SlideShare a Scribd company logo
1
Gamma Function
SOLO HERMELIN
Updated 28.10.12http://www.solohermelin.com
2
SOLO
TABLE OF CONTENT
Gamma Function
Gamma Function History
Gamma Function: Euler’s Second Integral
Properties of Gamma Function
Other Gamma Function Definitions: Gauss’ Formula
Some Special Values of Gamma Function:
Bohr-Mollerup-Artin Theorem
Other Gamma Function Definitions: Weierstrass’ Formula
Differentiation of Gamma Function
Beta Function: Euler’s First Integral
Euler Reflection Formula
Duplication and Multiplication Formula
Stirling Approximation Formula
References
3
SOLO
Gamma Function History
The Gamma Function was first introduced by the Swiss mathematician
Leonhard Euler (1707 – 1783). His goal was to generalize the factorial
to non-integer values. Later, it was studied by Adrien-Marie Legendre
(1752-1833), Carl Friedrich Gauss (1777-1855), Christoph Gudermann
(1798-1852), Joseph Liouville (1809 – 1882), Karl Weierstrass (1815-
1897), Charles Hermite (1822-1901),…and others
Leonhard Euler
)1707–1783(
( ) ( ) 0ln
1
0
1
>−=Γ ∫
=
=
−
xtdtz
t
t
x
Adrien-Marie Legendre
)1752–1833(
The problem of extending the factorial to non-integer arguments was
apparently first considered by Daniel Bernoulli and Christian
Goldbach in the 1720s, and was solved at the end of the same decade
by Leonhard Euler. Euler gave two different definitions: the first was
not his integral but an infinite product,
∏
∞
=
+






+
=
1
1
1
1
!
k
n
k
n
k
n
of which he informed Goldbach in a letter dated October 13, 1729. He wrote to
Goldbach again on January 8, 1730, to announce his discovery of the integral
representation
Gamma Function
4
SOLO
Gamma Function History
Leonhard Euler
)1707–1783(
( ) ( ) 0ln
1
0
1
>−=Γ ∫
=
=
−
xtdtz
t
t
x
During the years 1729 and 1730, Euler introduced the following
analytic function,
By changing of variables we can obtain more known forms
( ) ( ) ( ) 0ln
0
10
1
1
0
1
>=−=−=Γ ∫∫∫
∞=
=
−=
∞=
−−
=
−=
=
=
−
−
−
xtd
e
t
tdetuduz
t
t
t
xt
t
tx
eu
dtedu
u
u
x
t
t
( ) ( ) ( )
( ) 022ln
0
12
0
12
2
1
0
1 22
2
2
>=−=−=Γ ∫∫∫
∞=
=
−−
=
∞=
−−
=
−=
=
=
−
−
−
xtdettdettuduz
t
t
tx
t
t
tx
eu
dtetdu
u
u
x
t
t
The notation Γ (x) is due to Legendre in 1809,
while Gauss used Π (x) = Γ (x+1)
Carl Friedrich
Gauss
(1777 – 1855)
Adrien-Marie Legendre
)1752–1833(
Gamma Function
5
SOLO
( ) ∫
∞=
=
−
=Γ
t
t
t
z
td
e
t
z
0
1
Proof:
Gamma Function
0& >+= xyixz
∫∫∫
∞=
=
−=
+=
−∞=
+=
−
+=
t
t
t
zt
t
t
zt
t
t
z
td
e
t
td
e
t
td
e
t
1
11
0
1
0
1
For the first part:
x
t
xx
t
x
tdttd
e
t
td
e
t x
t
t
t
x
t
t
x
et
t
t
yixt
t
t
z t
1
lim
111
0
1
0
1
0
1
11
0
11
0
1
=−==≤=
+→
=
+=
=
+=
−
>=
+=
−+=
+=
−
∫∫∫
The first integral converges for any x ≥ δ > 0.
For the second integral, using integration by parts:
( ) ( )
( ) ( ) ( )( ) ∫
∫∫∫∫
∞=
=
−
∞=
=
−−
=
=
∞=
=
−
∞=
=
−−
=
=
∞=
=
−∞=
=
−+∞=
=
−
−−+−−+=
−+−===
−
−
−
−
t
t
t
x
e
t
t
tx
edv
tu
t
t
t
x
e
t
t
tx
edv
tu
t
t
t
xt
t
t
yixt
t
t
z
td
e
t
xxetx
e
td
e
t
xettd
e
t
td
e
t
td
e
t
t
x
t
x
1
3
/1
1
2
1
2
/1
1
1
1
1
1
1
1
1
211
1
1
2
1


Euler’s Second Integral
Gamma integral is defined, and
converges uniformly for x > 0.
Gamma Function
6
SOLO
( ) ∫
∞=
=
−
=Γ
t
t
t
z
td
e
t
z
0
1
Proof (continue):
Gamma Function
0& >+= xyixz
For the second integral, using integration by parts:
( ) ( )
( ) ( ) ( )( ) ∫
∫∫∫∫
∞=
=
−
∞=
=
−−
=
=
∞=
=
−
∞=
=
−−
=
=
∞=
=
−∞=
=
−+∞=
=
−
−−+−−+=
−+−===
−
−
−
−
t
t
t
x
e
t
t
tx
edv
tu
t
t
t
x
e
t
t
tx
edv
tu
t
t
t
xt
t
t
yixt
t
t
z
td
e
t
xxetx
e
td
e
t
xettd
e
t
td
e
t
td
e
t
t
x
t
x
1
3
/1
1
2
1
2
/1
1
1
1
1
1
1
1
1
211
1
1
2
1


After [x] (the integer defined such that x-[x] < 1) such integration the power of t in
the integrand becomes x-[x]-1 < 0. and we have:
( )( ) [ ]( ) [ ]( ) ( )( ) [ ]( ) ∞<−−−<−−− ∫∫
∞=
=
∞=
=
−−
t
t
t
t
t
txx
td
e
xxxxtd
et
xxxx
11
1
1
21
1
21 
Therefore the Gamma integral is defined, and converges uniformly for x > 0.
Gamma integral is defined, and
converges uniformly for x > 0.
q.e.d.
Gamma Function
Return to Table of Content
7
SOLO
( ) ∫
∞=
=
−
=Γ
t
t
t
z
td
e
t
z
0
1
Proof :
Gamma Function
0& >+= xyixz
( ) ( )zzz Γ=+Γ 1
( )  ( ) ( ) ( )zztdetztdtzeettdetz
t
t
tz
t
t ud
z
v
t
v
t
u
z
dtedvtu
partsby
t
t
tz
tz
Γ=+=−−−==+Γ ∫∫∫
∞=
=
−−
∞=
=
−−
∞
−
==∞=
=
−
−
0
1
0
1
0
,
nintegratio
0
01

Properties of Gamma Function : 1
Note that for the evaluation of Gamma Function for a Positive Real Number
we need to know only the value of Γ (x) for 0 < x < 1
( ) ( ) ( ) ( ) ( )xxxnxnxnx Γ+−+−+=+Γ 121 
( ) ( )
( ) ( ) ( )121 −+−++
+Γ
=Γ
nxnxxx
nx
x

For x < 0 with –n < x < -n+1 or 0 < x+n < 1, we define
We can see that for x = 0 or a negative integer the
denominator of the right side is zero, and so Γ (x) is
undefined (goes to infinity)
Gamma Function
( ) ,2,1,0!1 ==+Γ nnn
8
SOLO
( ) ∫
∞=
=
−
=Γ
t
t
t
z
td
e
t
z
0
1
Proof :
Gamma Function
( ) ( )
( )!1
1
Residue
1
1 −
−
=Γ
−
+−→ n
z
n
nz
Residues of Gamma Function at x = 0,-1, -2,---,-n,..:
( ) ( )
( ) ( ) ( )121 −+−++
+Γ
=Γ
nxnxxx
nx
x

q.e.d.
( ) ( ) ( )
( ) ( ) ( )
( )

( )( ) ( )
( )
( )!1
1
121
1
121
1limResidue
1
1
11
−
−
=
−+−+−
Γ
=
−+−++
+Γ
−+=Γ
−
+−→+−→
nnn
nxnxxx
nx
nxx
n
nxnx


Gamma Function
9
SOLO
Gamma Function Γ (x) and its Inverse 1/Γ (x)
Gamma Function
10
SOLO
( ) ∫
∞=
=
−
=Γ
t
t
t
z
td
e
t
z
0
1
Gamma Function
Absolute value |Γ (z)|
Real value ReΓ (z)
Imaginary value ImΓ (z)
Gamma Function
11
SOLO
( ) ∫
∞=
=
−
=Γ
t
t
t
z
td
e
t
z
0
1
Gamma Function
Absolute value |Γ (z)|
Gamma Function
12
SOLO
( ) ∫
∞=
=
−
=Γ
t
t
t
z
td
e
t
z
0
1
Gamma Function
( ) ( )zzz Γ=+Γ 1
Let compute
( ) 11
0
0
=−==Γ
∞−
∞=
=
−
∫
t
t
t
t
etde
Therefore for any n positive integer:
( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )!1122112111 −=Γ−−=−Γ−−=−Γ−=Γ nnnnnnnnn 
Properties of Gamma Function : 1
2
q.e.d.
Gamma Function
13
SOLO Primes
Second definition identical to First
( )[ ] ( ) ( ) ( ) ( ) ( )bayxallyfxfyxf ,,1,011 ∈∈−+≤−+ λλλλλ
Convex Function :
A Function f (x) is called Convex in an interval (a,b) if for every x,y (a,b) we haveϵ
A Function f (x), defined for x > 0, is called Convex, if the corresponding function
( ) ( ) ( )
y
xfyxf
y
−+
=φ
defined for all y > -x, y ≠ 0, is monotonic Increasing throughout the range of
definition.
If 0 < x1 < x < x2, are given by choosing y1 = x1 – x < 0, y2 = x2 – x > 0, we express
the condition of convexity as
( ) ( ) ( ) ( ) ( ) ( )
xx
xfxf
y
xx
xfxf
y
−
−
=≤
−
−
=
2
2
2
1
1
1 φφ
( ) ( )[ ] ( ) ( ) ( )[ ] ( )xxxfxfxxxfxf −−≥−− 1221
( ) ( ) ( )
( )
( ) ( )
( )
λλ −
−
−
+
−
−
≤
1
12
1
2
12
2
1
xx
xx
xf
xx
xx
xfxf
One other equivalent definition:
14
SOLO Primes
( )[ ] ( ) ( ) ( ) ( )1,0ln1ln1ln ∈−+≤−+ λλλλλ yfxfyxf
Logarithmic Convex Function :
A Function f (x)>0 is called logarithmic-convex or simply log-convex if ln (f (x) )
is convex or
This is equivalent to ( )[ ] ( ) ( )( )λλ
λλ
−
≤−+
1
ln1ln yfxfyxf
Since the logarithm is a momotonic increasing function we obtain
( )[ ] ( ) ( )( )
( ) yxyfxfyxf <∈≤−+
−
,1,01
1
λλλ
λλ
15
SOLO Primes
( ) ∫
∞=
=
−
=Γ
t
t
t
z
td
e
t
z
0
1
Proof :
Gamma Function
0& >+= xyixz
( )[ ] ( ) ( ) ( ) ( )1,0ln1ln1ln ∈Γ−+Γ≤−+Γ λλλλλ baba
Properties of Gamma Function :
3
Gamma is a
Log Convex
Function
( )[ ] ( )
( ) ( )
( ) ( ) λλ
λλ
λλλλ
λλ
−
−∞
−−
∞
−−
∞
−−−−−
∞
−−−+
ΓΓ=















≤
==−+Γ
∫∫
∫∫
1
1
0
1
0
1
0
111
0
11
1
badtetdtet
dtetetdtetba
tbta
InequalityHolder
tbtatba
q.e.d.
Return to Table of Content
16
SOLO Primes
( ) ∫
∞=
=
−
=Γ
t
t
t
z
td
e
t
z
0
1
Proof :
Gamma Function
Other Gamma Function Definitions:
( )
( ) ( )nxxx
nn
x
x
n ++
=Γ
∞→ 1
!
limGauss’ Formula
Since the Gamma Function is monotonically increasing the logarithm of Gamma
Function is also monotonic increasing and for 0 < x < 1 and any n > 2 we have
( ) ( )
( ) nnx
nnx
−+
Γ−+Γ lnln
( )[ ] ( )[ ]
( )
( )
( ) ( )[ ] [ ] ( )[ ]
( )
    






−





−
−
−−
≤
−−+Γ
≤
−
−−−
!1
!
ln
!2
!1
ln
1
!1ln!ln!1lnln
1
!1ln!2ln
n
n
n
n
nn
x
nnxnn
( )
( )
( ) n
x
n
nx
n ln
!1
ln
1ln ≤
−
+Γ
≤−
( ) ( )
( )
1
1
ln1ln −=←
≤
−+−
Γ−+−Γ x
nn
nn ( ) ( )
( ) nn
nnx
−+
Γ−+Γ
≤
→=
1
ln1ln1
Carl Friedrich Gauss
(1777 – 1855)
17
SOLO Primes
( ) ∫
∞=
=
−
=Γ
t
t
t
z
td
e
t
z
0
1
Proof (continue - 1) :
Gamma Function
Other Gamma Function Definitions:
Since the Gamma Function is monotonically increasing the logarithm of Gamma
Function is also monotonic increasing and for 0 < x < 1 and any n > 2 we have
( )
( )
( ) n
x
n
nx
n ln
!1
ln
1ln ≤
−
+Γ
≤− ( ) ( )
( )
xx
n
n
nx
n ln
!1
ln1ln ≤
−
+Γ
≤−
10 << x
( ) ( ) ( ) ( )!1!11 −≤+Γ≤−− nnnxnn xx
Use ( ) ( ) ( ) ( ) ( )xxxnxnxnx Γ+−+−+=+Γ
>
  

0
121
( ) ( )
( ) ( ) ( )
( ) ( )
( ) ( ) ( ) xxnxnx
nn
x
xxnxnx
nn xx
121
!1
121
!11
+−+−+
−
≤Γ≤
+−+−+
−−

( )
( ) ( )nxxx
nn
x
x
n ++
=Γ
∞→ 1
!
limGauss’ Formula
Euler 1729
Gauss 1811
18
SOLO Primes
( ) ∫
∞=
=
−
=Γ
t
t
t
z
td
e
t
z
0
1
Proof (continue - 2) :
Gamma Function
Other Gamma Function Definitions:
( ) ( )
( ) ( ) ( )
( ) ( )
( ) ( ) ( ) xxnxnx
nn
x
xxnxnx
nn xx
121
!1
121
!11
+−+−+
−
≤Γ≤
+−+−+
−−

( ) ( ) ( )
( ) ( )
( ) ( ) ( ) xxnxnx
nn
x
xxnxnx
nn
xx
11
!1
11
!
+−++
+
≤Γ≤
+−++ 
Take the limit n → ∞
( ) ( ) ( )
( )
( ) ( ) ( ) xxnxnx
nn
n
x
xxnxnx
nn x
n
x
n
x
n 11
!
lim
1
1lim
11
!
lim
1
+−++






+≤Γ≤
+−++ ∞→∞→∞→ 


( )
( ) ( ) ( )
( )1,0
11
!
lim ∈
+−++
=Γ
∞→
x
xxnxnx
nn
x
x
n 
Substitute n+1 for n
( )
( ) ( )nxxx
nn
x
x
n ++
=Γ
∞→ 1
!
limGauss’ Formula
19
SOLO Primes
( ) ∫
∞=
=
−
=Γ
t
t
t
z
td
e
t
z
0
1
Let substitute x + 1 for x
Gamma Function
Other Gamma Function Definitions:
( )
( ) ( ) ( )
( )
( )1,0
11
!
lim ∈
+−++
=Γ
Γ
∞→
x
xxnxnx
nn
x
x
x
n
n
  

q.e.d
( )
( ) ( )nxxx
nn
x
x
n ++
=Γ
∞→ 1
!
limGauss’ Formula
Proof (continue - 3) :
( )
( ) ( ) ( )
( ) ( ) ( ) ( )
( )
( ) ( )1,0
11
!
lim
1
lim
11
!
lim1
1
1
∈Γ=
+−++++
=
++++
=+Γ
Γ
∞→∞→
+
∞→
xxx
xxnxnx
nn
nx
n
x
xnxnx
nn
x
x
x
nn
x
n
  

  

The right side is defined for 0 < x <1. The left side extend the definition for
(1 , 2). Therefore the result is true for all x , but 0 and negative integers.
Return to Table of Content
20
SOLO
( ) ∫
∞=
=
−
=Γ
t
t
t
z
td
e
t
z
0
1
Gamma Function
Other Gamma Function Definitios:
Start from Gauss Formula ( ) ( )xx n
n
Γ=Γ
∞→
lim
q.e.d
( )
constantMascheroni-Euler57721566.0ln
1
2
1
1lim
11
≈





−+++=
+
=Γ
∞→
∞
=
−
∏
n
n
k
x
e
x
e
x
n
k
k
x
x
γ
γ
Weierstrass’ Formula
Proof :
( )
( ) ( ) ( )






+





−
+





+
=






+





−
+





+
=
+−++
=Γ






−−−−
n
x
n
xx
x
eee
e
x
x
n
x
n
x
n
xxnxnx
nn
x
n
xxx
n
nx
xx
n
1
1
1
1
1
1
1
1
11
11
!
:
21
1
2
1
1ln





( ) ( ) ∏∏
∞
=
−
=






−−−−
∞→∞→
+
=
+
=Γ=Γ
11
1
2
1
1ln
11
1
limlim
k
k
x
xn
k
k
x
n
nx
n
n
n
k
x
e
x
e
k
x
e
x
exx
γ
Karl Theodor Wilhelm
Weierstrass
(1815 – 11897)
Gamma Function
Return to Table of Content
21
SOLO Primes
( ) ∫
∞=
=
−
=Γ
t
t
t
z
td
e
t
z
0
1
Gamma Function
Some Special Values of Gamma Function:
q.e.d
( ) π
π
====Γ ∫∫
∞=
=
−
=
=
∞=
=
−
2
222/1
0
2
0
2
2 t
t
u
ut
duudt
t
t
t
udetd
t
e
( ) ( ) ( ) ( )( ) ( ) ( ) ( ) πn
n
nnnnn
2
12531
2/12/112/32/12/12/12/1
−⋅⋅
=Γ+−−=−Γ−=+Γ


( ) ( )
( )
( )
( )( ) ( )
( )
( )
π
12531
21
2/12/32/1
2/1
2/1
2/3
2/1
−⋅⋅
−
=
−+−+−
Γ
=
+−
+−Γ
=+−Γ
nnnn
n
n
nn

( ) π=Γ 2/1
( ) ( ) πn
n
n
2
12531
2/1
−⋅⋅
=+Γ

( ) ( )
( )
π
12531
21
2/1
−⋅⋅
−
=+−Γ
n
n
nn

Proof:
Return to Table of Content
22
SOLO
Harald August Bohr
( 1887 – 1951)
Proof:
Choose n > 2, and 0 < x < 1 and let 11 +≤+<<− nxnnn
By logarithmic convexity of f (x), we get
( ) ( )
( )
( ) ( )
( )
( ) ( )
( ) nn
nfnf
nxn
nfxnf
nn
nfnf
−+
−+
≤
−+
−+
≤
−−
−−
1
ln1lnlnln
1
ln1ln
( ) ( ) ( ) ( ) ( )
1
!1ln!ln!1lnln
1
!1ln!2ln −−
≤
−−+
≤
−
−−− nn
x
nxnfnn
By the second property ( ) ( ) ( ) ( ) ( ) !1,!1,!21 nnfnnfnnf =+−=−=−
( ) ( )( ) ( ) ( )xfxxxnxnxnf 121 +−+−+=+ 
( ) ( )
( )
xx
n
n
xnf
n ln
!1
ln1ln ≤
−
+
≤−
Emil Artin
(1898 – 1962)
Hamburg University
Johannes Mollerup
(1872 – 1937)
Gamma Function
Bohr-Mollerup-Artin Theorem:
The theorem characterizes the Gamma Function, defined for x > 0 by
as the only function f (x) on the interval x > 0 that simultaneously has
the three properties
• f (1) = 1
• f (1+x) = x f (x) for x > 0
• f is logarithmically convex
or Gauss Formula( ) ∫
∞=
=
−−
=Γ
t
t
tz
tdetz
0
1
( )
( ) ( )nxxx
nn
z
x
n ++
=Γ
∞→ 1
!
lim
23
SOLO
Bohr-Mollerup-Artin Theorem:
Harald August Bohr
( 1887 – 1951)
The theorem characterizes the Gamma Function, defined for x > 0 by
as the only function f (x) on the interval x > 0 that simultaneously has
the three properties
• f (1) = 1
• f (1+x) = x f (x) for x > 0
• f is logarithmically convex
Proof (continue-1):
By the second property ( ) ( )( ) ( ) ( )xfxxxnxnxnf 121 +−+−+=+ 
( ) ( )( ) ( ) ( )
( )
xx
n
n
xfxxxnxn
n ln
!1
121
ln1ln ≤
−
+−+−+
≤−

We found
Since lan is a monotonic increasing function, we have
( ) ( )
( ) ( )( )
( ) ( )
( ) ( )( )121
!1
121
!11
−+−++
−
≤≤
−+−++
−−
xnxnxx
nn
xf
xnxnxx
nn xx

( ) ( )( )
( )
( ) ( )( )
( )
x
xxx
n
n
xnxnxx
nn
xf
xnxnxx
nn 1
11
!
11
! +
+−++
≤≤
+−++ 
n
n
↓
−1
( ) ∫
∞=
=
−−
=Γ
t
t
tz
tdetz
0
1
( )
( ) ( )nxxx
nn
x
x
n ++
=Γ
∞→ 1
!
limor Gauss Formula
Emil Artin
(1898 – 1962)
Hamburg University
Johannes Mollerup
(1872 – 1937)
Gamma Function
24
SOLO
Bohr-Mollerup-Artin Theorem:
q.e.d.
Harald August Bohr
( 1887 – 1951)
The theorem characterizes the Gamma Function, defined for x > 0 by
as the only function f (x) on the interval x > 0 that simultaneously has
the three properties
• f (1) = 1
• f (1+x) = x f (x) for x > 0
• f is logarithmically convex
Johannes Mollerup
(1872 – 1937)
Proof (continue - 2):
( ) ( )( )
( )
( ) ( )( )
xxx
nxnxnxx
nn
xf
xnxnxx
nn






+
+−++
≤≤
+−++
1
1
11
!
11
!

( ) ∫
∞=
=
−−
=Γ
t
t
tz
tdetz
0
1
( )
( ) ( )nxxx
nn
x
x
n ++
=Γ
∞→ 1
!
limor Gauss Formula
By taking n → ∞ we obtain
( ) ( )( )
( )
( )
( ) ( )( )
( )
  

  

1
1
1lim
11
!
lim
11
!
lim
x
n
x
x
n
x
x
n nxnxnxx
nn
xf
xnxnxx
nn






+
+−++
≤≤
+−++ ∞→
Γ
∞→
Γ
∞→
But this is possible only if
( ) ( )xxf Γ=
Emil Artin
(1898 – 1962)
Hamburg University
Gamma Function
25
SOLO
( ) ∫
∞=
=
−
=Γ
t
t
t
z
td
e
t
z
0
1
Gamma Function Gamma integral is defined, and
converges uniformly for x > 0.
Differentiation of Gamma Function:
q.e.d
( ) ( )
( )
( ) ( ) ( ) ( )
( ) ( )
( ) ( )
( )
( ) ( )
( )
0,2
!11'
ln
0
1'''
ln
constantMascheroni-Euler57721566.0
111'
ln
1
1
1
1
22
2
2
2
1
>≥
+
−−
=
Γ
Γ
=Γ
>
+
=
Γ
Γ−ΓΓ
=Γ
≈





+
−+−−=
Γ
Γ
=Γ
∑
∑
∑
∞
=
−
−
∞
=
∞
=
xn
kx
n
x
x
xd
d
x
xd
d
kxx
xxx
x
xd
d
kxkxx
x
x
xd
d
k
n
n
n
n
n
n
k
k
γγ
Proof :
Start from Weierstrass Formula ( ) ∏
∞
=
−
+
=Γ
1
1k
k
x
x
k
x
e
x
e
x
γ
( ) ∑∑
∞
=
∞
=






+−+−−=Γ
11
1lnlnln
kk k
x
k
x
xxx γ ( ) ∑∑
∞
=
∞
=
+
−+−−=Γ
11
1
1
11
ln
kk
k
x
k
kx
x
xd
d
γ
( )
( ) ( )
0
111111
ln
0
2
1
22
1
2
2
>
+
=
+
+=











+
−+−−=Γ ∑∑∑
∞
=
∞
=
∞
= kkk kxkxxkxkxxd
d
x
xd
d
γ
( ) ( )
( )
( ) ( )
( )∑
∞
=
−
−
+
−−
=
Γ
Γ
=Γ
0
1
1
!11'
ln
k
n
n
n
n
n
n
kx
n
x
x
xd
d
x
xd
d
Gamma Function
We can see that ( ) ( )
( )
γγ −=





+
−+−−=
Γ
Γ
==Γ
+
−
=
∞→
∑
  
1
1
1
1 1
11
lim
1
1
1
1'
1ln
n
n
k
n kk
x
xd
d
Return to Table of Content
26
SOLO
( ) ( )∫
=
=
−−
−=
1
0
11
1,
s
s
zy
sdsszyBBeta Function
Beta Function is related to Gamma Function:
( ) ∫∫
∞=
=
−−
=
=∞=
=
−−
==Γ
u
u
uy
duudt
utt
t
ty
udeutdety
0
12
2
0
1 2
2
2
( ) ( ) ( )
( )zy
zy
zyB
+Γ
ΓΓ
=,
Proof:
In the same way:
( ) ∫
∞=
=
−−
=Γ
v
v
vz
vdevz
0
12 2
2
( ) ( ) ( )
∫ ∫
∞=
=
∞=
=
+−−−
=ΓΓ
u
u
v
v
vuuzy
vdudevuzy
0 0
1212 22
4
Use polar coordinates:
ϕϕ
ϕϕ
ϕϕ
ϕ
ϕ
ϕ
ϕ
ϕ
drdrdrd
r
r
drd
vrv
uru
vdud
rv
ru
=
−
=
∂∂∂∂
∂∂∂∂
=



=
=
cossin
sincos
//
//
sin
cos
( ) ( ) ( )
( ) ( )
( )
( )
( ) ( ) 



















=
=ΓΓ
∫∫
∫ ∫
=
=
−−
+Γ
∞=
=
−−+
∞=
=
=
=
−−−−+
2/
0
1212
0
12
0
2/
0
121212
sincos22
sincos4
2
2
πϕ
ϕ
πϕ
ϕ
ϕϕϕ
ϕϕϕ
drder
drderzy
zy
zy
r
r
rzy
r
r
rzyzy
  
Euler’s First Integral
Gamma Function
27
SOLO
( ) ( )∫
=
=
−−
−=
1
0
11
1,
s
s
zy
sdsszyBBeta Function Euler’s First Integral
Beta Function is related to Gamma Function: ( ) ( ) ( )
( )zy
zy
zyB
+Γ
ΓΓ
=,
Proof (continue):
( ) ( ) ( ) ( ) ( ) 







+Γ=ΓΓ ∫
=
=
−−
2/
0
1212
sincos2
πϕ
ϕ
ϕϕϕ dzyzy zy
Change variables in the integral using ϕϕϕϕ dsds cossin2sin2
==
( ) ( ) ( ) ( )zyBsdssd
s
s
yzzy
,1sincos2
1
0
11
2/
0
1212
=−= ∫∫
=
=
−−
=
=
−−
πϕ
ϕ
ϕϕϕ
( ) ( ) ( ) ( )zyBzyzy ,+Γ=ΓΓTherefore q.e.d.
Use z→y and y → 1 - z
( ) ( ) ( ) ( ) ( )
( )
( ) ( ) ∫∫
∫
∞=
=
−∞=
=
−
−
−+
=
+
=
=
=
−−
+
=
+






+
−
+
=
−=−Γ=−ΓΓ
u
u
zu
u
z
z
zu
u
s
u
ud
sd
s
s
zz
ud
u
u
u
ud
u
u
u
u
dssszzBzz
0
1
0
21
11
1
1
0
1
111
1
1
11,11
2
q.e.d.
Gamma Function
Return to Table of Content
28
SOLO
Proof
( ) ( ) ( ) ( )
( ) ( )
( ) ( )yzBzyzyBzyyz
yzBzyB
,,
,,
+Γ=+Γ=ΓΓ
=
Use y → 1 - z
( ) ( ) ( ) ( ) ( )
( )
( ) ( ) ∫∫
∫
∞=
=
−∞=
=
−
−
−+
=
+
=
=
=
−−
+
=
+






+
−
+
=
−=−Γ=−ΓΓ
u
u
zu
u
z
z
zu
u
s
u
ud
sd
s
s
zz
ud
u
u
u
ud
u
u
u
u
dssszzBzz
0
1
0
21
11
1
1
0
1
111
1
1
11,11
2
( ) ∫
∞=
=
−
=Γ
t
t
t
z
td
e
t
z
0
1
Gamma Function
Other Gamma Function Properties: ( ) ( )
( )z
zz
π
π
sin
1 =−ΓΓ Euler
Reflection Formula
Gamma Function
29
SOLO
Proof (continue - 1)
( ) ( ) ∫
∞=
=
−
+
=−ΓΓ
u
u
x
ud
u
u
xx
0
1
1
1
( ) ∫
∞=
=
−
=Γ
t
t
t
z
td
e
t
z
0
1
Gamma Function
Other Gamma Function Properties:
Replace the path from 0 to ∞ by the Hankel contour Hε
in the Figure, described by four paths, traveled in
counterclockwise direction:
1. going counterclockwise above the real axis, (u = |u|)
2. along the circular path CR,
3. bellow the real axis, (u= |u|e -2πi
)
4. along the circular path Cε.
∫∫∫∫ +
−
+
−
+
+
+
−−
−
−−
εε
π
ε C
yR y
yi
C
yR y
ud
u
u
ud
u
u
eud
u
u
ud
u
u
R
1111
2
Define y = 1 – x, and assume x,y (0,1)ϵ
( ) ( )
( )z
zz
π
π
sin
1 =−ΓΓ Euler
Reflection Formula
Gamma Function
30
SOLO
Proof (continue - 1)
( ) ( ) ∫
∞=
=
−
+
=−ΓΓ
u
u
x
ud
u
u
xx
0
1
1
1
( ) ∫
∞=
=
−
=Γ
t
t
t
z
td
e
t
z
0
1
Gamma Function
Other Gamma Function Properties:
This path encloses the pole u=-1 of that has the residue
1+
−
u
u y
yi
eu
y
y
eu
u
u
i
π
π
−
=−=
−
−
==





+ 11
Residue
By the Residue Theorem
For z ≠ 0 we have
( ) yzyzyzyy
zeeez
−−−−−
====
lnlnReln
( ) ( )
( )z
zz
π
π
sin
1 =−ΓΓ Euler
Reflection Formula
( ) yi
y
eu
y
C
yR y
iy
C
yR y
ei
u
u
ui
u
u
izd
z
z
ud
u
u
ezd
z
z
ud
u
u
i
R
π
ε
π
ε
ππ
π
π
ε
−
−
=−→
−−−
−
−−
=











+
+=






+
=
+
−
+
−
+
+
+
−
∑∫∫∫∫
2
1
1lim2
1
Residue2
1111
1
2
Gamma Function
31
SOLO
Proof (continue - 2)
( ) ∫
∞=
=
−
=Γ
t
t
t
z
td
e
t
z
0
1
Gamma Function
Other Gamma Function Properties:
yi
C
yR y
iy
C
yR y
eizd
z
z
ud
u
u
ezd
z
z
ud
u
u
R
π
ε
π
ε
π
ε
−
−−
−
−−
=
+
−
+
−
+
+
+ ∫∫∫∫ 2
1111
2
For the second and forth integral we have
( )
0
lnlnReln
≠====
−−−−−
zzeeez
yzyzyzyy
z
z
z
z
z
z
yyy
−
≤
+
≤
+
−−−
111
Hence for small ε we have:
and for large R we have:
0
1
2
1
01 →−−
→
−
≤
+∫
ε
ε
ε
π
ε
y
C
y
zd
z
z
0
1
2
1
1 ∞→−−
→
−
≤
+∫
Ry
C
y
R
R
zd
z
z
R
π
Therefore the integrals on the circular paths are zero for ε→0 and R →∞
( ) ( )
( )z
zz
π
π
sin
1 =−ΓΓ Euler
Reflection Formula
Gamma Function
32
SOLO
Proof (continue - 3)
( ) ∫
∞=
=
−
=Γ
t
t
t
z
td
e
t
z
0
1
Gamma Function
Other Gamma Function Properties:
yi
y
iy
y
eiud
u
u
eud
u
u ππ
π −
∞ −
−
∞ −
=
+
−
+ ∫∫ 2
11 0
2
0
We obtain
Multiply both sides by yi
e π+
( ) iud
u
u
ee
y
iyiy
πππ
2
10
=
+
− ∫
∞ −
−
( ) ( )yee
i
ud
u
u
iyiy
y
π
π
π ππ
sin
2
10
=
−
=
+ −
∞ −
∫Rearranging we obtain
Since both sides of this equation are meromorphic (analytic) in x (0,1) we canϵ
extend the result for all analytic parts of z C (complex plane).ϵ
( ) ( )
( )[ ] ( )
( )1,0
sin1sin11
1
0
1
0
1
∈=
−
=
+
=
+
=−ΓΓ ∫∫
∞=
=
−−=∞=
=
−
x
xx
ud
u
u
ud
u
u
xx
u
u
yxyu
u
x
π
π
π
π
Substituting y = 1 – x we obtain
( ) ( )
( )z
zz
π
π
sin
1 =−ΓΓ Euler
Reflection Formula
Gamma Function
33
SOLO
Onother Proof
( ) ∫
∞=
=
−
=Γ
t
t
t
z
td
e
t
z
0
1
Gamma Function
Other Gamma Function Properties:
Start with Weierstrass Gamma Formula
( ) ( )
( )z
zz
π
π
sin
1 =−ΓΓ Euler
Reflection Formula
( ) ∏
∞
=
−
+
=Γ
1 1k
k
x
x
k
x
e
x
e
x
γ
( ) ( ) ∏∏
∞
=
∞
= −
−






−−=
−+
−=
−ΓΓ 1
2
2
2
1
2
1
11
1
kk k
x
k
x
xx
k
x
x
e
k
x
e
k
x
eex
xx
γγ
Use the fact that Γ (-x)=- Γ (1-x)/x to obtain
( ) ( ) ∏
∞
=






−=
−ΓΓ 1
2
2
1
1
1
k k
x
x
xx
Now use the well-known infinite product
( ) ∏
∞
=






−=
1
2
2
1sin
k k
x
xx ππ
q.e.d.
Gamma Function
34
SOLO
Proof
( ) ∫
∞=
=
−
=Γ
t
t
t
z
td
e
t
z
0
1
Gamma Function
Other Gamma Function Properties: ( )z
zz
π
π
cos2
1
2
1
=





−Γ





+Γ
Start from
Substitute ½ +z instead of z
( ) ( )
( )z
zz
π
π
sin
1 =−ΓΓ
( )z
z
zz
π
π
π
π
cos
2
1
sin
2
1
2
1
=












+
=





−Γ





+Γ
q.e.d.
Gamma Function
Return to Table of Content
35
SOLO
( ) ∫
∞=
=
−
=Γ
t
t
t
z
td
e
t
z
0
1
Gamma Function
Stirling Approximation Formula:
( ) 121 >>≈+Γ −
xexxx xx
π
( )
( )
( )
( ) ( )
( )( )
∫
∫∫∫
∞=
−=
++−−+
∞=
−=
−−+
∞=
−=
+−
+=
=
∞=
−=
−
=
+=+==+Γ
u
u
uuxxx
u
u
xuxxx
u
u
xxux
uxt
udxtd
t
t
xt
udeex
udueexudxuxetdtex
1
1ln1
1
1
1
1
1
1
111
Proof:
The function f(u) = -u + ln (1 + u) equals zero for u = 0. For other values of u we have
f(u) < 0. This implies that the integrand of the last integral equals 1 at u = 0 and that this
integrand becomes very small for large values of x at other values of u. So for large values of
x we only have to deal with the integrand near u = 0. Note that we have
( ) ( ) ( ) ( ) 0
2
1
2
1
1ln 2222
→Ο+−=Ο+−+−=++−= uforuuuuuuuuuf
This implies that
( )( )
∞→≈ ∫∫
∞=
−∞=
−
∞=
−=
++−
xforduedue
u
u
ux
u
u
uux 2/
1
1ln 2
James Stirling, a contemporary of Euler, also attempted to find a continuous expression for the factorial and came up with what is now known as
Stirling's formula. Although Stirling's formula gives a good estimate of , also for non-integers, it does not provide the exact value. Extensions of his
formula that correct the error were given by Stirling himself and by Jacques Philippe Marie Binet‫ן‬
Gamma Function
36
SOLO
( ) ∫
∞=
=
−
=Γ
t
t
t
z
td
e
t
z
0
1
Gamma Function
Stirling Approximation Formula:
( ) 121 >>≈+Γ −
xexxx xx
π
Proof (continue):
( ) ( )( )
∞→≈=+Γ ∫∫
∞=
−∞=
−−+
∞=
−=
++−−+
xfordueexudeexx
u
u
uxxx
u
u
uuxxx 2/1
1
1ln1 2
1
∞→== −
∞=
−∞=
−−
=
=
∞=
−∞=
−
∫∫ xforxdtexdue
t
t
t
xtu
xtdud
u
u
ux
π
π
22 2/12/1
/2
/2
2/ 22

If we set we have by using the normal integralxtu /2=
therefore:
( ) ∞→≈+Γ −
xexxx xx
π21
q.e.d.
Gamma Function
37
SOLO
( ) ∫
∞=
=
−
=Γ
t
t
t
z
td
e
t
z
0
1
Gamma Function
Duplication and Multiplication Formula:
( ) ( ) 0Re2
22
1
12
>Γ=





+ΓΓ −
zzzz z
π Legendre Duplication Formula
1809
Adrien-Marie Legendre
)1752–1833(
Proof:
( ) ( ) ( ) ( )
( ) ( ) ( )2/1,2sin22sin2
2sin22sincos2,
21
2/
0
1221
0
1221
2/
0
1221
2/
0
1212
zBdd
ddzzB
zzzzz
zzzz
⋅=⋅⋅==
⋅==
−−−−−
−−−−
∫∫
∫∫
ππ
ππ
ττττ
ϕϕϕϕϕ
( ) ( )
( )
( ) ( ) ( ) ( )
( )
0Re
2/1
2/1
22/1,2,
2
2121
>
+Γ
Γ⋅Γ
⋅=⋅==
Γ
Γ⋅Γ −−
z
z
z
zBzzB
z
zz zz
We have
therefore
q.e.d( )

( ) 0Re2
22
1
12
2
1
>Γ=





+ΓΓ −






Γ
zzzz z
π
Gamma Function
38
SOLO
( ) ∫
∞=
=
−
=Γ
t
t
t
z
td
e
t
z
0
1
Gamma Function
Duplication and Multiplication Formula:
( ) ( )( )
( )znn
n
n
z
n
z
n
zz znn
Γ=




 −
+Γ





+Γ





+ΓΓ −− 2/12/1
2
121
π
Gauss
Multiplication
Formula
Proof:
n
z
1
=
Carl Friedrich Gauss
(1777 – 1855)( )( )
nn
n
nn
n 2/1
2121
−
=




 −
Γ





Γ





Γ
π
 Euler
Multiplication
Formula
Gamma Function
Define the function: ( ) 




 −+
Γ




 +
Γ





Γ=
n
nx
n
x
n
x
nxf x 11
: 
This function has the following properties:
1 ( )
( )xfx
n
x
n
x
n
nx
n
x
n
x
nn
n
nx
n
nx
n
x
n
x
nxf
x
x
⋅=





Γ⋅⋅




 −+
Γ




 +
Γ




 +
Γ⋅=





 +
Γ




 −+
Γ




 +
Γ




 +
Γ=+
↓
+
121
121
1 1



39
SOLO
( ) ∫
∞=
=
−
=Γ
t
t
t
z
td
e
t
z
0
1
Gamma Function
Duplication and Multiplication Formula:
( ) ( )( )
( )znn
n
n
z
n
z
n
zz znn
Γ=




 −
+Γ





+Γ





+ΓΓ −− 2/12/1
2
121
π
Gauss
Multiplication
Formula
Proof (continue – 1):
Carl Friedrich Gauss
(1777 – 1855)
Gamma Function
Since (ln nx
)”=(x ln n)”=(ln n)’=0, and each Γ ((x+k)/k) is log convex.
f (x) is log convex.
( ) ( ) 





Γ





Γ⋅





Γ==Γ=
n
n
nn
naaf nn 
21
11
So using Bohr-Mollerup-Artin Theorem we can write: f (x) = an Γ(x)
where an is a constant, to be found, and Γ (1)=1 (the third condition of the Theorem).
2
Therefore
Use Gauss’ Formula for Gamma Function with x=k/n
( ) ( )pnknkk
npp
p
n
k
n
k
n
k
pp
n
k pn
k
p
n
k
p ++
=






+





+
=





Γ
+
∞→∞→ 

1
!
lim
1
!
lim
40
SOLO
( ) ∫
∞=
=
−
=Γ
t
t
t
z
td
e
t
z
0
1
Gamma Function
Duplication and Multiplication Formula:
( ) ( )( )
( )znn
n
n
z
n
z
n
zz znn
Γ=




 −
+Γ





+Γ





+ΓΓ −− 2/12/1
2
121
π
Gauss
Multiplication
Formula
Proof (continue – 2):
Carl Friedrich Gauss
(1777 – 1855)
Gamma Function
( ) ( )pnknkk
npp
n
k pn
k
p ++
=





Γ
+
∞→ 
1
!
lim
Since k = 1,2,…,p
( ) ( ) [ ] ( ) ( )[ ] ( ) ( )[ ]
( ) ( )( )!1!
11211
nppnn
pnnpnnnnnpnknkk
p
k
⋅+=⋅+=
⋅+⋅+++⋅⋅=⋅++∏=

( ) ( )
( )
( ) ( )
( )!
!
lim
!
!
lim
21 2
1
1
1
1
pnn
pnp
n
pnn
pnp
n
n
n
nn
na
n
pnn
p
n
n
npnn
p
n
⋅+
=
⋅+
=





Γ





Γ⋅





Γ=
+
+
∞→
++
+
∞→


41
SOLO
( ) ∫
∞=
=
−
=Γ
t
t
t
z
td
e
t
z
0
1
Gamma Function
Duplication and Multiplication Formula:
( ) ( )( )
( )znn
n
n
z
n
z
n
zz znn
Γ=




 −
+Γ





+Γ





+ΓΓ −− 2/12/1
2
121
π
Gauss
Multiplication
Formula
Proof (continue – 3):
Carl Friedrich Gauss
(1777 – 1855)
Gamma Function
( ) ( )
( )!
!
lim
2
1
1
pnn
pnp
na
n
pnn
p
n
⋅+
=
+
+
∞→
Use the identity
( )
( ) ( )npp pnpn
pnn
pn
n
pnpn ⋅
⋅
⋅
⋅+
=





⋅
+





⋅
+⋅





⋅
+=
∞→∞→
1
!
!
lim1
2
1
1
1lim1 
to an to get
( ) ( )
( )
( ) ( )
( )
( )
( ) ( )
( )
( ) 2
1
2
1
12
1
1
!
!
lim
!
!
!
!
lim1
!
!
lim −
⋅
∞→
+
+
∞→
+
+
∞→
⋅
=
⋅⋅
⋅+
⋅
⋅+
=⋅
⋅+
= n
pnn
pn
n
pnn
p
n
pnn
p
n
ppn
np
n
pnpn
pnn
pnn
pnp
n
pnn
pnp
na
42
SOLO
( ) ∫
∞=
=
−
=Γ
t
t
t
z
td
e
t
z
0
1
Gamma Function
Duplication and Multiplication Formula:
( ) ( )( )
( )znn
n
n
z
n
z
n
zz znn
Γ=




 −
+Γ





+Γ





+ΓΓ −− 2/12/1
2
121
π
Gauss
Multiplication
Formula
Proof (continue – 4):
Carl Friedrich Gauss
(1777 – 1855)
Gamma Function
to an to get
( )
( ) 2
1
!
!
lim −
⋅
∞→
⋅
= n
pnn
p
n
ppn
np
na
∞→≈ −
+
pepp p
p
2
1
2! π ( ) ( ) ( )
∞→⋅≈⋅ ⋅−+⋅
pepnpn pnpn
2
1
2! π
( ) ( )
( ) 2
1
2
1
2
1
2
1
2
1
2
2
2
lim n
pepn
nep
na
n
n
pnpn
pn
n
p
p
p
n
−
−
⋅−+⋅
⋅−
+
∞→
=
⋅








= π
π
π
Use Stirling’s Approximation formula ( ) ∞→≈+Γ −
xexxx xx
π21
43
SOLO
( ) ∫
∞=
=
−
=Γ
t
t
t
z
td
e
t
z
0
1
Gamma Function
Duplication and Multiplication Formula:
( ) ( )( )
( )znn
n
n
z
n
z
n
zz znn
Γ=




 −
+Γ





+Γ





+ΓΓ −− 2/12/1
2
121
π
Gauss
Multiplication
Formula
Proof (continue – 4):
Carl Friedrich Gauss
(1777 – 1855)
Gamma Function
( ) 2
1
2
1
2 na
n
n
−
= π
( ) ( )xa
n
nx
n
x
n
x
nxf n
x
Γ=




 −+
Γ




 +
Γ





Γ=
11
: 
We have
or ( ) ( )xn
n
nx
n
x
n
x xn
Γ=




 −+
Γ




 +
Γ





Γ
+−−
2
1
2
1
2
11
π
Define x = n z to obtain
( ) ( ) ( )znn
n
n
z
n
zz
znn
Γ=




 −
+Γ





+ΓΓ
+−−
2
1
2
1
2
11
π q.e.d
Return to Table of Content
44
SOLO
References
Internet
http://en.wikipedia.org/wiki/
G.B. Arfken, H.J. Weber, “Mathematical Methods for Physicists”, Academic Press,
Fifth Ed., 2001
http://www.frm.utn.edu.ar/analisisdsys/material/function_gamma.pdf
http://homepage.tudelft.nl/11r49/documents/wi4006/gammabeta.pdf
Gamma Function
M.Abramowitz & I.E. Stegun, ED., “Handbook of Mathematical Functions”,
Dover Publication, 1965,
H.Vic Dannon,”Riemann Zeta Function: The Riemann Hypothesis Origin, the
Factoriztion Error, and the Count of the Primes”, Gauge Institute Journal, Vol.
5, No. 4, November 2009
J. Baltzersen, “Hardy’s Theorem and the prime number theorem”, Thesis
University of Copenhagen, June 2007
D. Miličić, “Notes on Riemann Zeta Function”,
http://www.math.utah.edu/~milicic/zeta.pdf
P. Garrett, “Riemann’ Explicit/Exact formula”, (October 2, 2010),
http://www.math.umn.edu/~garrett/m/mfms/notes_c/mfms_notes_02.pdf
http://homepage.tudelft.nl/11r49/documents/wi4006/gammabeta.pdf
Return to Table of Content
January 6, 2015 45
SOLO
Technion
Israeli Institute of Technology
1964 – 1968 BSc EE
1968 – 1971 MSc EE
Israeli Air Force
1970 – 1974
RAFAEL
Israeli Armament Development Authority
1974 – 2013
Stanford University
1983 – 1986 PhD AA

More Related Content

PDF
Gamma and betta function harsh shah
PPT
Legendre functions
DOCX
B.tech ii unit-2 material beta gamma function
PPTX
Beta and gamma function
DOC
Gamma beta functions-1
PDF
Beta gamma functions
PPTX
Bessel’s equation
PDF
Power series
Gamma and betta function harsh shah
Legendre functions
B.tech ii unit-2 material beta gamma function
Beta and gamma function
Gamma beta functions-1
Beta gamma functions
Bessel’s equation
Power series

What's hot (20)

PPTX
The gamma function
PPT
Mathematics and History of Complex Variables
PPTX
Analytic function
DOC
Gamma & Beta functions
PPTX
Application of-differential-equation-in-real-life
PPTX
HERMITE SERIES
PPTX
Power series
PDF
Group Theory
PPTX
Application of Derivatives
PPTX
Newton’s Forward & backward interpolation
PPTX
Integral calculus
PPTX
Interpolation
PPTX
INTERPOLATION
PPTX
14.6 triple integrals in cylindrical and spherical coordinates
PPT
Fourier series
PPTX
Multiple integral(tripple integral)
PPTX
Gamma function
PPT
Calculus of variations
PDF
Beta gamma functions
PPTX
Jacobi method
The gamma function
Mathematics and History of Complex Variables
Analytic function
Gamma & Beta functions
Application of-differential-equation-in-real-life
HERMITE SERIES
Power series
Group Theory
Application of Derivatives
Newton’s Forward & backward interpolation
Integral calculus
Interpolation
INTERPOLATION
14.6 triple integrals in cylindrical and spherical coordinates
Fourier series
Multiple integral(tripple integral)
Gamma function
Calculus of variations
Beta gamma functions
Jacobi method
Ad

Viewers also liked (20)

PDF
Special functions
PDF
Funcion gamma
DOC
Alpha Beta Gamma Quiz Questions
PDF
B.Tech-II_Unit-II
PPT
Practical Applications of Bessel's function
PPTX
Runge kutta
PDF
As Biologists
PDF
Ajar v2-14-the-full-monty
PPTX
History 121 ancient greece 4
PPT
PAR for Doctors EIS
PDF
PDF
FINAL_Report
PDF
Richard Holbrooke's World: Memories of a Newsweek Special Correspondent - A Q...
ODP
Question 2
PDF
Libro de calculo 3
PDF
Cambodia
PDF
Mercator Ocean newsletter 30
PDF
AtlasCopco_Partner_No_2
PDF
Me&U - Atkins Official Newsletter
PDF
Special functions
Funcion gamma
Alpha Beta Gamma Quiz Questions
B.Tech-II_Unit-II
Practical Applications of Bessel's function
Runge kutta
As Biologists
Ajar v2-14-the-full-monty
History 121 ancient greece 4
PAR for Doctors EIS
FINAL_Report
Richard Holbrooke's World: Memories of a Newsweek Special Correspondent - A Q...
Question 2
Libro de calculo 3
Cambodia
Mercator Ocean newsletter 30
AtlasCopco_Partner_No_2
Me&U - Atkins Official Newsletter
Ad

Similar to Gamma function (20)

PDF
DOUBLE INTEGRAL.Introduction Numerical Problem Based on Lagrange’s Method of ...
PDF
Bc4103338340
PPTX
Gamma function
DOCX
Btech_II_ engineering mathematics_unit2
PDF
Convexity in the Theory of the Gamma Function.pdf
PDF
Multiplicative number theory i.classical theory cambridge
PDF
Series and products in the development of mathematics 2 Series and products i...
PDF
Gamma function for different negative numbers and its applications
PDF
1586746631GAMMA BETA FUNCTIONS.pdf
PDF
A Note on the Asymptotic Convergence of Bernoulli Distribution
PPT
453015708-FUNGSI-EKSPONENSIAL-2020-ppt.ppt
PDF
01_AJMS_158_18_RA.pdf
PDF
01_AJMS_158_18_RA.pdf
PDF
Generalized Laplace - Mellin Integral Transformation
PDF
preprints202ás información para sus 6 407.0759.v1.pdf
PDF
about pi and its properties from number theory
PDF
Greatest Integer Function - A collection of Calculus problems
PDF
A Course In Analytic Number Theory Marius Overholt
PDF
A Szemerédi-type theorem for subsets of the unit cube
PDF
DOUBLE INTEGRAL.Introduction Numerical Problem Based on Lagrange’s Method of ...
Bc4103338340
Gamma function
Btech_II_ engineering mathematics_unit2
Convexity in the Theory of the Gamma Function.pdf
Multiplicative number theory i.classical theory cambridge
Series and products in the development of mathematics 2 Series and products i...
Gamma function for different negative numbers and its applications
1586746631GAMMA BETA FUNCTIONS.pdf
A Note on the Asymptotic Convergence of Bernoulli Distribution
453015708-FUNGSI-EKSPONENSIAL-2020-ppt.ppt
01_AJMS_158_18_RA.pdf
01_AJMS_158_18_RA.pdf
Generalized Laplace - Mellin Integral Transformation
preprints202ás información para sus 6 407.0759.v1.pdf
about pi and its properties from number theory
Greatest Integer Function - A collection of Calculus problems
A Course In Analytic Number Theory Marius Overholt
A Szemerédi-type theorem for subsets of the unit cube

More from Solo Hermelin (20)

PPT
5 introduction to quantum mechanics
PPT
Stabilization of linear time invariant systems, Factorization Approach
PPT
Slide Mode Control (S.M.C.)
PPT
Sliding Mode Observers
PPT
Reduced order observers
PPT
Inner outer and spectral factorizations
PPT
Keplerian trajectories
PPT
Anti ballistic missiles ii
PPT
Anti ballistic missiles i
PPT
Analytic dynamics
PPT
12 performance of an aircraft with parabolic polar
PPT
11 fighter aircraft avionics - part iv
PPT
10 fighter aircraft avionics - part iii
PPT
9 fighter aircraft avionics-part ii
PPT
8 fighter aircraft avionics-part i
PPT
6 computing gunsight, hud and hms
PPT
4 navigation systems
PPT
3 earth atmosphere
PPT
2 aircraft flight instruments
PPT
3 modern aircraft cutaway
5 introduction to quantum mechanics
Stabilization of linear time invariant systems, Factorization Approach
Slide Mode Control (S.M.C.)
Sliding Mode Observers
Reduced order observers
Inner outer and spectral factorizations
Keplerian trajectories
Anti ballistic missiles ii
Anti ballistic missiles i
Analytic dynamics
12 performance of an aircraft with parabolic polar
11 fighter aircraft avionics - part iv
10 fighter aircraft avionics - part iii
9 fighter aircraft avionics-part ii
8 fighter aircraft avionics-part i
6 computing gunsight, hud and hms
4 navigation systems
3 earth atmosphere
2 aircraft flight instruments
3 modern aircraft cutaway

Recently uploaded (20)

PDF
An interstellar mission to test astrophysical black holes
PPTX
ognitive-behavioral therapy, mindfulness-based approaches, coping skills trai...
PDF
VARICELLA VACCINATION: A POTENTIAL STRATEGY FOR PREVENTING MULTIPLE SCLEROSIS
PDF
The scientific heritage No 166 (166) (2025)
PPTX
The KM-GBF monitoring framework – status & key messages.pptx
PPTX
famous lake in india and its disturibution and importance
PPTX
microscope-Lecturecjchchchchcuvuvhc.pptx
PPTX
Cell Membrane: Structure, Composition & Functions
PPTX
Taita Taveta Laboratory Technician Workshop Presentation.pptx
PPTX
2. Earth - The Living Planet earth and life
PPTX
7. General Toxicologyfor clinical phrmacy.pptx
PPTX
ECG_Course_Presentation د.محمد صقران ppt
DOCX
Q1_LE_Mathematics 8_Lesson 5_Week 5.docx
PDF
HPLC-PPT.docx high performance liquid chromatography
PPTX
cpcsea ppt.pptxssssssssssssssjjdjdndndddd
PDF
MIRIDeepImagingSurvey(MIDIS)oftheHubbleUltraDeepField
PPTX
GEN. BIO 1 - CELL TYPES & CELL MODIFICATIONS
PPTX
Comparative Structure of Integument in Vertebrates.pptx
PPTX
ANEMIA WITH LEUKOPENIA MDS 07_25.pptx htggtftgt fredrctvg
PDF
Biophysics 2.pdffffffffffffffffffffffffff
An interstellar mission to test astrophysical black holes
ognitive-behavioral therapy, mindfulness-based approaches, coping skills trai...
VARICELLA VACCINATION: A POTENTIAL STRATEGY FOR PREVENTING MULTIPLE SCLEROSIS
The scientific heritage No 166 (166) (2025)
The KM-GBF monitoring framework – status & key messages.pptx
famous lake in india and its disturibution and importance
microscope-Lecturecjchchchchcuvuvhc.pptx
Cell Membrane: Structure, Composition & Functions
Taita Taveta Laboratory Technician Workshop Presentation.pptx
2. Earth - The Living Planet earth and life
7. General Toxicologyfor clinical phrmacy.pptx
ECG_Course_Presentation د.محمد صقران ppt
Q1_LE_Mathematics 8_Lesson 5_Week 5.docx
HPLC-PPT.docx high performance liquid chromatography
cpcsea ppt.pptxssssssssssssssjjdjdndndddd
MIRIDeepImagingSurvey(MIDIS)oftheHubbleUltraDeepField
GEN. BIO 1 - CELL TYPES & CELL MODIFICATIONS
Comparative Structure of Integument in Vertebrates.pptx
ANEMIA WITH LEUKOPENIA MDS 07_25.pptx htggtftgt fredrctvg
Biophysics 2.pdffffffffffffffffffffffffff

Gamma function

  • 1. 1 Gamma Function SOLO HERMELIN Updated 28.10.12http://www.solohermelin.com
  • 2. 2 SOLO TABLE OF CONTENT Gamma Function Gamma Function History Gamma Function: Euler’s Second Integral Properties of Gamma Function Other Gamma Function Definitions: Gauss’ Formula Some Special Values of Gamma Function: Bohr-Mollerup-Artin Theorem Other Gamma Function Definitions: Weierstrass’ Formula Differentiation of Gamma Function Beta Function: Euler’s First Integral Euler Reflection Formula Duplication and Multiplication Formula Stirling Approximation Formula References
  • 3. 3 SOLO Gamma Function History The Gamma Function was first introduced by the Swiss mathematician Leonhard Euler (1707 – 1783). His goal was to generalize the factorial to non-integer values. Later, it was studied by Adrien-Marie Legendre (1752-1833), Carl Friedrich Gauss (1777-1855), Christoph Gudermann (1798-1852), Joseph Liouville (1809 – 1882), Karl Weierstrass (1815- 1897), Charles Hermite (1822-1901),…and others Leonhard Euler )1707–1783( ( ) ( ) 0ln 1 0 1 >−=Γ ∫ = = − xtdtz t t x Adrien-Marie Legendre )1752–1833( The problem of extending the factorial to non-integer arguments was apparently first considered by Daniel Bernoulli and Christian Goldbach in the 1720s, and was solved at the end of the same decade by Leonhard Euler. Euler gave two different definitions: the first was not his integral but an infinite product, ∏ ∞ = +       + = 1 1 1 1 ! k n k n k n of which he informed Goldbach in a letter dated October 13, 1729. He wrote to Goldbach again on January 8, 1730, to announce his discovery of the integral representation Gamma Function
  • 4. 4 SOLO Gamma Function History Leonhard Euler )1707–1783( ( ) ( ) 0ln 1 0 1 >−=Γ ∫ = = − xtdtz t t x During the years 1729 and 1730, Euler introduced the following analytic function, By changing of variables we can obtain more known forms ( ) ( ) ( ) 0ln 0 10 1 1 0 1 >=−=−=Γ ∫∫∫ ∞= = −= ∞= −− = −= = = − − − xtd e t tdetuduz t t t xt t tx eu dtedu u u x t t ( ) ( ) ( ) ( ) 022ln 0 12 0 12 2 1 0 1 22 2 2 >=−=−=Γ ∫∫∫ ∞= = −− = ∞= −− = −= = = − − − xtdettdettuduz t t tx t t tx eu dtetdu u u x t t The notation Γ (x) is due to Legendre in 1809, while Gauss used Π (x) = Γ (x+1) Carl Friedrich Gauss (1777 – 1855) Adrien-Marie Legendre )1752–1833( Gamma Function
  • 5. 5 SOLO ( ) ∫ ∞= = − =Γ t t t z td e t z 0 1 Proof: Gamma Function 0& >+= xyixz ∫∫∫ ∞= = −= += −∞= += − += t t t zt t t zt t t z td e t td e t td e t 1 11 0 1 0 1 For the first part: x t xx t x tdttd e t td e t x t t t x t t x et t t yixt t t z t 1 lim 111 0 1 0 1 0 1 11 0 11 0 1 =−==≤= +→ = += = += − >= += −+= += − ∫∫∫ The first integral converges for any x ≥ δ > 0. For the second integral, using integration by parts: ( ) ( ) ( ) ( ) ( )( ) ∫ ∫∫∫∫ ∞= = − ∞= = −− = = ∞= = − ∞= = −− = = ∞= = −∞= = −+∞= = − −−+−−+= −+−=== − − − − t t t x e t t tx edv tu t t t x e t t tx edv tu t t t xt t t yixt t t z td e t xxetx e td e t xettd e t td e t td e t t x t x 1 3 /1 1 2 1 2 /1 1 1 1 1 1 1 1 1 211 1 1 2 1   Euler’s Second Integral Gamma integral is defined, and converges uniformly for x > 0. Gamma Function
  • 6. 6 SOLO ( ) ∫ ∞= = − =Γ t t t z td e t z 0 1 Proof (continue): Gamma Function 0& >+= xyixz For the second integral, using integration by parts: ( ) ( ) ( ) ( ) ( )( ) ∫ ∫∫∫∫ ∞= = − ∞= = −− = = ∞= = − ∞= = −− = = ∞= = −∞= = −+∞= = − −−+−−+= −+−=== − − − − t t t x e t t tx edv tu t t t x e t t tx edv tu t t t xt t t yixt t t z td e t xxetx e td e t xettd e t td e t td e t t x t x 1 3 /1 1 2 1 2 /1 1 1 1 1 1 1 1 1 211 1 1 2 1   After [x] (the integer defined such that x-[x] < 1) such integration the power of t in the integrand becomes x-[x]-1 < 0. and we have: ( )( ) [ ]( ) [ ]( ) ( )( ) [ ]( ) ∞<−−−<−−− ∫∫ ∞= = ∞= = −− t t t t t txx td e xxxxtd et xxxx 11 1 1 21 1 21  Therefore the Gamma integral is defined, and converges uniformly for x > 0. Gamma integral is defined, and converges uniformly for x > 0. q.e.d. Gamma Function Return to Table of Content
  • 7. 7 SOLO ( ) ∫ ∞= = − =Γ t t t z td e t z 0 1 Proof : Gamma Function 0& >+= xyixz ( ) ( )zzz Γ=+Γ 1 ( )  ( ) ( ) ( )zztdetztdtzeettdetz t t tz t t ud z v t v t u z dtedvtu partsby t t tz tz Γ=+=−−−==+Γ ∫∫∫ ∞= = −− ∞= = −− ∞ − ==∞= = − − 0 1 0 1 0 , nintegratio 0 01  Properties of Gamma Function : 1 Note that for the evaluation of Gamma Function for a Positive Real Number we need to know only the value of Γ (x) for 0 < x < 1 ( ) ( ) ( ) ( ) ( )xxxnxnxnx Γ+−+−+=+Γ 121  ( ) ( ) ( ) ( ) ( )121 −+−++ +Γ =Γ nxnxxx nx x  For x < 0 with –n < x < -n+1 or 0 < x+n < 1, we define We can see that for x = 0 or a negative integer the denominator of the right side is zero, and so Γ (x) is undefined (goes to infinity) Gamma Function ( ) ,2,1,0!1 ==+Γ nnn
  • 8. 8 SOLO ( ) ∫ ∞= = − =Γ t t t z td e t z 0 1 Proof : Gamma Function ( ) ( ) ( )!1 1 Residue 1 1 − − =Γ − +−→ n z n nz Residues of Gamma Function at x = 0,-1, -2,---,-n,..: ( ) ( ) ( ) ( ) ( )121 −+−++ +Γ =Γ nxnxxx nx x  q.e.d. ( ) ( ) ( ) ( ) ( ) ( ) ( )  ( )( ) ( ) ( ) ( )!1 1 121 1 121 1limResidue 1 1 11 − − = −+−+− Γ = −+−++ +Γ −+=Γ − +−→+−→ nnn nxnxxx nx nxx n nxnx   Gamma Function
  • 9. 9 SOLO Gamma Function Γ (x) and its Inverse 1/Γ (x) Gamma Function
  • 10. 10 SOLO ( ) ∫ ∞= = − =Γ t t t z td e t z 0 1 Gamma Function Absolute value |Γ (z)| Real value ReΓ (z) Imaginary value ImΓ (z) Gamma Function
  • 11. 11 SOLO ( ) ∫ ∞= = − =Γ t t t z td e t z 0 1 Gamma Function Absolute value |Γ (z)| Gamma Function
  • 12. 12 SOLO ( ) ∫ ∞= = − =Γ t t t z td e t z 0 1 Gamma Function ( ) ( )zzz Γ=+Γ 1 Let compute ( ) 11 0 0 =−==Γ ∞− ∞= = − ∫ t t t t etde Therefore for any n positive integer: ( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )!1122112111 −=Γ−−=−Γ−−=−Γ−=Γ nnnnnnnnn  Properties of Gamma Function : 1 2 q.e.d. Gamma Function
  • 13. 13 SOLO Primes Second definition identical to First ( )[ ] ( ) ( ) ( ) ( ) ( )bayxallyfxfyxf ,,1,011 ∈∈−+≤−+ λλλλλ Convex Function : A Function f (x) is called Convex in an interval (a,b) if for every x,y (a,b) we haveϵ A Function f (x), defined for x > 0, is called Convex, if the corresponding function ( ) ( ) ( ) y xfyxf y −+ =φ defined for all y > -x, y ≠ 0, is monotonic Increasing throughout the range of definition. If 0 < x1 < x < x2, are given by choosing y1 = x1 – x < 0, y2 = x2 – x > 0, we express the condition of convexity as ( ) ( ) ( ) ( ) ( ) ( ) xx xfxf y xx xfxf y − − =≤ − − = 2 2 2 1 1 1 φφ ( ) ( )[ ] ( ) ( ) ( )[ ] ( )xxxfxfxxxfxf −−≥−− 1221 ( ) ( ) ( ) ( ) ( ) ( ) ( ) λλ − − − + − − ≤ 1 12 1 2 12 2 1 xx xx xf xx xx xfxf One other equivalent definition:
  • 14. 14 SOLO Primes ( )[ ] ( ) ( ) ( ) ( )1,0ln1ln1ln ∈−+≤−+ λλλλλ yfxfyxf Logarithmic Convex Function : A Function f (x)>0 is called logarithmic-convex or simply log-convex if ln (f (x) ) is convex or This is equivalent to ( )[ ] ( ) ( )( )λλ λλ − ≤−+ 1 ln1ln yfxfyxf Since the logarithm is a momotonic increasing function we obtain ( )[ ] ( ) ( )( ) ( ) yxyfxfyxf <∈≤−+ − ,1,01 1 λλλ λλ
  • 15. 15 SOLO Primes ( ) ∫ ∞= = − =Γ t t t z td e t z 0 1 Proof : Gamma Function 0& >+= xyixz ( )[ ] ( ) ( ) ( ) ( )1,0ln1ln1ln ∈Γ−+Γ≤−+Γ λλλλλ baba Properties of Gamma Function : 3 Gamma is a Log Convex Function ( )[ ] ( ) ( ) ( ) ( ) ( ) λλ λλ λλλλ λλ − −∞ −− ∞ −− ∞ −−−−− ∞ −−−+ ΓΓ=                ≤ ==−+Γ ∫∫ ∫∫ 1 1 0 1 0 1 0 111 0 11 1 badtetdtet dtetetdtetba tbta InequalityHolder tbtatba q.e.d. Return to Table of Content
  • 16. 16 SOLO Primes ( ) ∫ ∞= = − =Γ t t t z td e t z 0 1 Proof : Gamma Function Other Gamma Function Definitions: ( ) ( ) ( )nxxx nn x x n ++ =Γ ∞→ 1 ! limGauss’ Formula Since the Gamma Function is monotonically increasing the logarithm of Gamma Function is also monotonic increasing and for 0 < x < 1 and any n > 2 we have ( ) ( ) ( ) nnx nnx −+ Γ−+Γ lnln ( )[ ] ( )[ ] ( ) ( ) ( ) ( )[ ] [ ] ( )[ ] ( )            −      − − −− ≤ −−+Γ ≤ − −−− !1 ! ln !2 !1 ln 1 !1ln!ln!1lnln 1 !1ln!2ln n n n n nn x nnxnn ( ) ( ) ( ) n x n nx n ln !1 ln 1ln ≤ − +Γ ≤− ( ) ( ) ( ) 1 1 ln1ln −=← ≤ −+− Γ−+−Γ x nn nn ( ) ( ) ( ) nn nnx −+ Γ−+Γ ≤ →= 1 ln1ln1 Carl Friedrich Gauss (1777 – 1855)
  • 17. 17 SOLO Primes ( ) ∫ ∞= = − =Γ t t t z td e t z 0 1 Proof (continue - 1) : Gamma Function Other Gamma Function Definitions: Since the Gamma Function is monotonically increasing the logarithm of Gamma Function is also monotonic increasing and for 0 < x < 1 and any n > 2 we have ( ) ( ) ( ) n x n nx n ln !1 ln 1ln ≤ − +Γ ≤− ( ) ( ) ( ) xx n n nx n ln !1 ln1ln ≤ − +Γ ≤− 10 << x ( ) ( ) ( ) ( )!1!11 −≤+Γ≤−− nnnxnn xx Use ( ) ( ) ( ) ( ) ( )xxxnxnxnx Γ+−+−+=+Γ >     0 121 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) xxnxnx nn x xxnxnx nn xx 121 !1 121 !11 +−+−+ − ≤Γ≤ +−+−+ −−  ( ) ( ) ( )nxxx nn x x n ++ =Γ ∞→ 1 ! limGauss’ Formula Euler 1729 Gauss 1811
  • 18. 18 SOLO Primes ( ) ∫ ∞= = − =Γ t t t z td e t z 0 1 Proof (continue - 2) : Gamma Function Other Gamma Function Definitions: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) xxnxnx nn x xxnxnx nn xx 121 !1 121 !11 +−+−+ − ≤Γ≤ +−+−+ −−  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) xxnxnx nn x xxnxnx nn xx 11 !1 11 ! +−++ + ≤Γ≤ +−++  Take the limit n → ∞ ( ) ( ) ( ) ( ) ( ) ( ) ( ) xxnxnx nn n x xxnxnx nn x n x n x n 11 ! lim 1 1lim 11 ! lim 1 +−++       +≤Γ≤ +−++ ∞→∞→∞→    ( ) ( ) ( ) ( ) ( )1,0 11 ! lim ∈ +−++ =Γ ∞→ x xxnxnx nn x x n  Substitute n+1 for n ( ) ( ) ( )nxxx nn x x n ++ =Γ ∞→ 1 ! limGauss’ Formula
  • 19. 19 SOLO Primes ( ) ∫ ∞= = − =Γ t t t z td e t z 0 1 Let substitute x + 1 for x Gamma Function Other Gamma Function Definitions: ( ) ( ) ( ) ( ) ( ) ( )1,0 11 ! lim ∈ +−++ =Γ Γ ∞→ x xxnxnx nn x x x n n     q.e.d ( ) ( ) ( )nxxx nn x x n ++ =Γ ∞→ 1 ! limGauss’ Formula Proof (continue - 3) : ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1,0 11 ! lim 1 lim 11 ! lim1 1 1 ∈Γ= +−++++ = ++++ =+Γ Γ ∞→∞→ + ∞→ xxx xxnxnx nn nx n x xnxnx nn x x x nn x n         The right side is defined for 0 < x <1. The left side extend the definition for (1 , 2). Therefore the result is true for all x , but 0 and negative integers. Return to Table of Content
  • 20. 20 SOLO ( ) ∫ ∞= = − =Γ t t t z td e t z 0 1 Gamma Function Other Gamma Function Definitios: Start from Gauss Formula ( ) ( )xx n n Γ=Γ ∞→ lim q.e.d ( ) constantMascheroni-Euler57721566.0ln 1 2 1 1lim 11 ≈      −+++= + =Γ ∞→ ∞ = − ∏ n n k x e x e x n k k x x γ γ Weierstrass’ Formula Proof : ( ) ( ) ( ) ( )       +      − +      + =       +      − +      + = +−++ =Γ       −−−− n x n xx x eee e x x n x n x n xxnxnx nn x n xxx n nx xx n 1 1 1 1 1 1 1 1 11 11 ! : 21 1 2 1 1ln      ( ) ( ) ∏∏ ∞ = − =       −−−− ∞→∞→ + = + =Γ=Γ 11 1 2 1 1ln 11 1 limlim k k x xn k k x n nx n n n k x e x e k x e x exx γ Karl Theodor Wilhelm Weierstrass (1815 – 11897) Gamma Function Return to Table of Content
  • 21. 21 SOLO Primes ( ) ∫ ∞= = − =Γ t t t z td e t z 0 1 Gamma Function Some Special Values of Gamma Function: q.e.d ( ) π π ====Γ ∫∫ ∞= = − = = ∞= = − 2 222/1 0 2 0 2 2 t t u ut duudt t t t udetd t e ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) πn n nnnnn 2 12531 2/12/112/32/12/12/12/1 −⋅⋅ =Γ+−−=−Γ−=+Γ   ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) π 12531 21 2/12/32/1 2/1 2/1 2/3 2/1 −⋅⋅ − = −+−+− Γ = +− +−Γ =+−Γ nnnn n n nn  ( ) π=Γ 2/1 ( ) ( ) πn n n 2 12531 2/1 −⋅⋅ =+Γ  ( ) ( ) ( ) π 12531 21 2/1 −⋅⋅ − =+−Γ n n nn  Proof: Return to Table of Content
  • 22. 22 SOLO Harald August Bohr ( 1887 – 1951) Proof: Choose n > 2, and 0 < x < 1 and let 11 +≤+<<− nxnnn By logarithmic convexity of f (x), we get ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) nn nfnf nxn nfxnf nn nfnf −+ −+ ≤ −+ −+ ≤ −− −− 1 ln1lnlnln 1 ln1ln ( ) ( ) ( ) ( ) ( ) 1 !1ln!ln!1lnln 1 !1ln!2ln −− ≤ −−+ ≤ − −−− nn x nxnfnn By the second property ( ) ( ) ( ) ( ) ( ) !1,!1,!21 nnfnnfnnf =+−=−=− ( ) ( )( ) ( ) ( )xfxxxnxnxnf 121 +−+−+=+  ( ) ( ) ( ) xx n n xnf n ln !1 ln1ln ≤ − + ≤− Emil Artin (1898 – 1962) Hamburg University Johannes Mollerup (1872 – 1937) Gamma Function Bohr-Mollerup-Artin Theorem: The theorem characterizes the Gamma Function, defined for x > 0 by as the only function f (x) on the interval x > 0 that simultaneously has the three properties • f (1) = 1 • f (1+x) = x f (x) for x > 0 • f is logarithmically convex or Gauss Formula( ) ∫ ∞= = −− =Γ t t tz tdetz 0 1 ( ) ( ) ( )nxxx nn z x n ++ =Γ ∞→ 1 ! lim
  • 23. 23 SOLO Bohr-Mollerup-Artin Theorem: Harald August Bohr ( 1887 – 1951) The theorem characterizes the Gamma Function, defined for x > 0 by as the only function f (x) on the interval x > 0 that simultaneously has the three properties • f (1) = 1 • f (1+x) = x f (x) for x > 0 • f is logarithmically convex Proof (continue-1): By the second property ( ) ( )( ) ( ) ( )xfxxxnxnxnf 121 +−+−+=+  ( ) ( )( ) ( ) ( ) ( ) xx n n xfxxxnxn n ln !1 121 ln1ln ≤ − +−+−+ ≤−  We found Since lan is a monotonic increasing function, we have ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )121 !1 121 !11 −+−++ − ≤≤ −+−++ −− xnxnxx nn xf xnxnxx nn xx  ( ) ( )( ) ( ) ( ) ( )( ) ( ) x xxx n n xnxnxx nn xf xnxnxx nn 1 11 ! 11 ! + +−++ ≤≤ +−++  n n ↓ −1 ( ) ∫ ∞= = −− =Γ t t tz tdetz 0 1 ( ) ( ) ( )nxxx nn x x n ++ =Γ ∞→ 1 ! limor Gauss Formula Emil Artin (1898 – 1962) Hamburg University Johannes Mollerup (1872 – 1937) Gamma Function
  • 24. 24 SOLO Bohr-Mollerup-Artin Theorem: q.e.d. Harald August Bohr ( 1887 – 1951) The theorem characterizes the Gamma Function, defined for x > 0 by as the only function f (x) on the interval x > 0 that simultaneously has the three properties • f (1) = 1 • f (1+x) = x f (x) for x > 0 • f is logarithmically convex Johannes Mollerup (1872 – 1937) Proof (continue - 2): ( ) ( )( ) ( ) ( ) ( )( ) xxx nxnxnxx nn xf xnxnxx nn       + +−++ ≤≤ +−++ 1 1 11 ! 11 !  ( ) ∫ ∞= = −− =Γ t t tz tdetz 0 1 ( ) ( ) ( )nxxx nn x x n ++ =Γ ∞→ 1 ! limor Gauss Formula By taking n → ∞ we obtain ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )         1 1 1lim 11 ! lim 11 ! lim x n x x n x x n nxnxnxx nn xf xnxnxx nn       + +−++ ≤≤ +−++ ∞→ Γ ∞→ Γ ∞→ But this is possible only if ( ) ( )xxf Γ= Emil Artin (1898 – 1962) Hamburg University Gamma Function
  • 25. 25 SOLO ( ) ∫ ∞= = − =Γ t t t z td e t z 0 1 Gamma Function Gamma integral is defined, and converges uniformly for x > 0. Differentiation of Gamma Function: q.e.d ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0,2 !11' ln 0 1''' ln constantMascheroni-Euler57721566.0 111' ln 1 1 1 1 22 2 2 2 1 >≥ + −− = Γ Γ =Γ > + = Γ Γ−ΓΓ =Γ ≈      + −+−−= Γ Γ =Γ ∑ ∑ ∑ ∞ = − − ∞ = ∞ = xn kx n x x xd d x xd d kxx xxx x xd d kxkxx x x xd d k n n n n n n k k γγ Proof : Start from Weierstrass Formula ( ) ∏ ∞ = − + =Γ 1 1k k x x k x e x e x γ ( ) ∑∑ ∞ = ∞ =       +−+−−=Γ 11 1lnlnln kk k x k x xxx γ ( ) ∑∑ ∞ = ∞ = + −+−−=Γ 11 1 1 11 ln kk k x k kx x xd d γ ( ) ( ) ( ) 0 111111 ln 0 2 1 22 1 2 2 > + = + +=            + −+−−=Γ ∑∑∑ ∞ = ∞ = ∞ = kkk kxkxxkxkxxd d x xd d γ ( ) ( ) ( ) ( ) ( ) ( )∑ ∞ = − − + −− = Γ Γ =Γ 0 1 1 !11' ln k n n n n n n kx n x x xd d x xd d Gamma Function We can see that ( ) ( ) ( ) γγ −=      + −+−−= Γ Γ ==Γ + − = ∞→ ∑    1 1 1 1 1 11 lim 1 1 1 1' 1ln n n k n kk x xd d Return to Table of Content
  • 26. 26 SOLO ( ) ( )∫ = = −− −= 1 0 11 1, s s zy sdsszyBBeta Function Beta Function is related to Gamma Function: ( ) ∫∫ ∞= = −− = =∞= = −− ==Γ u u uy duudt utt t ty udeutdety 0 12 2 0 1 2 2 2 ( ) ( ) ( ) ( )zy zy zyB +Γ ΓΓ =, Proof: In the same way: ( ) ∫ ∞= = −− =Γ v v vz vdevz 0 12 2 2 ( ) ( ) ( ) ∫ ∫ ∞= = ∞= = +−−− =ΓΓ u u v v vuuzy vdudevuzy 0 0 1212 22 4 Use polar coordinates: ϕϕ ϕϕ ϕϕ ϕ ϕ ϕ ϕ ϕ drdrdrd r r drd vrv uru vdud rv ru = − = ∂∂∂∂ ∂∂∂∂ =    = = cossin sincos // // sin cos ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )                     = =ΓΓ ∫∫ ∫ ∫ = = −− +Γ ∞= = −−+ ∞= = = = −−−−+ 2/ 0 1212 0 12 0 2/ 0 121212 sincos22 sincos4 2 2 πϕ ϕ πϕ ϕ ϕϕϕ ϕϕϕ drder drderzy zy zy r r rzy r r rzyzy    Euler’s First Integral Gamma Function
  • 27. 27 SOLO ( ) ( )∫ = = −− −= 1 0 11 1, s s zy sdsszyBBeta Function Euler’s First Integral Beta Function is related to Gamma Function: ( ) ( ) ( ) ( )zy zy zyB +Γ ΓΓ =, Proof (continue): ( ) ( ) ( ) ( ) ( )         +Γ=ΓΓ ∫ = = −− 2/ 0 1212 sincos2 πϕ ϕ ϕϕϕ dzyzy zy Change variables in the integral using ϕϕϕϕ dsds cossin2sin2 == ( ) ( ) ( ) ( )zyBsdssd s s yzzy ,1sincos2 1 0 11 2/ 0 1212 =−= ∫∫ = = −− = = −− πϕ ϕ ϕϕϕ ( ) ( ) ( ) ( )zyBzyzy ,+Γ=ΓΓTherefore q.e.d. Use z→y and y → 1 - z ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ∫∫ ∫ ∞= = −∞= = − − −+ = + = = = −− + = +       + − + = −=−Γ=−ΓΓ u u zu u z z zu u s u ud sd s s zz ud u u u ud u u u u dssszzBzz 0 1 0 21 11 1 1 0 1 111 1 1 11,11 2 q.e.d. Gamma Function Return to Table of Content
  • 28. 28 SOLO Proof ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )yzBzyzyBzyyz yzBzyB ,, ,, +Γ=+Γ=ΓΓ = Use y → 1 - z ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ∫∫ ∫ ∞= = −∞= = − − −+ = + = = = −− + = +       + − + = −=−Γ=−ΓΓ u u zu u z z zu u s u ud sd s s zz ud u u u ud u u u u dssszzBzz 0 1 0 21 11 1 1 0 1 111 1 1 11,11 2 ( ) ∫ ∞= = − =Γ t t t z td e t z 0 1 Gamma Function Other Gamma Function Properties: ( ) ( ) ( )z zz π π sin 1 =−ΓΓ Euler Reflection Formula Gamma Function
  • 29. 29 SOLO Proof (continue - 1) ( ) ( ) ∫ ∞= = − + =−ΓΓ u u x ud u u xx 0 1 1 1 ( ) ∫ ∞= = − =Γ t t t z td e t z 0 1 Gamma Function Other Gamma Function Properties: Replace the path from 0 to ∞ by the Hankel contour Hε in the Figure, described by four paths, traveled in counterclockwise direction: 1. going counterclockwise above the real axis, (u = |u|) 2. along the circular path CR, 3. bellow the real axis, (u= |u|e -2πi ) 4. along the circular path Cε. ∫∫∫∫ + − + − + + + −− − −− εε π ε C yR y yi C yR y ud u u ud u u eud u u ud u u R 1111 2 Define y = 1 – x, and assume x,y (0,1)ϵ ( ) ( ) ( )z zz π π sin 1 =−ΓΓ Euler Reflection Formula Gamma Function
  • 30. 30 SOLO Proof (continue - 1) ( ) ( ) ∫ ∞= = − + =−ΓΓ u u x ud u u xx 0 1 1 1 ( ) ∫ ∞= = − =Γ t t t z td e t z 0 1 Gamma Function Other Gamma Function Properties: This path encloses the pole u=-1 of that has the residue 1+ − u u y yi eu y y eu u u i π π − =−= − − ==      + 11 Residue By the Residue Theorem For z ≠ 0 we have ( ) yzyzyzyy zeeez −−−−− ==== lnlnReln ( ) ( ) ( )z zz π π sin 1 =−ΓΓ Euler Reflection Formula ( ) yi y eu y C yR y iy C yR y ei u u ui u u izd z z ud u u ezd z z ud u u i R π ε π ε ππ π π ε − − =−→ −−− − −− =            + +=       + = + − + − + + + − ∑∫∫∫∫ 2 1 1lim2 1 Residue2 1111 1 2 Gamma Function
  • 31. 31 SOLO Proof (continue - 2) ( ) ∫ ∞= = − =Γ t t t z td e t z 0 1 Gamma Function Other Gamma Function Properties: yi C yR y iy C yR y eizd z z ud u u ezd z z ud u u R π ε π ε π ε − −− − −− = + − + − + + + ∫∫∫∫ 2 1111 2 For the second and forth integral we have ( ) 0 lnlnReln ≠==== −−−−− zzeeez yzyzyzyy z z z z z z yyy − ≤ + ≤ + −−− 111 Hence for small ε we have: and for large R we have: 0 1 2 1 01 →−− → − ≤ +∫ ε ε ε π ε y C y zd z z 0 1 2 1 1 ∞→−− → − ≤ +∫ Ry C y R R zd z z R π Therefore the integrals on the circular paths are zero for ε→0 and R →∞ ( ) ( ) ( )z zz π π sin 1 =−ΓΓ Euler Reflection Formula Gamma Function
  • 32. 32 SOLO Proof (continue - 3) ( ) ∫ ∞= = − =Γ t t t z td e t z 0 1 Gamma Function Other Gamma Function Properties: yi y iy y eiud u u eud u u ππ π − ∞ − − ∞ − = + − + ∫∫ 2 11 0 2 0 We obtain Multiply both sides by yi e π+ ( ) iud u u ee y iyiy πππ 2 10 = + − ∫ ∞ − − ( ) ( )yee i ud u u iyiy y π π π ππ sin 2 10 = − = + − ∞ − ∫Rearranging we obtain Since both sides of this equation are meromorphic (analytic) in x (0,1) we canϵ extend the result for all analytic parts of z C (complex plane).ϵ ( ) ( ) ( )[ ] ( ) ( )1,0 sin1sin11 1 0 1 0 1 ∈= − = + = + =−ΓΓ ∫∫ ∞= = −−=∞= = − x xx ud u u ud u u xx u u yxyu u x π π π π Substituting y = 1 – x we obtain ( ) ( ) ( )z zz π π sin 1 =−ΓΓ Euler Reflection Formula Gamma Function
  • 33. 33 SOLO Onother Proof ( ) ∫ ∞= = − =Γ t t t z td e t z 0 1 Gamma Function Other Gamma Function Properties: Start with Weierstrass Gamma Formula ( ) ( ) ( )z zz π π sin 1 =−ΓΓ Euler Reflection Formula ( ) ∏ ∞ = − + =Γ 1 1k k x x k x e x e x γ ( ) ( ) ∏∏ ∞ = ∞ = − −       −−= −+ −= −ΓΓ 1 2 2 2 1 2 1 11 1 kk k x k x xx k x x e k x e k x eex xx γγ Use the fact that Γ (-x)=- Γ (1-x)/x to obtain ( ) ( ) ∏ ∞ =       −= −ΓΓ 1 2 2 1 1 1 k k x x xx Now use the well-known infinite product ( ) ∏ ∞ =       −= 1 2 2 1sin k k x xx ππ q.e.d. Gamma Function
  • 34. 34 SOLO Proof ( ) ∫ ∞= = − =Γ t t t z td e t z 0 1 Gamma Function Other Gamma Function Properties: ( )z zz π π cos2 1 2 1 =      −Γ      +Γ Start from Substitute ½ +z instead of z ( ) ( ) ( )z zz π π sin 1 =−ΓΓ ( )z z zz π π π π cos 2 1 sin 2 1 2 1 =             + =      −Γ      +Γ q.e.d. Gamma Function Return to Table of Content
  • 35. 35 SOLO ( ) ∫ ∞= = − =Γ t t t z td e t z 0 1 Gamma Function Stirling Approximation Formula: ( ) 121 >>≈+Γ − xexxx xx π ( ) ( ) ( ) ( ) ( ) ( )( ) ∫ ∫∫∫ ∞= −= ++−−+ ∞= −= −−+ ∞= −= +− += = ∞= −= − = +=+==+Γ u u uuxxx u u xuxxx u u xxux uxt udxtd t t xt udeex udueexudxuxetdtex 1 1ln1 1 1 1 1 1 1 111 Proof: The function f(u) = -u + ln (1 + u) equals zero for u = 0. For other values of u we have f(u) < 0. This implies that the integrand of the last integral equals 1 at u = 0 and that this integrand becomes very small for large values of x at other values of u. So for large values of x we only have to deal with the integrand near u = 0. Note that we have ( ) ( ) ( ) ( ) 0 2 1 2 1 1ln 2222 →Ο+−=Ο+−+−=++−= uforuuuuuuuuuf This implies that ( )( ) ∞→≈ ∫∫ ∞= −∞= − ∞= −= ++− xforduedue u u ux u u uux 2/ 1 1ln 2 James Stirling, a contemporary of Euler, also attempted to find a continuous expression for the factorial and came up with what is now known as Stirling's formula. Although Stirling's formula gives a good estimate of , also for non-integers, it does not provide the exact value. Extensions of his formula that correct the error were given by Stirling himself and by Jacques Philippe Marie Binet‫ן‬ Gamma Function
  • 36. 36 SOLO ( ) ∫ ∞= = − =Γ t t t z td e t z 0 1 Gamma Function Stirling Approximation Formula: ( ) 121 >>≈+Γ − xexxx xx π Proof (continue): ( ) ( )( ) ∞→≈=+Γ ∫∫ ∞= −∞= −−+ ∞= −= ++−−+ xfordueexudeexx u u uxxx u u uuxxx 2/1 1 1ln1 2 1 ∞→== − ∞= −∞= −− = = ∞= −∞= − ∫∫ xforxdtexdue t t t xtu xtdud u u ux π π 22 2/12/1 /2 /2 2/ 22  If we set we have by using the normal integralxtu /2= therefore: ( ) ∞→≈+Γ − xexxx xx π21 q.e.d. Gamma Function
  • 37. 37 SOLO ( ) ∫ ∞= = − =Γ t t t z td e t z 0 1 Gamma Function Duplication and Multiplication Formula: ( ) ( ) 0Re2 22 1 12 >Γ=      +ΓΓ − zzzz z π Legendre Duplication Formula 1809 Adrien-Marie Legendre )1752–1833( Proof: ( ) ( ) ( ) ( ) ( ) ( ) ( )2/1,2sin22sin2 2sin22sincos2, 21 2/ 0 1221 0 1221 2/ 0 1221 2/ 0 1212 zBdd ddzzB zzzzz zzzz ⋅=⋅⋅== ⋅== −−−−− −−−− ∫∫ ∫∫ ππ ππ ττττ ϕϕϕϕϕ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0Re 2/1 2/1 22/1,2, 2 2121 > +Γ Γ⋅Γ ⋅=⋅== Γ Γ⋅Γ −− z z z zBzzB z zz zz We have therefore q.e.d( )  ( ) 0Re2 22 1 12 2 1 >Γ=      +ΓΓ −       Γ zzzz z π Gamma Function
  • 38. 38 SOLO ( ) ∫ ∞= = − =Γ t t t z td e t z 0 1 Gamma Function Duplication and Multiplication Formula: ( ) ( )( ) ( )znn n n z n z n zz znn Γ=      − +Γ      +Γ      +ΓΓ −− 2/12/1 2 121 π Gauss Multiplication Formula Proof: n z 1 = Carl Friedrich Gauss (1777 – 1855)( )( ) nn n nn n 2/1 2121 − =      − Γ      Γ      Γ π  Euler Multiplication Formula Gamma Function Define the function: ( )       −+ Γ      + Γ      Γ= n nx n x n x nxf x 11 :  This function has the following properties: 1 ( ) ( )xfx n x n x n nx n x n x nn n nx n nx n x n x nxf x x ⋅=      Γ⋅⋅      −+ Γ      + Γ      + Γ⋅=       + Γ      −+ Γ      + Γ      + Γ=+ ↓ + 121 121 1 1   
  • 39. 39 SOLO ( ) ∫ ∞= = − =Γ t t t z td e t z 0 1 Gamma Function Duplication and Multiplication Formula: ( ) ( )( ) ( )znn n n z n z n zz znn Γ=      − +Γ      +Γ      +ΓΓ −− 2/12/1 2 121 π Gauss Multiplication Formula Proof (continue – 1): Carl Friedrich Gauss (1777 – 1855) Gamma Function Since (ln nx )”=(x ln n)”=(ln n)’=0, and each Γ ((x+k)/k) is log convex. f (x) is log convex. ( ) ( )       Γ      Γ⋅      Γ==Γ= n n nn naaf nn  21 11 So using Bohr-Mollerup-Artin Theorem we can write: f (x) = an Γ(x) where an is a constant, to be found, and Γ (1)=1 (the third condition of the Theorem). 2 Therefore Use Gauss’ Formula for Gamma Function with x=k/n ( ) ( )pnknkk npp p n k n k n k pp n k pn k p n k p ++ =       +      + =      Γ + ∞→∞→   1 ! lim 1 ! lim
  • 40. 40 SOLO ( ) ∫ ∞= = − =Γ t t t z td e t z 0 1 Gamma Function Duplication and Multiplication Formula: ( ) ( )( ) ( )znn n n z n z n zz znn Γ=      − +Γ      +Γ      +ΓΓ −− 2/12/1 2 121 π Gauss Multiplication Formula Proof (continue – 2): Carl Friedrich Gauss (1777 – 1855) Gamma Function ( ) ( )pnknkk npp n k pn k p ++ =      Γ + ∞→  1 ! lim Since k = 1,2,…,p ( ) ( ) [ ] ( ) ( )[ ] ( ) ( )[ ] ( ) ( )( )!1! 11211 nppnn pnnpnnnnnpnknkk p k ⋅+=⋅+= ⋅+⋅+++⋅⋅=⋅++∏=  ( ) ( ) ( ) ( ) ( ) ( )! ! lim ! ! lim 21 2 1 1 1 1 pnn pnp n pnn pnp n n n nn na n pnn p n n npnn p n ⋅+ = ⋅+ =      Γ      Γ⋅      Γ= + + ∞→ ++ + ∞→  
  • 41. 41 SOLO ( ) ∫ ∞= = − =Γ t t t z td e t z 0 1 Gamma Function Duplication and Multiplication Formula: ( ) ( )( ) ( )znn n n z n z n zz znn Γ=      − +Γ      +Γ      +ΓΓ −− 2/12/1 2 121 π Gauss Multiplication Formula Proof (continue – 3): Carl Friedrich Gauss (1777 – 1855) Gamma Function ( ) ( ) ( )! ! lim 2 1 1 pnn pnp na n pnn p n ⋅+ = + + ∞→ Use the identity ( ) ( ) ( )npp pnpn pnn pn n pnpn ⋅ ⋅ ⋅ ⋅+ =      ⋅ +      ⋅ +⋅      ⋅ += ∞→∞→ 1 ! ! lim1 2 1 1 1lim1  to an to get ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 1 2 1 12 1 1 ! ! lim ! ! ! ! lim1 ! ! lim − ⋅ ∞→ + + ∞→ + + ∞→ ⋅ = ⋅⋅ ⋅+ ⋅ ⋅+ =⋅ ⋅+ = n pnn pn n pnn p n pnn p n ppn np n pnpn pnn pnn pnp n pnn pnp na
  • 42. 42 SOLO ( ) ∫ ∞= = − =Γ t t t z td e t z 0 1 Gamma Function Duplication and Multiplication Formula: ( ) ( )( ) ( )znn n n z n z n zz znn Γ=      − +Γ      +Γ      +ΓΓ −− 2/12/1 2 121 π Gauss Multiplication Formula Proof (continue – 4): Carl Friedrich Gauss (1777 – 1855) Gamma Function to an to get ( ) ( ) 2 1 ! ! lim − ⋅ ∞→ ⋅ = n pnn p n ppn np na ∞→≈ − + pepp p p 2 1 2! π ( ) ( ) ( ) ∞→⋅≈⋅ ⋅−+⋅ pepnpn pnpn 2 1 2! π ( ) ( ) ( ) 2 1 2 1 2 1 2 1 2 1 2 2 2 lim n pepn nep na n n pnpn pn n p p p n − − ⋅−+⋅ ⋅− + ∞→ = ⋅         = π π π Use Stirling’s Approximation formula ( ) ∞→≈+Γ − xexxx xx π21
  • 43. 43 SOLO ( ) ∫ ∞= = − =Γ t t t z td e t z 0 1 Gamma Function Duplication and Multiplication Formula: ( ) ( )( ) ( )znn n n z n z n zz znn Γ=      − +Γ      +Γ      +ΓΓ −− 2/12/1 2 121 π Gauss Multiplication Formula Proof (continue – 4): Carl Friedrich Gauss (1777 – 1855) Gamma Function ( ) 2 1 2 1 2 na n n − = π ( ) ( )xa n nx n x n x nxf n x Γ=      −+ Γ      + Γ      Γ= 11 :  We have or ( ) ( )xn n nx n x n x xn Γ=      −+ Γ      + Γ      Γ +−− 2 1 2 1 2 11 π Define x = n z to obtain ( ) ( ) ( )znn n n z n zz znn Γ=      − +Γ      +ΓΓ +−− 2 1 2 1 2 11 π q.e.d Return to Table of Content
  • 44. 44 SOLO References Internet http://en.wikipedia.org/wiki/ G.B. Arfken, H.J. Weber, “Mathematical Methods for Physicists”, Academic Press, Fifth Ed., 2001 http://www.frm.utn.edu.ar/analisisdsys/material/function_gamma.pdf http://homepage.tudelft.nl/11r49/documents/wi4006/gammabeta.pdf Gamma Function M.Abramowitz & I.E. Stegun, ED., “Handbook of Mathematical Functions”, Dover Publication, 1965, H.Vic Dannon,”Riemann Zeta Function: The Riemann Hypothesis Origin, the Factoriztion Error, and the Count of the Primes”, Gauge Institute Journal, Vol. 5, No. 4, November 2009 J. Baltzersen, “Hardy’s Theorem and the prime number theorem”, Thesis University of Copenhagen, June 2007 D. Miličić, “Notes on Riemann Zeta Function”, http://www.math.utah.edu/~milicic/zeta.pdf P. Garrett, “Riemann’ Explicit/Exact formula”, (October 2, 2010), http://www.math.umn.edu/~garrett/m/mfms/notes_c/mfms_notes_02.pdf http://homepage.tudelft.nl/11r49/documents/wi4006/gammabeta.pdf Return to Table of Content
  • 45. January 6, 2015 45 SOLO Technion Israeli Institute of Technology 1964 – 1968 BSc EE 1968 – 1971 MSc EE Israeli Air Force 1970 – 1974 RAFAEL Israeli Armament Development Authority 1974 – 2013 Stanford University 1983 – 1986 PhD AA

Editor's Notes

  • #4: http://www.frm.utn.edu.ar/analisisdsys/material/function_gamma.pdf
  • #5: http://www.frm.utn.edu.ar/analisisdsys/material/function_gamma.pdf
  • #6: H.Vic Dannon,”Riemann Zeta Function: The Riemann Hypothesis Origin, the FaCTORIZATION Error, and the Count of the Primes”, Gauge Institute Journal, Vol. 5, No. 4, November 2009
  • #7: H.Vic Dannon,”Riemann Zeta Function: The Riemann Hypothesis Origin, the FaCTORIZATION Error, and the Count of the Primes”, Gauge Institute Journal, Vol. 5, No. 4, November 2009
  • #10: M.Abramowitz &amp; I.E. Stegun, ED., “Handbook of Mathematical Functions”, Dover Publication, 1965, pg.255
  • #11: http://en.wikipedia.org/wiki/Gamma_function
  • #12: http://en.wikipedia.org/wiki/Gamma_function
  • #14: J. Baltzersen, “Hardy’s Theorem and the prime number theorem”, Thesis University of Copenhagen, June 2007 K. Chandrasekharan, “Lectures on The Riemann Zeta-Function”, Tata Institute of Fundamental Research, Bombay, 1953
  • #15: J. Baltzersen, “Hardy’s Theorem and the prime number theorem”, Thesis University of Copenhagen, June 2007
  • #16: J. Baltzersen, “Hardy’s Theorem and the prime number theorem”, Thesis University of Copenhagen, June 2007
  • #17: J. Baltzersen, “Hardy’s Theorem and the prime number theorem”, Thesis University of Copenhagen, June 2007
  • #18: J. Baltzersen, “Hardy’s Theorem and the prime number theorem”, Thesis University of Copenhagen, June 2007
  • #19: J. Baltzersen, “Hardy’s Theorem and the prime number theorem”, Thesis University of Copenhagen, June 2007
  • #20: J. Baltzersen, “Hardy’s Theorem and the prime number theorem”, Thesis University of Copenhagen, June 2007
  • #21: J. Baltzersen, “Hardy’s Theorem and the prime number theorem”, Thesis University of Copenhagen, June 2007
  • #23: htt[p://en.wikipedia.org/wiki/Bohr_Mollerup_theorem K. Chandrasekharan, “Lectures on The Riemann Zeta-Function”, Tata Institute of Fundamental Research, Bombay, 1953 http://en.wikipedia.org/wiki/Harald_Bohr http://en.wikipedia.org/wiki/Emil_Artin
  • #24: htt[p://en.wikipedia.org/wiki/Bohr_Mollerup_theorem K. Chandrasekharan, “Lectures on The Riemann Zeta-Function”, Tata Institute of Fundamental Research, Bombay, 1953 http://en.wikipedia.org/wiki/Harald_Bohr http://en.wikipedia.org/wiki/Emil_Artin
  • #25: htt[p://en.wikipedia.org/wiki/Bohr_Mollerup_theorem K. Chandrasekharan, “Lectures on The Riemann Zeta-Function”, Tata Institute of Fundamental Research, Bombay, 1953 http://en.wikipedia.org/wiki/Harald_Bohr http://en.wikipedia.org/wiki/Emil_Artin
  • #26: J. Baltzersen, “Hardy’s Theorem and the prime number theorem”, Thesis University of Copenhagen, June 2007
  • #27: D. Miličić, “Notes on Riemann Zeta Function”, http://www.math.utah.edu/~milicic/zeta.pdf
  • #28: D. Miličić, “Notes on Riemann Zeta Function”, http://www.math.utah.edu/~milicic/zeta.pdf
  • #29: D. Miličić, “Notes on Riemann Zeta Function”, http://www.math.utah.edu/~milicic/zeta.pdf
  • #30: D. Miličić, “Notes on Riemann Zeta Function”, http://www.math.utah.edu/~milicic/zeta.pdf P. Garrett, “Riemann’ Explicit/Exact formula”, (October 2, 2010), http://www.math.umn.edu/~garrett/m/mfms/notes_c/mfms_notes_02.pdf
  • #31: D. Miličić, “Notes on Riemann Zeta Function”, http://www.math.utah.edu/~milicic/zeta.pdf P. Garrett, “Riemann’ Explicit/Exact formula”, (October 2, 2010), http://www.math.umn.edu/~garrett/m/mfms/notes_c/mfms_notes_02.pdf
  • #32: D. Miličić, “Notes on Riemann Zeta Function”, http://www.math.utah.edu/~milicic/zeta.pdf P. Garrett, “Riemann’ Explicit/Exact formula”, (October 2, 2010), http://www.math.umn.edu/~garrett/m/mfms/notes_c/mfms_notes_02.pdf
  • #33: D. Miličić, “Notes on Riemann Zeta Function”, http://www.math.utah.edu/~milicic/zeta.pdf P. Garrett, “Riemann’ Explicit/Exact formula”, (October 2, 2010), http://www.math.umn.edu/~garrett/m/mfms/notes_c/mfms_notes_02.pdf
  • #34: D. Miličić, “Notes on Riemann Zeta Function”, http://www.math.utah.edu/~milicic/zeta.pdf P. Garrett, “Riemann’ Explicit/Exact formula”, (October 2, 2010), http://www.math.umn.edu/~garrett/m/mfms/notes_c/mfms_notes_02.pdf
  • #35: D. Miličić, “Notes on Riemann Zeta Function”, http://www.math.utah.edu/~milicic/zeta.pdf P. Garrett, “Riemann’ Explicit/Exact formula”, (October 2, 2010), http://www.math.umn.edu/~garrett/m/mfms/notes_c/mfms_notes_02.pdf
  • #36: http://homepage.tudelft.nl/11r49/documents/wi4006/gammabeta.pdf
  • #37: http://homepage.tudelft.nl/11r49/documents/wi4006/gammabeta.pdf
  • #38: D. Miličić, “Notes on Riemann Zeta Function”, http://www.math.utah.edu/~milicic/zeta.pdf P. Garrett, “Riemann’ Explicit/Exact formula”, (October 2, 2010), http://www.math.umn.edu/~garrett/m/mfms/notes_c/mfms_notes_02.pdf
  • #39: D. Miličić, “Notes on Riemann Zeta Function”, http://www.math.utah.edu/~milicic/zeta.pdf P. Garrett, “Riemann’ Explicit/Exact formula”, (October 2, 2010), http://www.math.umn.edu/~garrett/m/mfms/notes_c/mfms_notes_02.pdf
  • #40: http://math.postech.ac.kr/~sungpyo/Calculus1/Appendix.pdf
  • #41: http://math.postech.ac.kr/~sungpyo/Calculus1/Appendix.pdf
  • #42: http://math.postech.ac.kr/~sungpyo/Calculus1/Appendix.pdf
  • #43: http://math.postech.ac.kr/~sungpyo/Calculus1/Appendix.pdf
  • #44: http://math.postech.ac.kr/~sungpyo/Calculus1/Appendix.pdf