SlideShare a Scribd company logo
..
Sec on 5.3
Evalua ng Definite Integrals
V63.0121.011: Calculus I
Professor Ma hew Leingang
New York University
April 27, 2011
Announcements
Today: 5.3
Thursday/Friday: Quiz on
4.1–4.4
Monday 5/2: 5.4
Wednesday 5/4: 5.5
Monday 5/9: Review and
Movie Day!
Thursday 5/12: Final
Exam, 2:00–3:50pm
Objectives
Use the Evalua on
Theorem to evaluate
definite integrals.
Write an deriva ves as
indefinite integrals.
Interpret definite
integrals as “net change”
of a func on over an
interval.
Outline
Last me: The Definite Integral
The definite integral as a limit
Proper es of the integral
Evalua ng Definite Integrals
Examples
The Integral as Net Change
Indefinite Integrals
My first table of integrals
Compu ng Area with integrals
The definite integral as a limit
Defini on
If f is a func on defined on [a, b], the definite integral of f from a to
b is the number
∫ b
a
f(x) dx = lim
n→∞
n∑
i=1
f(ci) ∆x
where ∆x =
b − a
n
, and for each i, xi = a + i∆x, and ci is a point in
[xi−1, xi].
The definite integral as a limit
Theorem
If f is con nuous on [a, b] or if f has only finitely many jump
discon nui es, then f is integrable on [a, b]; that is, the definite
integral
∫ b
a
f(x) dx exists and is the same for any choice of ci.
Notation/Terminology
∫ b
a
f(x) dx
∫
— integral sign (swoopy S)
f(x) — integrand
a and b — limits of integra on (a is the lower limit and b the
upper limit)
dx — ??? (a parenthesis? an infinitesimal? a variable?)
The process of compu ng an integral is called integra on
Example
Es mate
∫ 1
0
4
1 + x2
dx using M4.
Example
Es mate
∫ 1
0
4
1 + x2
dx using M4.
Solu on
We have x0 = 0, x1 =
1
4
, x2 =
1
2
, x3 =
3
4
, x4 = 1.
So c1 =
1
8
, c2 =
3
8
, c3 =
5
8
, c4 =
7
8
.
Example
Es mate
∫ 1
0
4
1 + x2
dx using M4.
Solu on
M4 =
1
4
(
4
1 + (1/8)2
+
4
1 + (3/8)2
+
4
1 + (5/8)2
+
4
1 + (7/8)2
)
Example
Es mate
∫ 1
0
4
1 + x2
dx using M4.
Solu on
M4 =
1
4
(
4
1 + (1/8)2
+
4
1 + (3/8)2
+
4
1 + (5/8)2
+
4
1 + (7/8)2
)
=
1
4
(
4
65/64
+
4
73/64
+
4
89/64
+
4
113/64
)
Example
Es mate
∫ 1
0
4
1 + x2
dx using M4.
Solu on
M4 =
1
4
(
4
1 + (1/8)2
+
4
1 + (3/8)2
+
4
1 + (5/8)2
+
4
1 + (7/8)2
)
=
1
4
(
4
65/64
+
4
73/64
+
4
89/64
+
4
113/64
)
=
64
65
+
64
73
+
64
89
+
64
113
≈ 3.1468
Properties of the integral
Theorem (Addi ve Proper es of the Integral)
Let f and g be integrable func ons on [a, b] and c a constant. Then
1.
∫ b
a
c dx = c(b − a)
2.
∫ b
a
[f(x) + g(x)] dx =
∫ b
a
f(x) dx +
∫ b
a
g(x) dx.
3.
∫ b
a
cf(x) dx = c
∫ b
a
f(x) dx.
4.
∫ b
a
[f(x) − g(x)] dx =
∫ b
a
f(x) dx −
∫ b
a
g(x) dx.
More Properties of the Integral
Conven ons: ∫ a
b
f(x) dx = −
∫ b
a
f(x) dx
∫ a
a
f(x) dx = 0
This allows us to have
Theorem
5.
∫ c
a
f(x) dx =
∫ b
a
f(x) dx +
∫ c
b
f(x) dx for all a, b, and c.
Illustrating Property 5
Theorem
5.
∫ c
a
f(x) dx =
∫ b
a
f(x) dx +
∫ c
b
f(x) dx for all a, b, and c.
..
x
.
y
..
a
..
b
..
c
Illustrating Property 5
Theorem
5.
∫ c
a
f(x) dx =
∫ b
a
f(x) dx +
∫ c
b
f(x) dx for all a, b, and c.
..
x
.
y
..
a
..
b
..
c
.
∫ b
a
f(x) dx
Illustrating Property 5
Theorem
5.
∫ c
a
f(x) dx =
∫ b
a
f(x) dx +
∫ c
b
f(x) dx for all a, b, and c.
..
x
.
y
..
a
..
b
..
c
.
∫ b
a
f(x) dx
.
∫ c
b
f(x) dx
Illustrating Property 5
Theorem
5.
∫ c
a
f(x) dx =
∫ b
a
f(x) dx +
∫ c
b
f(x) dx for all a, b, and c.
..
x
.
y
..
a
..
b
..
c
.
∫ b
a
f(x) dx
.
∫ c
b
f(x) dx
.
∫ c
a
f(x) dx
Illustrating Property 5
Theorem
5.
∫ c
a
f(x) dx =
∫ b
a
f(x) dx +
∫ c
b
f(x) dx for all a, b, and c.
..
x
.
y
..
a
..
b
..
c
Illustrating Property 5
Theorem
5.
∫ c
a
f(x) dx =
∫ b
a
f(x) dx +
∫ c
b
f(x) dx for all a, b, and c.
..
x
.
y
..
a
..
b
..
c
.
∫ b
a
f(x) dx
Illustrating Property 5
Theorem
5.
∫ c
a
f(x) dx =
∫ b
a
f(x) dx +
∫ c
b
f(x) dx for all a, b, and c.
..
x
.
y
..
a
..
b
..
c
.
∫ c
b
f(x) dx =
−
∫ b
c
f(x) dx
Illustrating Property 5
Theorem
5.
∫ c
a
f(x) dx =
∫ b
a
f(x) dx +
∫ c
b
f(x) dx for all a, b, and c.
..
x
.
y
..
a
..
b
..
c
.
∫ c
b
f(x) dx =
−
∫ b
c
f(x) dx
.
∫ c
a
f(x) dx
Definite Integrals We Know So Far
If the integral computes an area
and we know the area, we can
use that. For instance,
∫ 1
0
√
1 − x2 dx =
π
4
By brute force we computed
∫ 1
0
x2
dx =
1
3
∫ 1
0
x3
dx =
1
4
..
x
.
y
Comparison Properties of the Integral
Theorem
Let f and g be integrable func ons on [a, b].
Comparison Properties of the Integral
Theorem
Let f and g be integrable func ons on [a, b].
6. If f(x) ≥ 0 for all x in [a, b], then
∫ b
a
f(x) dx ≥ 0
Comparison Properties of the Integral
Theorem
Let f and g be integrable func ons on [a, b].
6. If f(x) ≥ 0 for all x in [a, b], then
∫ b
a
f(x) dx ≥ 0
7. If f(x) ≥ g(x) for all x in [a, b], then
∫ b
a
f(x) dx ≥
∫ b
a
g(x) dx
Comparison Properties of the Integral
Theorem
Let f and g be integrable func ons on [a, b].
6. If f(x) ≥ 0 for all x in [a, b], then
∫ b
a
f(x) dx ≥ 0
7. If f(x) ≥ g(x) for all x in [a, b], then
∫ b
a
f(x) dx ≥
∫ b
a
g(x) dx
8. If m ≤ f(x) ≤ M for all x in [a, b], then
m(b − a) ≤
∫ b
a
f(x) dx ≤ M(b − a)
Integral of a nonnegative function is nonnegative
Proof.
If f(x) ≥ 0 for all x in [a, b], then for
any number of divisions n and choice
of sample points {ci}:
Sn =
n∑
i=1
f(ci)
≥0
∆x ≥
n∑
i=1
0 · ∆x = 0
.. x.......
Since Sn ≥ 0 for all n, the limit of {Sn} is nonnega ve, too:
∫ b
a
f(x) dx = lim
n→∞
Sn
≥0
≥ 0
The integral is “increasing”
Proof.
Let h(x) = f(x) − g(x). If f(x) ≥ g(x)
for all x in [a, b], then h(x) ≥ 0 for all
x in [a, b]. So by the previous
property
∫ b
a
h(x) dx ≥ 0 .. x.
f(x)
.
g(x)
.
h(x)
This means that
∫ b
a
f(x) dx −
∫ b
a
g(x) dx =
∫ b
a
(f(x) − g(x)) dx =
∫ b
a
h(x) dx ≥ 0
Bounding the integral
Proof.
If m ≤ f(x) ≤ M on for all x in [a, b], then by
the previous property
∫ b
a
m dx ≤
∫ b
a
f(x) dx ≤
∫ b
a
M dx
By Property 8, the integral of a constant
func on is the product of the constant and
the width of the interval. So:
m(b − a) ≤
∫ b
a
f(x) dx ≤ M(b − a)
.. x.
y
.
M
.
f(x)
.
m
..
a
..
b
Example
Es mate
∫ 2
1
1
x
dx using the comparison proper es.
Example
Es mate
∫ 2
1
1
x
dx using the comparison proper es.
Solu on
Since
1
2
≤
1
x
≤
1
1
for all x in [1, 2], we have
1
2
· 1 ≤
∫ 2
1
1
x
dx ≤ 1 · 1
Ques on
Es mate
∫ 2
1
1
x
dx with L2 and R2. Are your es mates overes mates?
Underes mates? Impossible to tell?
Ques on
Es mate
∫ 2
1
1
x
dx with L2 and R2. Are your es mates overes mates?
Underes mates? Impossible to tell?
Answer
Since the integrand is decreasing,
Rn <
∫ 2
1
1
x
dx < Ln
for all n. So
7
12
<
∫ 2
1
1
x
dx <
5
6
.
Outline
Last me: The Definite Integral
The definite integral as a limit
Proper es of the integral
Evalua ng Definite Integrals
Examples
The Integral as Net Change
Indefinite Integrals
My first table of integrals
Compu ng Area with integrals
Socratic proof
The definite integral of velocity
measures displacement (net
distance)
The deriva ve of displacement
is velocity
So we can compute
displacement with the definite
integral or the an deriva ve of
velocity
But any func on can be a
velocity func on, so . . .
Theorem of the Day
Theorem (The Second Fundamental Theorem of Calculus)
Suppose f is integrable on [a, b] and f = F′
for another func on F,
then ∫ b
a
f(x) dx = F(b) − F(a).
Theorem of the Day
Theorem (The Second Fundamental Theorem of Calculus)
Suppose f is integrable on [a, b] and f = F′
for another func on F,
then ∫ b
a
f(x) dx = F(b) − F(a).
Note
In Sec on 5.3, this theorem is called “The Evalua on Theorem”.
Nobody else in the world calls it that.
Proving the Second FTC
Proof.
Divide up [a, b] into n pieces of equal width ∆x =
b − a
n
as
usual.
Proving the Second FTC
Proof.
Divide up [a, b] into n pieces of equal width ∆x =
b − a
n
as
usual.
For each i, F is con nuous on [xi−1, xi] and differen able on
(xi−1, xi). So there is a point ci in (xi−1, xi) with
F(xi) − F(xi−1)
xi − xi−1
= F′
(ci) = f(ci)
Proving the Second FTC
Proof.
Divide up [a, b] into n pieces of equal width ∆x =
b − a
n
as
usual.
For each i, F is con nuous on [xi−1, xi] and differen able on
(xi−1, xi). So there is a point ci in (xi−1, xi) with
F(xi) − F(xi−1)
xi − xi−1
= F′
(ci) = f(ci)
=⇒ f(ci)∆x = F(xi) − F(xi−1)
Proving the Second FTC
Proof.
Form the Riemann Sum:
Proving the Second FTC
Proof.
Form the Riemann Sum:
Sn =
n∑
i=1
f(ci)∆x =
n∑
i=1
(F(xi) − F(xi−1))
Proving the Second FTC
Proof.
Form the Riemann Sum:
Sn =
n∑
i=1
f(ci)∆x =
n∑
i=1
(F(xi) − F(xi−1))
= (F(x1) − F(x0)) + (F(x2) − F(x1)) + (F(x3) − F(x2)) + · · ·
· · · + (F(xn−1) − F(xn−2)) + (F(xn) − F(xn−1))
Proving the Second FTC
Proof.
Form the Riemann Sum:
Sn =
n∑
i=1
f(ci)∆x =
n∑
i=1
(F(xi) − F(xi−1))
= (F(x1) − F(x0)) + (F(x2) − F(x1)) + (F(x3) − F(x2)) + · · ·
· · · + (F(xn−1) − F(xn−2)) + (F(xn) − F(xn−1))
Proving the Second FTC
Proof.
Form the Riemann Sum:
Sn =
n∑
i=1
f(ci)∆x =
n∑
i=1
(F(xi) − F(xi−1))
= (F(x1) − F(x0)) + (F(x2) − F(x1)) + (F(x3) − F(x2)) + · · ·
· · · + (F(xn−1) − F(xn−2)) + (F(xn) − F(xn−1))
Proving the Second FTC
Proof.
Form the Riemann Sum:
Sn =
n∑
i=1
f(ci)∆x =
n∑
i=1
(F(xi) − F(xi−1))
= (F(x1) − F(x0)) + (F(x2) − F(x1)) + (F(x3) − F(x2)) + · · ·
· · · + (F(xn−1) − F(xn−2)) + (F(xn) − F(xn−1))
Proving the Second FTC
Proof.
Form the Riemann Sum:
Sn =
n∑
i=1
f(ci)∆x =
n∑
i=1
(F(xi) − F(xi−1))
= (F(x1) − F(x0)) + (F(x2) − F(x1)) + (F(x3) − F(x2)) + · · ·
· · · + (F(xn−1) − F(xn−2)) + (F(xn) − F(xn−1))
Proving the Second FTC
Proof.
Form the Riemann Sum:
Sn =
n∑
i=1
f(ci)∆x =
n∑
i=1
(F(xi) − F(xi−1))
= (F(x1) − F(x0)) + (F(x2) − F(x1)) + (F(x3) − F(x2)) + · · ·
· · · + (F(xn−1) − F(xn−2)) + (F(xn) − F(xn−1))
Proving the Second FTC
Proof.
Form the Riemann Sum:
Sn =
n∑
i=1
f(ci)∆x =
n∑
i=1
(F(xi) − F(xi−1))
= (F(x1) − F(x0)) + (F(x2) − F(x1)) + (F(x3) − F(x2)) + · · ·
· · · + (F(xn−1) − F(xn−2)) + (F(xn) − F(xn−1))
Proving the Second FTC
Proof.
Form the Riemann Sum:
Sn =
n∑
i=1
f(ci)∆x =
n∑
i=1
(F(xi) − F(xi−1))
= (F(x1) − F(x0)) + (F(x2) − F(x1)) + (F(x3) − F(x2)) + · · ·
· · · + (F(xn−1) − F(xn−2)) + (F(xn) − F(xn−1))
Proving the Second FTC
Proof.
Form the Riemann Sum:
Sn =
n∑
i=1
f(ci)∆x =
n∑
i=1
(F(xi) − F(xi−1))
= (F(x1) − F(x0)) + (F(x2) − F(x1)) + (F(x3) − F(x2)) + · · ·
· · · + (F(xn−1) − F(xn−2)) + (F(xn) − F(xn−1))
Proving the Second FTC
Proof.
Form the Riemann Sum:
Sn =
n∑
i=1
f(ci)∆x =
n∑
i=1
(F(xi) − F(xi−1))
= (F(x1) − F(x0)) + (F(x2) − F(x1)) + (F(x3) − F(x2)) + · · ·
· · · + (F(xn−1) − F(xn−2)) + (F(xn) − F(xn−1))
Proving the Second FTC
Proof.
Form the Riemann Sum:
Sn =
n∑
i=1
f(ci)∆x =
n∑
i=1
(F(xi) − F(xi−1))
= (F(x1) − F(x0)) + (F(x2) − F(x1)) + (F(x3) − F(x2)) + · · ·
· · · + (F(xn−1) − F(xn−2)) + (F(xn) − F(xn−1))
Proving the Second FTC
Proof.
Form the Riemann Sum:
Sn =
n∑
i=1
f(ci)∆x =
n∑
i=1
(F(xi) − F(xi−1))
= (F(x1) − F(x0)) + (F(x2) − F(x1)) + (F(x3) − F(x2)) + · · ·
· · · + (F(xn−1) − F(xn−2)) + (F(xn) − F(xn−1))
= F(xn) − F(x0) = F(b) − F(a)
Proving the Second FTC
Proof.
We have shown for each n,
Sn = F(b) − F(a)
Which does not depend on n.
Proving the Second FTC
Proof.
We have shown for each n,
Sn = F(b) − F(a)
Which does not depend on n.
So in the limit
∫ b
a
f(x) dx = lim
n→∞
Sn = lim
n→∞
(F(b) − F(a)) = F(b) − F(a)
Computing area with the 2nd FTC
Example
Find the area between y = x3
and the x-axis, between x = 0 and
x = 1.
.
Computing area with the 2nd FTC
Example
Find the area between y = x3
and the x-axis, between x = 0 and
x = 1.
Solu on
A =
∫ 1
0
x3
dx =
x4
4
1
0
=
1
4 .
Computing area with the 2nd FTC
Example
Find the area between y = x3
and the x-axis, between x = 0 and
x = 1.
Solu on
A =
∫ 1
0
x3
dx =
x4
4
1
0
=
1
4 .
Here we use the nota on F(x)|b
a or [F(x)]b
a to mean F(b) − F(a).
Computing area with the 2nd FTC
Example
Find the area enclosed by the parabola y = x2
and the line y = 1.
Computing area with the 2nd FTC
Example
Find the area enclosed by the parabola y = x2
and the line y = 1.
...
−1
..
1
..
1
Computing area with the 2nd FTC
Example
Find the area enclosed by the parabola y = x2
and the line y = 1.
Solu on
A = 2 −
∫ 1
−1
x2
dx = 2 −
[
x3
3
]1
−1
= 2 −
[
1
3
−
(
−
1
3
)]
=
4
3
...
−1
..
1
..
1
Computing an integral we
estimated before
Example
Evaluate the integral
∫ 1
0
4
1 + x2
dx.
Example
Es mate
∫ 1
0
4
1 + x2
dx using M4.
Solu on
M4 =
1
4
(
4
1 + (1/8)2
+
4
1 + (3/8)2
+
4
1 + (5/8)2
+
4
1 + (7/8)2
)
=
1
4
(
4
65/64
+
4
73/64
+
4
89/64
+
4
113/64
)
=
64
65
+
64
73
+
64
89
+
64
113
≈ 3.1468
Computing an integral we
estimated before
Example
Evaluate the integral
∫ 1
0
4
1 + x2
dx.
Solu on
∫ 1
0
4
1 + x2
dx = 4
∫ 1
0
1
1 + x2
dx
Computing an integral we
estimated before
Example
Evaluate the integral
∫ 1
0
4
1 + x2
dx.
Solu on
∫ 1
0
4
1 + x2
dx = 4
∫ 1
0
1
1 + x2
dx = 4 arctan(x)|1
0
Computing an integral we
estimated before
Example
Evaluate the integral
∫ 1
0
4
1 + x2
dx.
Solu on
∫ 1
0
4
1 + x2
dx = 4
∫ 1
0
1
1 + x2
dx = 4 arctan(x)|1
0
= 4 (arctan 1 − arctan 0)
Computing an integral we
estimated before
Example
Evaluate the integral
∫ 1
0
4
1 + x2
dx.
Solu on
∫ 1
0
4
1 + x2
dx = 4
∫ 1
0
1
1 + x2
dx = 4 arctan(x)|1
0
= 4 (arctan 1 − arctan 0) = 4
(π
4
− 0
)
Computing an integral we
estimated before
Example
Evaluate the integral
∫ 1
0
4
1 + x2
dx.
Solu on
∫ 1
0
4
1 + x2
dx = 4
∫ 1
0
1
1 + x2
dx = 4 arctan(x)|1
0
= 4 (arctan 1 − arctan 0) = 4
(π
4
− 0
)
= π
Computing an integral we
estimated before
Example
Evaluate
∫ 2
1
1
x
dx.
Example
Es mate
∫ 2
1
1
x
dx using the comparison proper es.
Solu on
Since
1
2
≤
1
x
≤
1
1
for all x in [1, 2], we have
1
2
· 1 ≤
∫ 2
1
1
x
dx ≤ 1 · 1
Computing an integral we
estimated before
Example
Evaluate
∫ 2
1
1
x
dx.
Solu on
∫ 2
1
1
x
dx
Computing an integral we
estimated before
Example
Evaluate
∫ 2
1
1
x
dx.
Solu on
∫ 2
1
1
x
dx = ln x|2
1
Computing an integral we
estimated before
Example
Evaluate
∫ 2
1
1
x
dx.
Solu on
∫ 2
1
1
x
dx = ln x|2
1 = ln 2 − ln 1
Computing an integral we
estimated before
Example
Evaluate
∫ 2
1
1
x
dx.
Solu on
∫ 2
1
1
x
dx = ln x|2
1 = ln 2 − ln 1 = ln 2
Outline
Last me: The Definite Integral
The definite integral as a limit
Proper es of the integral
Evalua ng Definite Integrals
Examples
The Integral as Net Change
Indefinite Integrals
My first table of integrals
Compu ng Area with integrals
The Integral as Net Change
Another way to state this theorem is:
∫ b
a
F′
(x) dx = F(b) − F(a),
or the integral of a deriva ve along an interval is the net change
over that interval. This has many interpreta ons.
The Integral as Net Change
The Integral as Net Change
Corollary
If v(t) represents the velocity of a par cle moving rec linearly, then
∫ t1
t0
v(t) dt = s(t1) − s(t0).
The Integral as Net Change
Corollary
If MC(x) represents the marginal cost of making x units of a product,
then
C(x) = C(0) +
∫ x
0
MC(q) dq.
The Integral as Net Change
Corollary
If ρ(x) represents the density of a thin rod at a distance of x from its
end, then the mass of the rod up to x is
m(x) =
∫ x
0
ρ(s) ds.
Outline
Last me: The Definite Integral
The definite integral as a limit
Proper es of the integral
Evalua ng Definite Integrals
Examples
The Integral as Net Change
Indefinite Integrals
My first table of integrals
Compu ng Area with integrals
A new notation for antiderivatives
To emphasize the rela onship between an differen a on and
integra on, we use the indefinite integral nota on
∫
f(x) dx
for any func on whose deriva ve is f(x).
A new notation for antiderivatives
To emphasize the rela onship between an differen a on and
integra on, we use the indefinite integral nota on
∫
f(x) dx
for any func on whose deriva ve is f(x). Thus
∫
x2
dx = 1
3x3
+ C.
My first table of integrals..
∫
[f(x) + g(x)] dx =
∫
f(x) dx +
∫
g(x) dx
∫
xn
dx =
xn+1
n + 1
+ C (n ̸= −1)
∫
ex
dx = ex
+ C
∫
sin x dx = − cos x + C
∫
cos x dx = sin x + C
∫
sec2
x dx = tan x + C
∫
sec x tan x dx = sec x + C
∫
1
1 + x2
dx = arctan x + C
∫
cf(x) dx = c
∫
f(x) dx
∫
1
x
dx = ln |x| + C
∫
ax
dx =
ax
ln a
+ C
∫
csc2
x dx = − cot x + C
∫
csc x cot x dx = − csc x + C
∫
1
√
1 − x2
dx = arcsin x + C
Outline
Last me: The Definite Integral
The definite integral as a limit
Proper es of the integral
Evalua ng Definite Integrals
Examples
The Integral as Net Change
Indefinite Integrals
My first table of integrals
Compu ng Area with integrals
Computing Area with integrals
Example
Find the area of the region bounded by the lines x = 1, x = 4, the
x-axis, and the curve y = ex
.
Computing Area with integrals
Example
Find the area of the region bounded by the lines x = 1, x = 4, the
x-axis, and the curve y = ex
.
Solu on
The answer is ∫ 4
1
ex
dx = ex
|4
1 = e4
− e.
Computing Area with integrals
Example
Find the area of the region bounded by the curve y = arcsin x, the
x-axis, and the line x = 1.
Computing Area with integrals
Example
Find the area of the region bounded by the curve y = arcsin x, the
x-axis, and the line x = 1.
Solu on
The answer is
∫ 1
0
arcsin x dx, but
we do not know an an deriva ve
for arcsin.
..
x
.
y
..
1
..
π/2
Computing Area with integrals
Example
Find the area of the region bounded by the curve y = arcsin x, the
x-axis, and the line x = 1.
Solu on
Instead compute the area as
π
2
−
∫ π/2
0
sin y dy
..
x
.
y
..
1
..
π/2
Computing Area with integrals
Example
Find the area of the region bounded by the curve y = arcsin x, the
x-axis, and the line x = 1.
Solu on
Instead compute the area as
π
2
−
∫ π/2
0
sin y dy =
π
2
−[− cos x]
π/2
0
..
x
.
y
..
1
..
π/2
Computing Area with integrals
Example
Find the area of the region bounded by the curve y = arcsin x, the
x-axis, and the line x = 1.
Solu on
Instead compute the area as
π
2
−
∫ π/2
0
sin y dy =
π
2
−[− cos x]
π/2
0 =
π
2
−1
..
x
.
y
..
1
..
π/2
Example
Find the area between the graph of y = (x − 1)(x − 2), the x-axis,
and the ver cal lines x = 0 and x = 3.
Example
Find the area between the graph of y = (x − 1)(x − 2), the x-axis,
and the ver cal lines x = 0 and x = 3.
Solu on
No ce the func on
y = (x − 1)(x − 2) is posi ve on [0, 1)
and (2, 3], and nega ve on (1, 2).
.. x.
y
..
1
..
2
..
3
Example
Find the area between the graph of y = (x − 1)(x − 2), the x-axis,
and the ver cal lines x = 0 and x = 3.
Solu on
A =
∫ 1
0
(x2
− 3x + 2) dx
−
∫ 2
1
(x2
− 3x + 2) dx
+
∫ 3
2
(x2
− 3x + 2) dx
.. x.
y
..
1
..
2
..
3
Example
Find the area between the graph of y = (x − 1)(x − 2), the x-axis,
and the ver cal lines x = 0 and x = 3.
Solu on
A =
∫ 1
0
(x − 1)(x − 2) dx
−
∫ 2
1
(x − 1)(x − 2) dx
+
∫ 3
2
(x − 1)(x − 2) dx
.. x.
y
..
1
..
2
..
3
Example
Find the area between the graph of y = (x − 1)(x − 2), the x-axis,
and the ver cal lines x = 0 and x = 3.
Solu on
A =
[1
3x3
− 3
2x2
+ 2x
]1
0
−
[1
3x3
− 3
2x2
+ 2x
]2
1
+
[1
3x3
− 3
2x2
+ 2x
]3
2
=
11
6
.. x.
y
..
1
..
2
..
3
Interpretation of “negative area”
in motion
There is an analog in rectlinear mo on:
∫ t1
t0
v(t) dt is net distance traveled.
∫ t1
t0
|v(t)| dt is total distance traveled.
What about the constant?
It seems we forgot about the +C when we say for instance
∫ 1
0
x3
dx =
x4
4
1
0
=
1
4
− 0 =
1
4
But no ce
[
x4
4
+ C
]1
0
=
(
1
4
+ C
)
− (0 + C) =
1
4
+ C − C =
1
4
no ma er what C is.
So in an differen a on for definite integrals, the constant is
immaterial.
Summary
The second Fundamental Theorem of Calculus:
∫ b
a
f(x) dx = F(b) − F(a)
where F′
= f.
Definite integrals represent net change of a func on over an
interval.
We write an deriva ves as indefinite integrals
∫
f(x) dx

More Related Content

PDF
Continuity of functions by graph (exercises with detailed solutions)
PDF
Lesson 21: Antiderivatives (slides)
PDF
Linear approximations and_differentials
PDF
Lesson 23: Antiderivatives (Section 021 handout)
PPT
6.2 the indefinite integral
DOCX
Limits and continuity[1]
PDF
Bregman Voronoi Diagrams (SODA 2007)
PDF
Best Approximation in Real Linear 2-Normed Spaces
Continuity of functions by graph (exercises with detailed solutions)
Lesson 21: Antiderivatives (slides)
Linear approximations and_differentials
Lesson 23: Antiderivatives (Section 021 handout)
6.2 the indefinite integral
Limits and continuity[1]
Bregman Voronoi Diagrams (SODA 2007)
Best Approximation in Real Linear 2-Normed Spaces

What's hot (18)

PPT
Derivatives
PPT
Functions limits and continuity
PPT
Numerical Analysis (Solution of Non-Linear Equations)
PDF
Lesson 27: Integration by Substitution (Section 041 slides)
PPT
19 min max-saddle-points
PDF
Higher order derivatives for N -body simulations
PDF
Lesson 25: Evaluating Definite Integrals (slides)
PPT
Limits and derivatives
PPT
Integration
PDF
Introductory Mathematical Analysis for Business Economics International 13th ...
PDF
Números primos repunits
PDF
Analysis Solutions CIV
PPTX
Higher Derivatives & Partial Differentiation
PDF
Lesson 10: The Chain Rule (slides)
PDF
Notes up to_ch7_sec3
PPT
Introductory maths analysis chapter 11 official
PPTX
Rules of derivative
PPT
28 work and line integrals
Derivatives
Functions limits and continuity
Numerical Analysis (Solution of Non-Linear Equations)
Lesson 27: Integration by Substitution (Section 041 slides)
19 min max-saddle-points
Higher order derivatives for N -body simulations
Lesson 25: Evaluating Definite Integrals (slides)
Limits and derivatives
Integration
Introductory Mathematical Analysis for Business Economics International 13th ...
Números primos repunits
Analysis Solutions CIV
Higher Derivatives & Partial Differentiation
Lesson 10: The Chain Rule (slides)
Notes up to_ch7_sec3
Introductory maths analysis chapter 11 official
Rules of derivative
28 work and line integrals
Ad

Similar to Evaluating definite integrals (20)

PDF
Final Exam Review (Integration)
PDF
Lesson 27: Evaluating Definite Integrals
PDF
Lesson 27: Evaluating Definite Integrals
PDF
Lesson 25: Evaluating Definite Integrals (slides
PDF
Lesson 25: Evaluating Definite Integrals (handout)
PDF
Lesson 30: The Definite Integral
PDF
Lesson 28: The Fundamental Theorem of Calculus
PDF
Lesson 28: The Fundamental Theorem of Calculus
PDF
Definite Integral
PDF
Principle of Definite Integra - Integral Calculus - by Arun Umrao
DOCX
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
PPTX
Indefinite Integrals, types of integration
PDF
Analysis Solutions CVI
PDF
Lesson 26: The Fundamental Theorem of Calculus (slides)
PDF
Lesson 26: The Fundamental Theorem of Calculus (slides)
PDF
Lesson 26: The Fundamental Theorem of Calculus (slides)
PDF
lemh201 (1).pdfvjsbdkkdjfkfjfkffkrnfkfvfkrjof
PPTX
11904040shaiful-191024200113.pptx
PDF
Integral calculus
Final Exam Review (Integration)
Lesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite Integrals
Lesson 25: Evaluating Definite Integrals (slides
Lesson 25: Evaluating Definite Integrals (handout)
Lesson 30: The Definite Integral
Lesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of Calculus
Definite Integral
Principle of Definite Integra - Integral Calculus - by Arun Umrao
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
Indefinite Integrals, types of integration
Analysis Solutions CVI
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
lemh201 (1).pdfvjsbdkkdjfkfjfkffkrnfkfvfkrjof
11904040shaiful-191024200113.pptx
Integral calculus
Ad

Recently uploaded (20)

PPTX
Cell Structure & Organelles in detailed.
PPTX
GDM (1) (1).pptx small presentation for students
PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
PPTX
Pharmacology of Heart Failure /Pharmacotherapy of CHF
PPTX
Institutional Correction lecture only . . .
PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PDF
Pre independence Education in Inndia.pdf
PPTX
PPH.pptx obstetrics and gynecology in nursing
PDF
RMMM.pdf make it easy to upload and study
PDF
Computing-Curriculum for Schools in Ghana
PDF
VCE English Exam - Section C Student Revision Booklet
PPTX
human mycosis Human fungal infections are called human mycosis..pptx
PPTX
Lesson notes of climatology university.
PDF
Classroom Observation Tools for Teachers
PPTX
Microbial diseases, their pathogenesis and prophylaxis
PDF
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
PDF
01-Introduction-to-Information-Management.pdf
PPTX
Renaissance Architecture: A Journey from Faith to Humanism
PDF
Basic Mud Logging Guide for educational purpose
PPTX
Final Presentation General Medicine 03-08-2024.pptx
Cell Structure & Organelles in detailed.
GDM (1) (1).pptx small presentation for students
2.FourierTransform-ShortQuestionswithAnswers.pdf
Pharmacology of Heart Failure /Pharmacotherapy of CHF
Institutional Correction lecture only . . .
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
Pre independence Education in Inndia.pdf
PPH.pptx obstetrics and gynecology in nursing
RMMM.pdf make it easy to upload and study
Computing-Curriculum for Schools in Ghana
VCE English Exam - Section C Student Revision Booklet
human mycosis Human fungal infections are called human mycosis..pptx
Lesson notes of climatology university.
Classroom Observation Tools for Teachers
Microbial diseases, their pathogenesis and prophylaxis
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
01-Introduction-to-Information-Management.pdf
Renaissance Architecture: A Journey from Faith to Humanism
Basic Mud Logging Guide for educational purpose
Final Presentation General Medicine 03-08-2024.pptx

Evaluating definite integrals

  • 1. .. Sec on 5.3 Evalua ng Definite Integrals V63.0121.011: Calculus I Professor Ma hew Leingang New York University April 27, 2011
  • 2. Announcements Today: 5.3 Thursday/Friday: Quiz on 4.1–4.4 Monday 5/2: 5.4 Wednesday 5/4: 5.5 Monday 5/9: Review and Movie Day! Thursday 5/12: Final Exam, 2:00–3:50pm
  • 3. Objectives Use the Evalua on Theorem to evaluate definite integrals. Write an deriva ves as indefinite integrals. Interpret definite integrals as “net change” of a func on over an interval.
  • 4. Outline Last me: The Definite Integral The definite integral as a limit Proper es of the integral Evalua ng Definite Integrals Examples The Integral as Net Change Indefinite Integrals My first table of integrals Compu ng Area with integrals
  • 5. The definite integral as a limit Defini on If f is a func on defined on [a, b], the definite integral of f from a to b is the number ∫ b a f(x) dx = lim n→∞ n∑ i=1 f(ci) ∆x where ∆x = b − a n , and for each i, xi = a + i∆x, and ci is a point in [xi−1, xi].
  • 6. The definite integral as a limit Theorem If f is con nuous on [a, b] or if f has only finitely many jump discon nui es, then f is integrable on [a, b]; that is, the definite integral ∫ b a f(x) dx exists and is the same for any choice of ci.
  • 7. Notation/Terminology ∫ b a f(x) dx ∫ — integral sign (swoopy S) f(x) — integrand a and b — limits of integra on (a is the lower limit and b the upper limit) dx — ??? (a parenthesis? an infinitesimal? a variable?) The process of compu ng an integral is called integra on
  • 8. Example Es mate ∫ 1 0 4 1 + x2 dx using M4.
  • 9. Example Es mate ∫ 1 0 4 1 + x2 dx using M4. Solu on We have x0 = 0, x1 = 1 4 , x2 = 1 2 , x3 = 3 4 , x4 = 1. So c1 = 1 8 , c2 = 3 8 , c3 = 5 8 , c4 = 7 8 .
  • 10. Example Es mate ∫ 1 0 4 1 + x2 dx using M4. Solu on M4 = 1 4 ( 4 1 + (1/8)2 + 4 1 + (3/8)2 + 4 1 + (5/8)2 + 4 1 + (7/8)2 )
  • 11. Example Es mate ∫ 1 0 4 1 + x2 dx using M4. Solu on M4 = 1 4 ( 4 1 + (1/8)2 + 4 1 + (3/8)2 + 4 1 + (5/8)2 + 4 1 + (7/8)2 ) = 1 4 ( 4 65/64 + 4 73/64 + 4 89/64 + 4 113/64 )
  • 12. Example Es mate ∫ 1 0 4 1 + x2 dx using M4. Solu on M4 = 1 4 ( 4 1 + (1/8)2 + 4 1 + (3/8)2 + 4 1 + (5/8)2 + 4 1 + (7/8)2 ) = 1 4 ( 4 65/64 + 4 73/64 + 4 89/64 + 4 113/64 ) = 64 65 + 64 73 + 64 89 + 64 113 ≈ 3.1468
  • 13. Properties of the integral Theorem (Addi ve Proper es of the Integral) Let f and g be integrable func ons on [a, b] and c a constant. Then 1. ∫ b a c dx = c(b − a) 2. ∫ b a [f(x) + g(x)] dx = ∫ b a f(x) dx + ∫ b a g(x) dx. 3. ∫ b a cf(x) dx = c ∫ b a f(x) dx. 4. ∫ b a [f(x) − g(x)] dx = ∫ b a f(x) dx − ∫ b a g(x) dx.
  • 14. More Properties of the Integral Conven ons: ∫ a b f(x) dx = − ∫ b a f(x) dx ∫ a a f(x) dx = 0 This allows us to have Theorem 5. ∫ c a f(x) dx = ∫ b a f(x) dx + ∫ c b f(x) dx for all a, b, and c.
  • 15. Illustrating Property 5 Theorem 5. ∫ c a f(x) dx = ∫ b a f(x) dx + ∫ c b f(x) dx for all a, b, and c. .. x . y .. a .. b .. c
  • 16. Illustrating Property 5 Theorem 5. ∫ c a f(x) dx = ∫ b a f(x) dx + ∫ c b f(x) dx for all a, b, and c. .. x . y .. a .. b .. c . ∫ b a f(x) dx
  • 17. Illustrating Property 5 Theorem 5. ∫ c a f(x) dx = ∫ b a f(x) dx + ∫ c b f(x) dx for all a, b, and c. .. x . y .. a .. b .. c . ∫ b a f(x) dx . ∫ c b f(x) dx
  • 18. Illustrating Property 5 Theorem 5. ∫ c a f(x) dx = ∫ b a f(x) dx + ∫ c b f(x) dx for all a, b, and c. .. x . y .. a .. b .. c . ∫ b a f(x) dx . ∫ c b f(x) dx . ∫ c a f(x) dx
  • 19. Illustrating Property 5 Theorem 5. ∫ c a f(x) dx = ∫ b a f(x) dx + ∫ c b f(x) dx for all a, b, and c. .. x . y .. a .. b .. c
  • 20. Illustrating Property 5 Theorem 5. ∫ c a f(x) dx = ∫ b a f(x) dx + ∫ c b f(x) dx for all a, b, and c. .. x . y .. a .. b .. c . ∫ b a f(x) dx
  • 21. Illustrating Property 5 Theorem 5. ∫ c a f(x) dx = ∫ b a f(x) dx + ∫ c b f(x) dx for all a, b, and c. .. x . y .. a .. b .. c . ∫ c b f(x) dx = − ∫ b c f(x) dx
  • 22. Illustrating Property 5 Theorem 5. ∫ c a f(x) dx = ∫ b a f(x) dx + ∫ c b f(x) dx for all a, b, and c. .. x . y .. a .. b .. c . ∫ c b f(x) dx = − ∫ b c f(x) dx . ∫ c a f(x) dx
  • 23. Definite Integrals We Know So Far If the integral computes an area and we know the area, we can use that. For instance, ∫ 1 0 √ 1 − x2 dx = π 4 By brute force we computed ∫ 1 0 x2 dx = 1 3 ∫ 1 0 x3 dx = 1 4 .. x . y
  • 24. Comparison Properties of the Integral Theorem Let f and g be integrable func ons on [a, b].
  • 25. Comparison Properties of the Integral Theorem Let f and g be integrable func ons on [a, b]. 6. If f(x) ≥ 0 for all x in [a, b], then ∫ b a f(x) dx ≥ 0
  • 26. Comparison Properties of the Integral Theorem Let f and g be integrable func ons on [a, b]. 6. If f(x) ≥ 0 for all x in [a, b], then ∫ b a f(x) dx ≥ 0 7. If f(x) ≥ g(x) for all x in [a, b], then ∫ b a f(x) dx ≥ ∫ b a g(x) dx
  • 27. Comparison Properties of the Integral Theorem Let f and g be integrable func ons on [a, b]. 6. If f(x) ≥ 0 for all x in [a, b], then ∫ b a f(x) dx ≥ 0 7. If f(x) ≥ g(x) for all x in [a, b], then ∫ b a f(x) dx ≥ ∫ b a g(x) dx 8. If m ≤ f(x) ≤ M for all x in [a, b], then m(b − a) ≤ ∫ b a f(x) dx ≤ M(b − a)
  • 28. Integral of a nonnegative function is nonnegative Proof. If f(x) ≥ 0 for all x in [a, b], then for any number of divisions n and choice of sample points {ci}: Sn = n∑ i=1 f(ci) ≥0 ∆x ≥ n∑ i=1 0 · ∆x = 0 .. x....... Since Sn ≥ 0 for all n, the limit of {Sn} is nonnega ve, too: ∫ b a f(x) dx = lim n→∞ Sn ≥0 ≥ 0
  • 29. The integral is “increasing” Proof. Let h(x) = f(x) − g(x). If f(x) ≥ g(x) for all x in [a, b], then h(x) ≥ 0 for all x in [a, b]. So by the previous property ∫ b a h(x) dx ≥ 0 .. x. f(x) . g(x) . h(x) This means that ∫ b a f(x) dx − ∫ b a g(x) dx = ∫ b a (f(x) − g(x)) dx = ∫ b a h(x) dx ≥ 0
  • 30. Bounding the integral Proof. If m ≤ f(x) ≤ M on for all x in [a, b], then by the previous property ∫ b a m dx ≤ ∫ b a f(x) dx ≤ ∫ b a M dx By Property 8, the integral of a constant func on is the product of the constant and the width of the interval. So: m(b − a) ≤ ∫ b a f(x) dx ≤ M(b − a) .. x. y . M . f(x) . m .. a .. b
  • 31. Example Es mate ∫ 2 1 1 x dx using the comparison proper es.
  • 32. Example Es mate ∫ 2 1 1 x dx using the comparison proper es. Solu on Since 1 2 ≤ 1 x ≤ 1 1 for all x in [1, 2], we have 1 2 · 1 ≤ ∫ 2 1 1 x dx ≤ 1 · 1
  • 33. Ques on Es mate ∫ 2 1 1 x dx with L2 and R2. Are your es mates overes mates? Underes mates? Impossible to tell?
  • 34. Ques on Es mate ∫ 2 1 1 x dx with L2 and R2. Are your es mates overes mates? Underes mates? Impossible to tell? Answer Since the integrand is decreasing, Rn < ∫ 2 1 1 x dx < Ln for all n. So 7 12 < ∫ 2 1 1 x dx < 5 6 .
  • 35. Outline Last me: The Definite Integral The definite integral as a limit Proper es of the integral Evalua ng Definite Integrals Examples The Integral as Net Change Indefinite Integrals My first table of integrals Compu ng Area with integrals
  • 36. Socratic proof The definite integral of velocity measures displacement (net distance) The deriva ve of displacement is velocity So we can compute displacement with the definite integral or the an deriva ve of velocity But any func on can be a velocity func on, so . . .
  • 37. Theorem of the Day Theorem (The Second Fundamental Theorem of Calculus) Suppose f is integrable on [a, b] and f = F′ for another func on F, then ∫ b a f(x) dx = F(b) − F(a).
  • 38. Theorem of the Day Theorem (The Second Fundamental Theorem of Calculus) Suppose f is integrable on [a, b] and f = F′ for another func on F, then ∫ b a f(x) dx = F(b) − F(a). Note In Sec on 5.3, this theorem is called “The Evalua on Theorem”. Nobody else in the world calls it that.
  • 39. Proving the Second FTC Proof. Divide up [a, b] into n pieces of equal width ∆x = b − a n as usual.
  • 40. Proving the Second FTC Proof. Divide up [a, b] into n pieces of equal width ∆x = b − a n as usual. For each i, F is con nuous on [xi−1, xi] and differen able on (xi−1, xi). So there is a point ci in (xi−1, xi) with F(xi) − F(xi−1) xi − xi−1 = F′ (ci) = f(ci)
  • 41. Proving the Second FTC Proof. Divide up [a, b] into n pieces of equal width ∆x = b − a n as usual. For each i, F is con nuous on [xi−1, xi] and differen able on (xi−1, xi). So there is a point ci in (xi−1, xi) with F(xi) − F(xi−1) xi − xi−1 = F′ (ci) = f(ci) =⇒ f(ci)∆x = F(xi) − F(xi−1)
  • 42. Proving the Second FTC Proof. Form the Riemann Sum:
  • 43. Proving the Second FTC Proof. Form the Riemann Sum: Sn = n∑ i=1 f(ci)∆x = n∑ i=1 (F(xi) − F(xi−1))
  • 44. Proving the Second FTC Proof. Form the Riemann Sum: Sn = n∑ i=1 f(ci)∆x = n∑ i=1 (F(xi) − F(xi−1)) = (F(x1) − F(x0)) + (F(x2) − F(x1)) + (F(x3) − F(x2)) + · · · · · · + (F(xn−1) − F(xn−2)) + (F(xn) − F(xn−1))
  • 45. Proving the Second FTC Proof. Form the Riemann Sum: Sn = n∑ i=1 f(ci)∆x = n∑ i=1 (F(xi) − F(xi−1)) = (F(x1) − F(x0)) + (F(x2) − F(x1)) + (F(x3) − F(x2)) + · · · · · · + (F(xn−1) − F(xn−2)) + (F(xn) − F(xn−1))
  • 46. Proving the Second FTC Proof. Form the Riemann Sum: Sn = n∑ i=1 f(ci)∆x = n∑ i=1 (F(xi) − F(xi−1)) = (F(x1) − F(x0)) + (F(x2) − F(x1)) + (F(x3) − F(x2)) + · · · · · · + (F(xn−1) − F(xn−2)) + (F(xn) − F(xn−1))
  • 47. Proving the Second FTC Proof. Form the Riemann Sum: Sn = n∑ i=1 f(ci)∆x = n∑ i=1 (F(xi) − F(xi−1)) = (F(x1) − F(x0)) + (F(x2) − F(x1)) + (F(x3) − F(x2)) + · · · · · · + (F(xn−1) − F(xn−2)) + (F(xn) − F(xn−1))
  • 48. Proving the Second FTC Proof. Form the Riemann Sum: Sn = n∑ i=1 f(ci)∆x = n∑ i=1 (F(xi) − F(xi−1)) = (F(x1) − F(x0)) + (F(x2) − F(x1)) + (F(x3) − F(x2)) + · · · · · · + (F(xn−1) − F(xn−2)) + (F(xn) − F(xn−1))
  • 49. Proving the Second FTC Proof. Form the Riemann Sum: Sn = n∑ i=1 f(ci)∆x = n∑ i=1 (F(xi) − F(xi−1)) = (F(x1) − F(x0)) + (F(x2) − F(x1)) + (F(x3) − F(x2)) + · · · · · · + (F(xn−1) − F(xn−2)) + (F(xn) − F(xn−1))
  • 50. Proving the Second FTC Proof. Form the Riemann Sum: Sn = n∑ i=1 f(ci)∆x = n∑ i=1 (F(xi) − F(xi−1)) = (F(x1) − F(x0)) + (F(x2) − F(x1)) + (F(x3) − F(x2)) + · · · · · · + (F(xn−1) − F(xn−2)) + (F(xn) − F(xn−1))
  • 51. Proving the Second FTC Proof. Form the Riemann Sum: Sn = n∑ i=1 f(ci)∆x = n∑ i=1 (F(xi) − F(xi−1)) = (F(x1) − F(x0)) + (F(x2) − F(x1)) + (F(x3) − F(x2)) + · · · · · · + (F(xn−1) − F(xn−2)) + (F(xn) − F(xn−1))
  • 52. Proving the Second FTC Proof. Form the Riemann Sum: Sn = n∑ i=1 f(ci)∆x = n∑ i=1 (F(xi) − F(xi−1)) = (F(x1) − F(x0)) + (F(x2) − F(x1)) + (F(x3) − F(x2)) + · · · · · · + (F(xn−1) − F(xn−2)) + (F(xn) − F(xn−1))
  • 53. Proving the Second FTC Proof. Form the Riemann Sum: Sn = n∑ i=1 f(ci)∆x = n∑ i=1 (F(xi) − F(xi−1)) = (F(x1) − F(x0)) + (F(x2) − F(x1)) + (F(x3) − F(x2)) + · · · · · · + (F(xn−1) − F(xn−2)) + (F(xn) − F(xn−1))
  • 54. Proving the Second FTC Proof. Form the Riemann Sum: Sn = n∑ i=1 f(ci)∆x = n∑ i=1 (F(xi) − F(xi−1)) = (F(x1) − F(x0)) + (F(x2) − F(x1)) + (F(x3) − F(x2)) + · · · · · · + (F(xn−1) − F(xn−2)) + (F(xn) − F(xn−1))
  • 55. Proving the Second FTC Proof. Form the Riemann Sum: Sn = n∑ i=1 f(ci)∆x = n∑ i=1 (F(xi) − F(xi−1)) = (F(x1) − F(x0)) + (F(x2) − F(x1)) + (F(x3) − F(x2)) + · · · · · · + (F(xn−1) − F(xn−2)) + (F(xn) − F(xn−1)) = F(xn) − F(x0) = F(b) − F(a)
  • 56. Proving the Second FTC Proof. We have shown for each n, Sn = F(b) − F(a) Which does not depend on n.
  • 57. Proving the Second FTC Proof. We have shown for each n, Sn = F(b) − F(a) Which does not depend on n. So in the limit ∫ b a f(x) dx = lim n→∞ Sn = lim n→∞ (F(b) − F(a)) = F(b) − F(a)
  • 58. Computing area with the 2nd FTC Example Find the area between y = x3 and the x-axis, between x = 0 and x = 1. .
  • 59. Computing area with the 2nd FTC Example Find the area between y = x3 and the x-axis, between x = 0 and x = 1. Solu on A = ∫ 1 0 x3 dx = x4 4 1 0 = 1 4 .
  • 60. Computing area with the 2nd FTC Example Find the area between y = x3 and the x-axis, between x = 0 and x = 1. Solu on A = ∫ 1 0 x3 dx = x4 4 1 0 = 1 4 . Here we use the nota on F(x)|b a or [F(x)]b a to mean F(b) − F(a).
  • 61. Computing area with the 2nd FTC Example Find the area enclosed by the parabola y = x2 and the line y = 1.
  • 62. Computing area with the 2nd FTC Example Find the area enclosed by the parabola y = x2 and the line y = 1. ... −1 .. 1 .. 1
  • 63. Computing area with the 2nd FTC Example Find the area enclosed by the parabola y = x2 and the line y = 1. Solu on A = 2 − ∫ 1 −1 x2 dx = 2 − [ x3 3 ]1 −1 = 2 − [ 1 3 − ( − 1 3 )] = 4 3 ... −1 .. 1 .. 1
  • 64. Computing an integral we estimated before Example Evaluate the integral ∫ 1 0 4 1 + x2 dx.
  • 65. Example Es mate ∫ 1 0 4 1 + x2 dx using M4. Solu on M4 = 1 4 ( 4 1 + (1/8)2 + 4 1 + (3/8)2 + 4 1 + (5/8)2 + 4 1 + (7/8)2 ) = 1 4 ( 4 65/64 + 4 73/64 + 4 89/64 + 4 113/64 ) = 64 65 + 64 73 + 64 89 + 64 113 ≈ 3.1468
  • 66. Computing an integral we estimated before Example Evaluate the integral ∫ 1 0 4 1 + x2 dx. Solu on ∫ 1 0 4 1 + x2 dx = 4 ∫ 1 0 1 1 + x2 dx
  • 67. Computing an integral we estimated before Example Evaluate the integral ∫ 1 0 4 1 + x2 dx. Solu on ∫ 1 0 4 1 + x2 dx = 4 ∫ 1 0 1 1 + x2 dx = 4 arctan(x)|1 0
  • 68. Computing an integral we estimated before Example Evaluate the integral ∫ 1 0 4 1 + x2 dx. Solu on ∫ 1 0 4 1 + x2 dx = 4 ∫ 1 0 1 1 + x2 dx = 4 arctan(x)|1 0 = 4 (arctan 1 − arctan 0)
  • 69. Computing an integral we estimated before Example Evaluate the integral ∫ 1 0 4 1 + x2 dx. Solu on ∫ 1 0 4 1 + x2 dx = 4 ∫ 1 0 1 1 + x2 dx = 4 arctan(x)|1 0 = 4 (arctan 1 − arctan 0) = 4 (π 4 − 0 )
  • 70. Computing an integral we estimated before Example Evaluate the integral ∫ 1 0 4 1 + x2 dx. Solu on ∫ 1 0 4 1 + x2 dx = 4 ∫ 1 0 1 1 + x2 dx = 4 arctan(x)|1 0 = 4 (arctan 1 − arctan 0) = 4 (π 4 − 0 ) = π
  • 71. Computing an integral we estimated before Example Evaluate ∫ 2 1 1 x dx.
  • 72. Example Es mate ∫ 2 1 1 x dx using the comparison proper es. Solu on Since 1 2 ≤ 1 x ≤ 1 1 for all x in [1, 2], we have 1 2 · 1 ≤ ∫ 2 1 1 x dx ≤ 1 · 1
  • 73. Computing an integral we estimated before Example Evaluate ∫ 2 1 1 x dx. Solu on ∫ 2 1 1 x dx
  • 74. Computing an integral we estimated before Example Evaluate ∫ 2 1 1 x dx. Solu on ∫ 2 1 1 x dx = ln x|2 1
  • 75. Computing an integral we estimated before Example Evaluate ∫ 2 1 1 x dx. Solu on ∫ 2 1 1 x dx = ln x|2 1 = ln 2 − ln 1
  • 76. Computing an integral we estimated before Example Evaluate ∫ 2 1 1 x dx. Solu on ∫ 2 1 1 x dx = ln x|2 1 = ln 2 − ln 1 = ln 2
  • 77. Outline Last me: The Definite Integral The definite integral as a limit Proper es of the integral Evalua ng Definite Integrals Examples The Integral as Net Change Indefinite Integrals My first table of integrals Compu ng Area with integrals
  • 78. The Integral as Net Change Another way to state this theorem is: ∫ b a F′ (x) dx = F(b) − F(a), or the integral of a deriva ve along an interval is the net change over that interval. This has many interpreta ons.
  • 79. The Integral as Net Change
  • 80. The Integral as Net Change Corollary If v(t) represents the velocity of a par cle moving rec linearly, then ∫ t1 t0 v(t) dt = s(t1) − s(t0).
  • 81. The Integral as Net Change Corollary If MC(x) represents the marginal cost of making x units of a product, then C(x) = C(0) + ∫ x 0 MC(q) dq.
  • 82. The Integral as Net Change Corollary If ρ(x) represents the density of a thin rod at a distance of x from its end, then the mass of the rod up to x is m(x) = ∫ x 0 ρ(s) ds.
  • 83. Outline Last me: The Definite Integral The definite integral as a limit Proper es of the integral Evalua ng Definite Integrals Examples The Integral as Net Change Indefinite Integrals My first table of integrals Compu ng Area with integrals
  • 84. A new notation for antiderivatives To emphasize the rela onship between an differen a on and integra on, we use the indefinite integral nota on ∫ f(x) dx for any func on whose deriva ve is f(x).
  • 85. A new notation for antiderivatives To emphasize the rela onship between an differen a on and integra on, we use the indefinite integral nota on ∫ f(x) dx for any func on whose deriva ve is f(x). Thus ∫ x2 dx = 1 3x3 + C.
  • 86. My first table of integrals.. ∫ [f(x) + g(x)] dx = ∫ f(x) dx + ∫ g(x) dx ∫ xn dx = xn+1 n + 1 + C (n ̸= −1) ∫ ex dx = ex + C ∫ sin x dx = − cos x + C ∫ cos x dx = sin x + C ∫ sec2 x dx = tan x + C ∫ sec x tan x dx = sec x + C ∫ 1 1 + x2 dx = arctan x + C ∫ cf(x) dx = c ∫ f(x) dx ∫ 1 x dx = ln |x| + C ∫ ax dx = ax ln a + C ∫ csc2 x dx = − cot x + C ∫ csc x cot x dx = − csc x + C ∫ 1 √ 1 − x2 dx = arcsin x + C
  • 87. Outline Last me: The Definite Integral The definite integral as a limit Proper es of the integral Evalua ng Definite Integrals Examples The Integral as Net Change Indefinite Integrals My first table of integrals Compu ng Area with integrals
  • 88. Computing Area with integrals Example Find the area of the region bounded by the lines x = 1, x = 4, the x-axis, and the curve y = ex .
  • 89. Computing Area with integrals Example Find the area of the region bounded by the lines x = 1, x = 4, the x-axis, and the curve y = ex . Solu on The answer is ∫ 4 1 ex dx = ex |4 1 = e4 − e.
  • 90. Computing Area with integrals Example Find the area of the region bounded by the curve y = arcsin x, the x-axis, and the line x = 1.
  • 91. Computing Area with integrals Example Find the area of the region bounded by the curve y = arcsin x, the x-axis, and the line x = 1. Solu on The answer is ∫ 1 0 arcsin x dx, but we do not know an an deriva ve for arcsin. .. x . y .. 1 .. π/2
  • 92. Computing Area with integrals Example Find the area of the region bounded by the curve y = arcsin x, the x-axis, and the line x = 1. Solu on Instead compute the area as π 2 − ∫ π/2 0 sin y dy .. x . y .. 1 .. π/2
  • 93. Computing Area with integrals Example Find the area of the region bounded by the curve y = arcsin x, the x-axis, and the line x = 1. Solu on Instead compute the area as π 2 − ∫ π/2 0 sin y dy = π 2 −[− cos x] π/2 0 .. x . y .. 1 .. π/2
  • 94. Computing Area with integrals Example Find the area of the region bounded by the curve y = arcsin x, the x-axis, and the line x = 1. Solu on Instead compute the area as π 2 − ∫ π/2 0 sin y dy = π 2 −[− cos x] π/2 0 = π 2 −1 .. x . y .. 1 .. π/2
  • 95. Example Find the area between the graph of y = (x − 1)(x − 2), the x-axis, and the ver cal lines x = 0 and x = 3.
  • 96. Example Find the area between the graph of y = (x − 1)(x − 2), the x-axis, and the ver cal lines x = 0 and x = 3. Solu on No ce the func on y = (x − 1)(x − 2) is posi ve on [0, 1) and (2, 3], and nega ve on (1, 2). .. x. y .. 1 .. 2 .. 3
  • 97. Example Find the area between the graph of y = (x − 1)(x − 2), the x-axis, and the ver cal lines x = 0 and x = 3. Solu on A = ∫ 1 0 (x2 − 3x + 2) dx − ∫ 2 1 (x2 − 3x + 2) dx + ∫ 3 2 (x2 − 3x + 2) dx .. x. y .. 1 .. 2 .. 3
  • 98. Example Find the area between the graph of y = (x − 1)(x − 2), the x-axis, and the ver cal lines x = 0 and x = 3. Solu on A = ∫ 1 0 (x − 1)(x − 2) dx − ∫ 2 1 (x − 1)(x − 2) dx + ∫ 3 2 (x − 1)(x − 2) dx .. x. y .. 1 .. 2 .. 3
  • 99. Example Find the area between the graph of y = (x − 1)(x − 2), the x-axis, and the ver cal lines x = 0 and x = 3. Solu on A = [1 3x3 − 3 2x2 + 2x ]1 0 − [1 3x3 − 3 2x2 + 2x ]2 1 + [1 3x3 − 3 2x2 + 2x ]3 2 = 11 6 .. x. y .. 1 .. 2 .. 3
  • 100. Interpretation of “negative area” in motion There is an analog in rectlinear mo on: ∫ t1 t0 v(t) dt is net distance traveled. ∫ t1 t0 |v(t)| dt is total distance traveled.
  • 101. What about the constant? It seems we forgot about the +C when we say for instance ∫ 1 0 x3 dx = x4 4 1 0 = 1 4 − 0 = 1 4 But no ce [ x4 4 + C ]1 0 = ( 1 4 + C ) − (0 + C) = 1 4 + C − C = 1 4 no ma er what C is. So in an differen a on for definite integrals, the constant is immaterial.
  • 102. Summary The second Fundamental Theorem of Calculus: ∫ b a f(x) dx = F(b) − F(a) where F′ = f. Definite integrals represent net change of a func on over an interval. We write an deriva ves as indefinite integrals ∫ f(x) dx