beta function denoted by 𝛽( 𝑚, 𝑛) or 𝐵(𝑚, 𝑛) is defined as 𝐵( 𝑚, 𝑛) = ∫ 𝑥 𝑚−1 (1 − 𝑥) 𝑛−1 𝑑𝑥, (𝑚 > 0, 𝑛 > 0) 1 0 3.2 Properties of Beta function: 1) B(m,n)= B(n,m) 2) 𝐵( 𝑚, 𝑛) = 2 ∫ 𝑠𝑖𝑛2𝑚−1 𝜃 𝑐𝑜𝑠2𝑛−1 𝜃 𝑑𝜃 𝜋 2⁄ 0 3) 𝐵( 𝑚, 𝑛) = ∫ 𝑥 𝑚−1 (1+𝑥) 𝑚+𝑛 𝑑𝑥 ∞ 0 4) 𝐵( 𝑚, 𝑛) = ∫ 𝑥 𝑚−1+𝑥 𝑛−1 (1+𝑥) 𝑚+𝑛 𝑑𝑥 1 0 4.1 RelationbetweenBeta and Gamma Functions: Relation between Beta and gamma functions is 𝛽( 𝑚, 𝑛) = Γm .Γn Γ(m+n)  Using above relation we can derive following results:  ∫ 𝑠𝑖𝑛 𝑝 𝜃 𝑐𝑜𝑠 𝑝 𝜃 𝑑𝜃 = 1 2 𝛽 ( 𝑝+1 2 , 𝑞+1 2 ) = Γ( 𝑝+1 2 ).( 𝑞+1 2 ) 2Γ( 𝑝+𝑞+2 2 ) 𝜋 2⁄ 0  Γ ( 1 2 ) = √ 𝜋  Euler’s formula: Γ𝑛 . Γ(1 − 𝑛) = 𝜋 sin 𝑛𝜋  Duplication formula:
  • 7. Unit-2 GAMMA, BETA FUNCTION RAI UNIVERSITY, AHMEDABAD 7 Γ𝑛 . Γ(𝑛 + 1 2 ) = √𝜋 Γ(2𝑛) 22𝑛−1 4.2 EXAMPLES: Example 1: Evaluate ∫ 𝒙 𝟒 (𝟏− √ 𝒙) 𝟓 𝒅𝒙 𝟏 𝟎 Solution: Let √ 𝑥 = 𝑡 ⟹ 𝑥 = 𝑡2 so that 𝑑𝑥 = 2𝑡 𝑑𝑡 ∫ 𝑥4 (1− √ 𝑥) 5 𝑑𝑥 = 1 0 ∫( 𝑡2)4 (1 − 𝑡)5 (2𝑡 𝑑𝑡) 1 0 = 2 ∫ 𝑡9 (1 − 𝑡)5 𝑑𝑡 1 0 = 2 𝐵(10,6) = 2 Γ10 Γ6 Γ16 = 2 × 9!5! 15! = 2×1×2×3×4×5 15×14×13×12×11×10 = 1 11×13×7×15 = 1 15015 ∴ ∫ 𝑥4 (1 − √ 𝑥) 5 𝑑𝑥 = 1 0 1 15015 _________ Ans. Example 2: Find the value of 𝚪 ( 𝟏 𝟐 ). Solution: We know that, ∫ 𝑠𝑖𝑛 𝑝 𝜃 𝑐𝑜𝑠 𝑝 𝜃 𝑑𝜃 = Γ( 𝑝+1 2 ).( 𝑞+1 2 ) 2Γ( 𝑝+𝑞+2 2 ) 𝜋 2⁄ 0 Putting 𝑝 = 𝑞 = 0, we get ∫ 𝑑𝜃 = 𝚪( 𝟏 𝟐 ) 𝚪( 𝟏 𝟐 ) 2 𝚪𝟏 𝜋 2 0  [ 𝜃]0 𝜋 2⁄ = 1 2 (Γ 1 2 ) 2
  • 8. Unit-2 GAMMA, BETA FUNCTION RAI UNIVERSITY, AHMEDABAD 8  𝜋 2 = 1 2 (Γ 1 2 ) 2  (Γ 1 2 ) 2 = 𝜋  Γ ( 1 2 ) = √ 𝜋 _______Ans. Example 3: show that ∫ √ 𝒄𝒐𝒕𝜽 𝒅𝜽 = 𝟏 𝟐 𝚪( 𝟏 𝟒 ) 𝚪 ( 𝟑 𝟒 ) 𝝅 𝟐 𝟎 Solution: We know that, ∫ 𝑠𝑖𝑛 𝑝 𝜃 𝑐𝑜𝑠 𝑝 𝜃 𝑑𝜃 = Γ( 𝑝+1 2 ).( 𝑞+1 2 ) 2Γ( 𝑝+𝑞+2 2 ) 𝜋 2⁄ 0 ∫ √ 𝑐𝑜𝑡𝜃𝑑𝜃 = ∫ 𝑐𝑜𝑠1 2⁄ 𝜃 𝑠𝑖𝑛1 2⁄ 𝜃 𝑑𝜃 𝜋 2 0 𝜋 2 0 = ∫ 𝑠𝑖𝑛−1 2⁄ 𝜃 𝜋 2 0 𝑐𝑜𝑠1 2⁄ 𝜃 𝑑𝜃 On applying formula (1), we have ∫ √ 𝑐𝑜𝑡𝜃𝑑𝜃 = Γ( − 1 2 +1 2 ) Γ( 1 2 +1 2 ) 2Γ( − 1 2 + 1 2 +2 2 ) 𝜋 2 0 = Γ( 1 4 ) Γ( 3 4 ) 2 Γ(1) = 1 2 Γ ( 1 4 )Γ ( 3 4 ) ∴ ∫ √ 𝑐𝑜𝑡𝜃 𝑑𝜃 = 1 2 Γ ( 1 4 )Γ ( 3 4 ) 𝜋 2 0 __________Ans. Example 4: Evaluate ∫ ( 𝟏 + 𝒙) 𝒑−𝟏 ( 𝟏 − 𝒙) 𝒒−𝟏 𝒅𝒙 +𝟏 −𝟏 Solution: Put 𝑥 = 2cos 2𝜃, then 𝑑𝑥 = −2sin 2𝜃 𝑑𝜃 in ∫ (1 + 𝑥) 𝑝−1 (1 − 𝑥) 𝑞−1 𝑑𝑥 +1 −1 = ∫ (1 + 𝑐𝑜𝑠2𝜃) 𝑝−1(1 − 𝑐𝑜𝑠2𝜃) 𝑞−1(−2𝑠𝑖𝑛2𝜃) 0 𝜋 2 = ∫ (1 + 2𝑐𝑜𝑠2 𝜃 − 1) 𝑝−1(1 − 1 + 2𝑠𝑖𝑛2 𝜃) 𝑞−1(−4𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 𝑑𝜃) 0 𝜋 2 = 4∫ 2 𝑝−1 𝑐𝑜𝑠2𝑝−2 𝜃 . 2 𝑞−1 𝑠𝑖𝑛2𝑞−2 𝜃 . 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 𝑑𝜃 𝜋 2 0
  • 9. Unit-2 GAMMA, BETA FUNCTION RAI UNIVERSITY, AHMEDABAD 9 = 2 𝑝+𝑞 ∫ 𝑠𝑖𝑛2𝑞−1 𝜃 𝑐𝑜𝑠2𝑝−1 𝜃 ∞ 0 𝑑𝜃 = 2 𝑝+𝑞 Γ( 2𝑞 2 ) Γ( 2𝑝 2 ) 2Γ( 2𝑝+2𝑞 2 ) = 2 𝑝+𝑞−1 Γ( 𝑝) Γ( 𝑞) Γ( 𝑝+𝑞) __________Ans. Example 5: Show that 𝚪( 𝒏) 𝚪( 𝟏− 𝒏) = 𝝅 𝒔𝒊𝒏 𝒏𝝅 (𝟎 < 𝑛 < 1) Solution: We know that 𝛽( 𝑚, 𝑛) = ∫ 𝑥 𝑛−1 (1 + 𝑥) 𝑚+𝑛 𝑑𝑥 ∞ 0 Γ𝑚 Γ𝑛 Γ(𝑚+𝑛) = ∫ 𝑥 𝑛−1 (1+𝑥) 𝑚+𝑛 𝑑𝑥 ∞ 0 Putting 𝑚 + 𝑛 = 1 𝑜𝑟 𝑚 = 1 − 𝑛, we get Γ(1−𝑛) Γ𝑛 Γ1 = ∫ 𝑥 𝑛−1 (1+𝑥)1 𝑑𝑥 ∞ 0 Γ(1 − 𝑛)Γ𝑛 = ∫ 𝑥 𝑛−1 1+𝑥 𝑑𝑥 ∞ 0 [∵ ∫ 𝑥 𝑛−1 1+𝑥 𝑑𝑥 ∞ 0 = 𝜋 𝑠𝑖𝑛 𝑛𝜋 ] ∴ Γ( 𝑛)Γ(1− 𝑛) = 𝜋 𝑠𝑖𝑛 𝑛𝜋 ______proved. 4.3 EXERCISE: 1) Evaluate ∫ (1 − 𝑥3)−1 2⁄ 𝑑𝑥 1 0 2) Evaluate ∫ 𝑥 𝑚−1+𝑥 𝑛−1 (1+𝑥) 𝑚+𝑛 𝑑𝑥 1 0 3) Evaluate ∫ ( 𝑥3 1−𝑥3 ) 1 2 𝑑𝑥 1 0 4) Prove that Γ ( 1 4 ) Γ ( 3 4 ) = 𝜋√2 5) Show that 𝛽( 𝑝, 𝑞) = 𝛽( 𝑝 + 1, 𝑞) + (𝑝, 𝑞 + 1) 5.1 DIRICHLET’S INTEGRAL: If 𝑙, 𝑚, 𝑛 are all positive, then the triple integral ∭ 𝑥 𝑙−1 𝑦 𝑚−1 𝑧 𝑛−1 𝑑𝑥 𝑑𝑦 𝑑𝑧 𝑉 = Γ(l)Γ(m)Γ(n) Γ(𝑙 + 𝑚 + 𝑛 + 1)
  • 10. Unit-2 GAMMA, BETA FUNCTION RAI UNIVERSITY, AHMEDABAD 10 Where V is the region 𝑥 ≥ 0, 𝑦 ≥ 0, 𝑧 ≥ 0 and 𝑥 + 𝑦 + 𝑧 ≤ 1. Note: ∭ 𝑥 𝑙−1 𝑦 𝑚−1 𝑧 𝑛−1 𝑑𝑥 𝑑𝑦 𝑑𝑧𝑉 = Γ(l)Γ(m)Γ(n) Γ(𝑙+𝑚+𝑛+1) ℎ𝑙+𝑚+𝑛 Where V is the domain, 𝑥 ≥ 0, 𝑦 ≥ 0, 𝑧 ≥ 0 and 𝑥 + 𝑦 + 𝑧 ≤ ℎ 5.2 Corollary: Dirichlet’s theorem for n variables, the theorem status that ∭…∫ 𝑥1 𝑙1−1 𝑥2 𝑙2−1 … 𝑥 𝑛 𝑙 𝑛−1 𝑑𝑥1 𝑑𝑥2 𝑑𝑥3 … 𝑑𝑥 𝑛 = Γ𝑙1Γ𝑙2Γ𝑙3 … Γ𝑙 𝑛 Γ(1 + 𝑙1 + 𝑙2 + ⋯+ 𝑙 𝑛) ℎ𝑙1+𝑙2+⋯+𝑙 𝑛 Example 1: Prove that ∫ 𝒙 𝟒(𝟏+𝒙 𝟓) (𝟏+𝒙 𝟏𝟓) 𝒅𝒙 = 𝟏 𝟓𝟎𝟎𝟓 ∞ 𝟎 Solution: Let 𝐼 = ∫ 𝒙 𝟒(𝟏+𝒙 𝟓) (𝟏+𝒙) 𝟏𝟓 𝒅𝒙 ∞ 𝟎  𝐼 = ∫ 𝑥4 (1+𝑥)15 𝑑𝑥 ∞ 0 + ∫ 𝑥9 (1+𝑥)15 𝑑𝑥 ∞ 0  𝐼 = 𝐼1 + 𝐼2 __________ (i) Now, put 𝑥 = 𝑡 1+𝑡 , when 𝑥 = 0, 𝑡 = 0; when 𝑥 = ∞, 𝑡 = 1 1 + 𝑥 = 1 + 𝑡 1−𝑡 = 1 1−𝑡  𝑑𝑥 = 𝑑𝑡 (1−𝑡)2 ∴ 𝐼1 = ∫ ( 𝑡 1−𝑡 ) 4 . (1 − 𝑡)15 . 1 (1−𝑡)2 𝑑𝑡 1 0 = ∫ 𝑡4 (1− 𝑡)9 𝑑𝑡 1 0 = 𝛽(5,10) _______(2) And 𝐼2 = ∫ ( 𝑡 1−𝑡 ) 9 . (1 − 𝑡)15 . 1 (1−𝑡)2 𝑑𝑡 1 0
  • 11. Unit-2 GAMMA, BETA FUNCTION RAI UNIVERSITY, AHMEDABAD 11 = ∫ 𝑡9 (1− 𝑡)4 𝑑𝑡 1 0 = 𝛽(10,5) ________(3) ∴ 𝐼 = 𝐼1 + 𝐼2 = 𝛽(5,10) + 𝛽(10,5) [Using(2) and (3)] = 𝛽(5,10) + 𝛽(5,10) [𝛽( 𝑚, 𝑛) = 𝛽(𝑛, 𝑚)] = 2𝛽(5,10) = 2Γ5Γ10 Γ15 = 2×4!×9! 14! = 2×4×3×2×1×9! 14×13×12×11×10×9! = 1 5005 _______ Proved. 5.3 EXERCISE: 1) Find the value of ∫ 𝑥3−2𝑥4+𝑥5 (1+𝑥)7 𝑑𝑥 1 0 2) Show that ∫ 𝑥 𝑚−1(1−𝑥) 𝑛−1 (𝑎+𝑥) 𝑚+𝑛 𝑑𝑥 = 𝛽(𝑚,𝑛) 𝑎 𝑛(1+𝑎) 𝑚 1 0 3) 𝛽( 𝑚 + 1, 𝑛) = 𝑚 𝑚+𝑛 𝛽(𝑚, 𝑛) 6.1 Application to Area & Volume:  Liouville’s extension of dirichlet theorem:
  • 12. Unit-2 GAMMA, BETA FUNCTION RAI UNIVERSITY, AHMEDABAD 12 ∭ 𝑓(𝑥 + 𝑦 + 𝑧)𝑥 𝑙−1 𝑦 𝑚−1 𝑧 𝑛−1 𝑑𝑥 𝑑𝑦 𝑑𝑧 = Γ(l)Γ(m)Γ(n) Γ(l + m + n) ∫ 𝑓( 𝑢) 𝑢𝑙+𝑚+𝑛−1 𝑑𝑢 ℎ2 ℎ1 Example1: Show that ∭ 𝒅𝒙 𝒅𝒚 𝒅𝒛 (𝒙+𝒚+𝒛+𝟏) 𝟑 = 𝟏 𝟐 𝒍𝒐𝒈𝟐− 𝟓 𝟏𝟔 , the integral being takenthroughout the volume bounded by 𝒙 = 𝟎, 𝒚 = 𝟎, 𝒛 = 𝟎, 𝒙 + 𝒚 + 𝒛 = 𝟏. Solution: By Liouville’s theorem when 0 < 𝑥 + 𝑦 + 𝑧 < 1 ∭ 𝑑𝑥 𝑑𝑦 𝑑𝑧 (𝑥+𝑦+𝑧+1)3 = ∭ 𝑥 𝑙−1 𝑦 𝑚−1 𝑧 𝑛−1 𝑑𝑥 𝑑𝑦 𝑑𝑧 (𝑥+𝑦+𝑧+1)3 (0 ≤ 𝑥 + 𝑦 + 𝑧 ≤ 1) = Γ1Γ1Γ1 Γ(l+m+n) ∫ 1 (u+1)3 u3−1 du 1 0 = 1 2 ∫ 𝑢2 (𝑢+1)3 𝑑𝑢 1 0 = ∫ [ 1 𝑢+1 − 2 (𝑢+1)2 + 1 (𝑢+1)3 ] 𝑑𝑢 1 0 (Partial fractions) = 1 2 [log( 𝑢 + 1) + 2 𝑢+1 − 1 2(𝑢+1)2 ] 0 1 = 1 2 [𝑙𝑜𝑔2 + 2( 1 2 − 1) − ( 1 8 − 1 2 )] = 1 2 𝑙𝑜𝑔2 − 5 16 ∴ ∭ 𝒅𝒙 𝒅𝒚 𝒅𝒛 (𝒙+𝒚+𝒛+𝟏) 𝟑 = 𝟏 𝟐 𝒍𝒐𝒈𝟐− 𝟓 𝟏𝟔 _______Proved. Example 2: Find the mass of an octant of the ellipsoid 𝒙 𝟐 𝒂 𝟐 + 𝒚 𝟐 𝒃 𝟐 + 𝒛 𝟐 𝒄 𝟐 = 𝟏, the density at any point being 𝝆 = 𝒌 𝒙 𝒚 𝒛. Solution: Mass = ∭ 𝜌 𝑑𝑣 = ∭( 𝑘 𝑥 𝑦 𝑧) 𝑑𝑥 𝑑𝑦 𝑑𝑧
  • 13. Unit-2 GAMMA, BETA FUNCTION RAI UNIVERSITY, AHMEDABAD 13 = 𝑘 ∭( 𝑥 𝑑𝑥)( 𝑦 𝑑𝑥)(𝑧 𝑑𝑧) _______(1) Putting 𝑥2 𝑎2 = 𝑢, 𝑦2 𝑏2 = 𝑣, 𝑧2 𝑐2 = 𝑤 and 𝑢 + 𝑣 + 𝑤 = 1 So that 2𝑥 𝑑𝑥 𝑎2 = 𝑑𝑢, 2𝑦 𝑑𝑦 𝑏2 = 𝑑𝑣, 2𝑧 𝑑𝑧 𝑐2 = 𝑑𝑤 Mass= 𝑘∭ ( 𝑎2 𝑑𝑢 2 )( 𝑏2 𝑑𝑣 2 )( 𝑐2 𝑑𝑤 2 ) = 𝑘 𝑎2 𝑏2 𝑐2 8 ∭ 𝑑𝑢 𝑑𝑣 𝑑𝑤, Where 𝑢 + 𝑣 + 𝑤 ≤ 1 = 𝑘 𝑎2 𝑏2 𝑐2 8 ∭ 𝑢𝑙−1 𝑣 𝑙−1 𝑤 𝑙−1 𝑑𝑢 𝑑𝑣 𝑑𝑤 = 𝑘 𝑎2 𝑏2 𝑐2 8 Γ1Γ1Γ1 Γ3+1 = 𝑘 𝑎2 𝑏2 𝑐2 8×6 = 𝑘 𝑎2 𝑏2 𝑐2 48 ∴ 𝑴𝒂𝒔𝒔 = 𝒌 𝒂 𝟐 𝒃 𝟐 𝒄 𝟐 𝟒𝟖 Ans.
  • 14. Unit-2 GAMMA, BETA FUNCTION RAI UNIVERSITY, AHMEDABAD 14 6.2 EXERCISE: 1) Find the value of ∭ 𝑙𝑜𝑔( 𝑥 + 𝑦 + 𝑧) 𝑑𝑥 𝑑𝑦 𝑑𝑧 the integral extending over all positive and zero values of 𝑥, 𝑦, 𝑧 subject to the condition 𝑥 + 𝑦 + 𝑧 < 1. 2) Evaluate ∭ √1−𝑥2−𝑦2−𝑧2 1+𝑥2+𝑦2+𝑧2 𝑑𝑥 𝑑𝑦 𝑑𝑧, integral being taken over all positive values of 𝑥, 𝑦, 𝑧 such that 𝑥2 + 𝑦2 + 𝑧2 ≤ 1. 3) Find the area and the mass contained m the first quadrant enclosed by the curve ( 𝑥 𝑎 ) 𝛼 + ( 𝑦 𝑏 ) 𝛽 = 1 𝑤ℎ𝑒𝑟𝑒 𝛼 > 0, 𝛽 > 0 given that density at any point 𝑝(𝑥𝑦) is 𝑘 √ 𝑥𝑦. 7.1 REFERENCEBOOK: 1) Introduction to Engineering Mathematics By H. K. DASS. & Dr. RAMA VERMA 2) Higher Engineering Mathematics By B.V.RAMANA 3) A text bookof Engineering Mathematics By N.P.BALI 4) www1.gantep.edu.tr/~olgar/C6.SP.pdf