SlideShare a Scribd company logo
Navigation Systems
SOLO HERMELIN
Updated: 08.11.12
1
Table of Content
SOLO
2
Navigation
NavigationSOLO
Aircraft Steering to Waypoints
1. T-HDG – True Heading
2. M-HDG – Magnetic Heading
3. T-TK - True Track
4. M-TK - Magnetic Track Angle
5. TKE – Track Angle Error
6. T-DTK – True Desired Track
7. XTK – Cross-Track Distance
8. DIS – Distance to Destination
9. GS - Ground Speed
10. WS – Wind Speed
11. WD – Wind Direction
12. TAS – True Airspeed
13. DA – Drift Angle
In order to minimize Fuel, Time and Distances the Aircraft will tend to fly between
Waypoints, on the Earth Surface, on the Great Circle connecting the Initial and Final
Waypoints, since is the Shortest Distance between two points on a Sphere.
During Flight the Aircraft will deviate from the desired flight path (see Figure).
Those deviation must be measured and corrected by Steering the Aircraft.
The Task of Steering the Aircraft can be performed Manually by the Pilot or by an
Automatic Flight-Control System (AFCS).
NavigationSOLO
Aircraft Steering to Waypoints
5
Spherical TrigonometrySOLO
Assume three points on a unit radius sphere, defined by the vectors
→→→
CBA 1,1,1
Laws of Cosines for Spherical Triangle Sides
ab
abc
ca
cab
bc
bca
ˆsinˆsin
ˆcosˆcosˆcos
ˆcos
ˆsinˆsin
ˆcosˆcosˆcosˆcos
ˆsinˆsin
ˆcosˆcosˆcos
ˆcos
−
=
−
=
−
=
γ
β
α
Law of Sines for Spherical Triangle Sides.
cba
abccba
cba ˆsinˆsinˆsin
ˆcosˆcosˆcos2ˆcosˆcosˆcos1
ˆsin
ˆsin
ˆsin
ˆsin
ˆsin
ˆsin
222
+−−−
===
γβα
The three great circles passing trough those
three points define a spherical triangle with
CBA ,,
- three spherical triangle
vertices
cba ˆ,ˆˆ -three spherical triangle side angles
γβα ˆ,ˆˆ - three spherical triangle angles defined
by the angles between the tangents
to the great circles at the vertices.
6
SOLO
Assume three points on a unit radius sphere, defined by the vectors
→→→
CBA 1,1,1
Laws of Cosines for Spherical Triangle Sides
The three great circles passing trough those
three points define a spherical triangle with
CBA ,,
- three spherical triangle
vertices
cba ˆ,ˆˆ -three spherical triangle side angles
γβα ˆ,ˆˆ - three spherical triangle angles defined
by the angles between the tangents
to the great circles at the vertices.
βα
βαγ
αγ
αγβ
γβ
γβα
ˆsinˆsin
ˆcosˆcosˆcos
ˆcos
ˆsinˆsin
ˆcosˆcosˆcosˆcos
ˆsinˆsin
ˆcosˆcosˆcos
ˆcos
+
=
+
=
+
=
c
b
a
Spherical Trigonometry
7
NavigationSOLO
Flight on Earth Great Circles
The Shortest Flight Path between
two points 1 and 2 on the
Earth is on the Great Circles
(centered at Earth Center)
passing through those points.
1
2
111 ,, λφR
222 ,, λφR
The Great Circle Distance between two points 1 and 2 is ρ.
The average Radius on the Great Circle is a = (R1+R2)/2
θρ ⋅= a
R – radius
- Latitudeϕ
λ - Longitude
kmNmNma 852.11deg/76.60/ =≈ρ
8
NavigationSOLO
Flight on Earth Great Circles
1
2
111 ,, λφR
222 ,, λφR
The Great Circle Distance between two points 1 and
2 is ρ.
θρ ⋅= a
R – radius
- Latitudeϕ
λ - Longitude
( )
( ) ( ) ( ) ( ) ( )212121 cos90sin90sin90cos90cos
/coscos
λλφφφφ
ρθ
−⋅−⋅−+−⋅−=
=

a
From the Law of Cosines for Spherical Triangles
or
( ) ( )212121 coscoscossinsin/cos λλφφφφρ −⋅⋅+⋅=a
( ){ }212121
1
coscoscossinsincos λλφφφφρ −⋅⋅+⋅⋅= −
a
The Initial Heading Angle ψ0 can be obtained using the
Law of Cosines for Spherical Triangles as follows
( )
( )a
a
/sincos
/cossinsin
cos
1
12
0
ρφ
ρφφ
ψ
⋅
⋅−
=
( )[ ]
( )[ ]2
222
22221
coscoscossinsin1cos
coscoscossinsinsinsin
cos
λλφφφφφ
λλφφφφφφ
ψ
−⋅⋅+⋅−⋅
−⋅⋅+⋅⋅−
= −
The Heading Angle ψ from the Present Position (R, ,λ) to Destination Point (Rϕ 2,ϕ2,λ2)
9
NavigationSOLO
Flight on Earth Great Circles
The Distance on the Great Circle between two points
1 and 2 is ρ.
1
2
111 ,, λφR
222 ,, λφR
R – radius
- Latitudeϕ
λ - Longitude
The Time required to travel along the Great Circle between
points 1 and 2 is given by
( ){ }
22
212121
1
coscoscossinsincos
yxHoriz
HorizHoriz
VVV
V
a
V
t
+=
−⋅⋅+⋅⋅==∆ −
λλφφφφ
ρ
( ){ }212121
1
coscoscossinsincos λλφφφφρ −⋅⋅+⋅⋅= −
a
10
NavigationSOLO
Flight on Earth Great Circles
1
2
111 ,, λφR
222 ,, λφR
If the Aircraft flies with an Heading Error Δψ we want to calculate the Down Range
Error Xd and Cross Range Error Yd, in the Spherical Triangle APB.
R – radius
- Latitudeϕ
λ - Longitude
Using the Law of Cosines for Spherical Triangle APB we have
( ) ( )aaYd /sin
90sin
/sin
sin
ρ
ψ 
=
∆
( ) ( ) ( )
( ) ( ) 2/sin/sin
/cos/cos/cos
0ˆcos 21
90ˆ
RR
a
aYaX
aYaXa
P
dd
dd
P +
=
⋅
⋅−
==
= ρ

Using the Law of Sines for Spherical Triangle APB we have
( )
( )





⋅= −
aY
a
aX
d
d
/cos
/cos
cos 1 ρ
( )[ ]ψρ ∆⋅⋅= −
sin/sinsin 1
aaYd
11
SOLO
Coordinate Systems
1. Heliocentric (Heliocentric) Coordinate System
COORDINATES IN THE SOLAR SYSTEM
Sun at the center of coordinate system (Heliocentric)
Earth plan orbit (Ecliptic) on which Xε and Yε are defined as:
• Xε the direction between the Sun to Earth on the First Day of Autumn. This is called
Vernal Equinox Direction and points in the direction of constellation Aries (the Ram)
• Zε normal to the Ecliptic in the North hemisphere direction.
• Yε on the Ecliptic and completing the right hand coordinate system.
12
SOLO
1.Heliocentric (Heliocentric) Coordinate System (Continue)
COORDINATES IN THE SOLAR SYSTEM
The Earth axis of rotation is tilted relative to Ecliptic and vobbles slightly, in a clockwise
direction opposite to that of the Earth spin, from 22.1° to 24.5° , with a cycle of approximately
41,000 years.
G
Gz
Ω
Gx
Gy
Ecliptic plane
normal
(Ecliptic Pole)
Locus of Lunar
plane normal
(Lunar Pole)
Lunar Orbital
Plane
Earth Orbital
Plane (Ecliptic)
Equatorial
Plane
Ascending
Node

5.23
15.5
Vernal Equinox
Direction
The Moon’s gravity tends to tilt the Earth’s axis so that it becomes perpendicular to Moon’s
Orbit, and to a lesser extent the same is true for the Sun.
This effect is called precession and is produced by the interaction between Earth and Moon.
13
SOLO
2. Geocentric-Equatorial Coordinate System
COORDINATES IN THE SOLAR SYSTEM
The origin at the center of the Earth .
G
Gz
Ω
Gx
Gy
Ecliptic plane
normal
(Ecliptic Pole)
Locus of Lunar
plane normal
(Lunar Pole)
Lunar Orbital
Plane
Earth Orbital
Plane (Ecliptic)
Equatorial
Plane
Ascending
Node

5.23
15.5
Vernal Equinox
Direction
• XG axis on the Equatorial Plane in the vernal equinox direction.
• ZG axis in the direction of North pole.
• YG axis completes the right hand coordinate system.
XG, YG, ZG system is not fixed to the Earth; rather, the geocentric-equatorial frame
is non-rotating to the stars (except to the precession of equinoxes) and the Earth
turns relative to it.
14
SOLO
3. The Right Ascension-Declination System
COORDINATES IN THE SOLAR SYSTEM
The Right Ascension-Declination System defines the position of objects in space.
• Celestial Equator that contains the Earth Equatorial Plane.
• The XG, YG, ZG axes are parallel to the Geocentric-Equatorial Plane.
• The origin of the system can be at the Earth origin (geocentric) or at the surface of the
Earth (topocentric). Because of he enormous distance of the star the location of the origin
doesn’t effect their angular position.
GZ
Ω
GX
GY
Equatorial
Planeα
δ
Vernal Equinox
Direction
The fundamental plane is:
The position of a star is defined by two parameters:
• right ascension, α, is measured eastward in the plane of the celestial equator from the
vernal equinox direction.
• declination,δ, is measured northward from the celestial equator to the line of sight of
the object.
15
SOLO
Coordinate Systems
4. The Perifocal Coordinate System
COORDINATES IN THE SOLAR SYSTEM
The Perifocal Coordinate System is related to a satellite’s orbit.
• Xω axis in the direction of the orbit Periapsis (direction from the focal point to the
point of minimum range of the orbit).
Plane of the Satellite’s Orbit is the fundamental plane with:
• Zω axis in the direction of (perpendicular to the Satellite’s Orbit and showing
the satellite’s movement direction).
vrh

×=
• Yω axis completes the right hand coordinate system.
16
SOLO
4. The Perifocal Coordinate System (Continue)
COORDINATES IN THE SOLAR SYSTEM
Five independent quantities, called orbital elements,
describe size, shape and orientation of an orbit.
A sixth element is required to determine the position of the satellite along the orbit at a
given time.
1. a – semi-major axis – a constant defining the size of the coning orbit.
2. e – eccentricity – a constant defining the shape of the coning orbit.
3. i – inclination – the angle between ZG and the specific angular momentum
of the coning orbit . vrh

×=
4. Ω – longitude of the ascending node – the angle, in the Equatorial Plane, between
the unit vector and the point where the satellite crosses through the Equatorial
Plane in a northerly direction (ascending node) measured counterclockwise
where viewed from the northern emisphere.
5. ω – argument of the periapsis – the angle, in the plane of the satellite’s orbit,
between ascending node and the periapsis point, measured in the direction of
satellite’s motion.
6. T – time of periapsis passage – the time when the satellite was at the periapsis.
Classical Orbital Parameters
17
SOLO
4. The Perifocal Coordinate System (Continue)
COORDINATES IN THE SOLAR SYSTEM
Let find a, e, ω, i, Ω from the initial position and
velocity vectors .00 ,vr

1. From the specific angular momentum of the orbit we can findvrh

×= 00 vrh

×=
01 00
≠
×
=
→
h
h
vr
Z

ε
2. From the specific mechanical energy of an elliptic orbit equation ar
vv
E
22 0
00 µµ
−=−
⋅
=

we obtain
00
0
2 vv
r
a

⋅−
=
µ
µ
3. i inclination is computed using
→→
⋅= GZZi 11cos ε
22
11cos 1 ππ
ε ≤≤−





⋅=
→→
−
iZZi G
4. The eccentricity vector of a Keplerian trajectory is defined as
( )
→
=





⋅−





−⋅= ε
µ
µ
Xevvrr
r
vve 1
1
0000
0
00

from which ee

= 01 ≠=
→
e
e
e
X

ε
→→→
×= εεη XZY 111
18
SOLO
4. The Perifocal Coordinate System (Continue)
COORDINATES IN THE SOLAR SYSTEM
Let find a, e, ω, i, Ω from the initial position and
velocity vectors (continue).00 ,vr

5. The ascending node (intersection of the equatorial and orbit planes) is given by
011
11
11
1 ≠×←
×
×
=
→→
→→
→→
→
ε
ε
ε
ZZ
ZZ
ZZ
N G
G
G
Ω – longitude of the ascending node – is computed using
→→
⋅=Ω NXG 11cos
→→→
⋅





×=Ω GG ZNX 111sin 





Ω
Ω
=Ω −
cos
sin
tan 1
6. ω – argument of the periapsis – is computed using
→→
⋅= εω XN 11cos
→→→
⋅





×= εεω ZXN 111sin 





= −
ω
ω
ω
cos
sin
tan 1
7. Ө – satellite position from the periapsis – is computed using
→→
⋅=Θ rX 11cos ε
→→→
⋅





×=Θ εε ZrX 111sin 





Θ
Θ
=Θ −
cos
sin
tan 1
19
SOLO
4. The Perifocal Coordinate System (Continue)
COORDINATES IN THE SOLAR SYSTEM
Let find a, e, ω, i, Ω from the initial position and
velocity vectors (continue).00 ,vr

The rotation matrix from the Perifocal Coordinate System Xε , Yε, Zε to the
Geocentric-Equatorial Coordinate System XG, YG, ZG is given by:
[ ] [ ] [ ]










ΩΩ−
ΩΩ










−









−=Ω=
100
0cossin
0sincos
cossin0
sincos0
001
100
0cossin
0sincos
313
ii
iiiCG
ωω
ωω
ωε










Ω−Ω
Ω+Ω−Ω−Ω−
Ω+ΩΩ−Ω
=
iii
iii
iii
cossincossinsin
sincoscoscoscossinsinsincoscoscossin
sinsincoscossinsincossincossincoscos
ωωωωω
ωωωωω
20
SOLO AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE
1. Inertial System Frame
2. Earth-Center Fixed Coordinate System (E)
3. Earth Fixed Coordinate System (E0)
4. Local-Level-Local-North (L) for a Spherical Earth Model
5. Body Coordinates (B)
6. Wind Coordinates (W)
7. Forces Acting on the Vehicle
8. Simulation
8.1 Summary of the Equation of Motion of a Variable Mass
System
8.2 Missile Kinematics Model 1 (Spherical Earth)
8.3 Missile Kinematics Model 2 (Spherical Earth)
21
Given an Air Vehicle, we define:
1. Inertial System Frame III zyx ,,
3. Body Coordinates (B) , with the origin at the center of mass.BBB zyx ,,
2. Local-Level-Local-North (L) for a Spherical Earth Model LLL zyx ,,
4. Wind Coordinates (W) , with the origin at the center of mass.WWW zyx ,,
AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERESOLO
Coordinate Systems
Table of Content
22
SOLO
Coordinate Systems
1.Inertial System (I(
R

- vehicle position vector
I
td
Rd
V


= - vehicle velocity vector, relative to inertia
II
td
Rd
td
Vd
a 2
2


== - vehicle acceleration vector, relative to inertia
AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE
Table of Content
23
SOLO
Coordinate Systems (continue – 2)
2. Earth Center Earth Fixed Coordinate –ECEF-System (E(
xE, yE in the equatorial plan with xE pointed to the intersection between the equator
to zero longitude meridian.
The Earth rotates relative to Inertial system I, with the angular velocity
sec/10.292116557.7 5
rad−
=Ω
EIIE zz

11 Ω=Ω=Ω=←ω
( )










Ω
=← 0
0
EC
IEω

Rotation Matrix from I to E
[ ]
( ) ( )
( ) ( )










ΩΩ−
ΩΩ
=Ω=
100
0cossin
0sincos
3 tt
tt
tCE
I
AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE
24
SOLO
Coordinate Systems (continue – 3)
2. Earth Center Earth Fixed Coordinate System (E(
(continue – 1(
Vehicle Position ( ) ( )
( ) ( )ETE
I
EI
E
I
RCRCR

==
Vehicle Velocity
Vehicle Acceleration
RVR
td
Rd
td
Rd
V EIE
EI



×Ω+=×+== ←ω - vehicle velocity relative to Inertia
R
td
Rd
td
Rd
V IE
LE
E



×+== ←ω: - vehicle velocity relative to Earth
( ) ( )
II
E
I
E
I
R
td
d
td
Vd
RV
td
d
td
Vd
a





×Ω+=×Ω+==
( ) ( )RV
td
Vd
R
td
Rd
R
td
d
V
td
Vd
EIEEU
U
E
EE
EIU
U
E
IU













×Ω×Ω+×












Ω+++=×Ω×Ω+×Ω+×
Ω
+×+=
←
Ω
←←←
ω
ωωω
0
( ) ( ) ( )RV
td
Vd
RV
td
Vd
a E
E
E
EEU
U
E





×Ω×Ω+×Ω+=×Ω×Ω+×Ω++= ← 22ω
or
where U is any coordinate system. In our case U = E.
AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE
Table of Content
25
SOLO
Coordinate Systems (continue – 4)
3.Earth Fixed Coordinate System (E0(
The origin of the system is fixed on the earth at some
given point on the Earth surface (topocentric) of
Longitude Long0 and latitude Lat0.
xE0 is pointed to the geodesic North, yE0 is pointed to the East parallel to Earth
surface, zE0 is pointed down.
[ ] [ ]
( ) ( )
( ) ( )
( ) ( )
( ) ( ) =










−










−−
−
=−−=
100
0cossin
0sincos
sin0cos
010
cos0sin
2/ 00
00
00
00
3020
0
LongLong
LongLong
LatLat
LatLat
LongLatCE
E π
( ) ( ) ( ) ( ) ( )
( ) ( )
( ) ( ) ( ) ( ) ( )









−−−
−
−−
=
00000
00
00000
sinsincoscoscos
0cossin
cossinsincossin
LatLongLatLongLat
LongLong
LatLongLatLongLat
The Angular Velocity of E relative to I is: EIIEIE zz

110 Ω=Ω== ←← ωω or
( )
( ) ( ) ( ) ( ) ( )
( ) ( )
( ) ( ) ( ) ( ) ( )
( )
( )









Ω−
Ω
=










Ω









−−−
−
−−
=










Ω
=←
0
0
00000
00
00000
00
0
sin
0
cos
0
0
sinsincoscoscos
0cossin
cossinsincossin
0
0
Lat
Lat
LatLongLatLongLat
LongLong
LatLongLatLongLat
CE
E
E
IEω

AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE
Table of Content
26
SOLO
Coordinate Systems (continue – 5)
4. Local-Level-Local-North (L) or Navigation Frame
The origin of the LLLN coordinate system is located at
the projection of the center of gravity CG of the vehicle
on the Earth surface, with zDown axis pointed down,
xNorth, yEast plan parallel to the local level, with
xNorth pointed to the local North and yEast pointed to
the local East. The vehicle is located at:.
Latitude = Lat, Longitude = Long, Height = H
Rotation Matrix from E to L
[ ] [ ]
( ) ( )
( ) ( )
( ) ( )
( ) ( ) =










−










−−
−
=−−=
100
0cossin
0sincos
sin0cos
010
cos0sin
2/ 32 LongLong
LongLong
LatLat
LatLat
LongLatCL
E π
( ) ( ) ( ) ( ) ( )
( ) ( )
( ) ( ) ( ) ( ) ( )









−−−
−
−−
=
LatLongLatLongLat
LongLong
LatLongLatLongLat
sinsincoscoscos
0cossin
cossinsincossin
AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE
27
SOLO
Coordinate Systems (continue – 6)
4. Local-Level-Local-North (L( (continue – 1)
Angular Velocity
IEELIL ←←← += ωωω

Angular Velocity of L relative to I
( )
( ) ( ) ( ) ( ) ( )
( ) ( )
( ) ( ) ( ) ( ) ( )
( )
( )









Ω−
Ω
=










Ω









−
−
−−
=










Ω
=










Ω
Ω
Ω
=←
Lat
Lat
LatLongLatLongLat
LongLong
LatLongLatLongLat
CL
E
Down
East
North
L
IE
sin
0
cos
0
0
sinsincoscoscos
0cossin
cossinsincossin
0
0
ω

( )
( ) ( ) ( ) ( ) ( )
( ) ( )
( ) ( ) ( ) ( ) ( )
( )
( ) 













−
−=












−+






















−−−
−
−−
=












−+












=










=
•
•
•
•
•
•
•
←
LatLong
Lat
LatLong
Lat
Long
LatLongLatLongLat
LongLong
LatLongLatLongLat
Lat
Long
CL
E
Down
East
North
L
EL
sin
cos
0
0
0
0
sinsincoscoscos
0cossin
cossinsincossin
0
0
0
0
ρ
ρ
ρ
ω

( ) ( ) ( )
( )
( )
























+Ω−
−






+Ω
=










Ω+
Ω+
Ω+
=+=
•
•
•
←←←
LatLong
Lat
LatLong
DownDown
EastEast
NorthNorth
L
IEC
L
ECL
L
IL
sin
cos
ρ
ρ
ρ
ωωω

Therefore
AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE
28
SOLO
Coordinate Systems (continue – 7)
4. Local-Level-Local-North (L( (continue – 2)
Vehicle Velocity
Vehicle Velocity relative to I
RVR
td
Rd
td
Rd
V EIE
EI



×Ω+=×+== ←ω
( )
( )
( )
( ) ( )
( ) ( )









+−














−−
−
+










+−
=×+=
••
••
••
←
HR
LatLongLat
LatLongLatLong
LatLatLong
HR
R
td
Rd
V EL
L
L
E
00
0
0
0cos
cos0sin
sin0
0
0




ω
where is the vehicle velocity relative to Earth.EV

( )
( ) ( )










=














−
+
+
=
•
•
DownE
EastE
NorthE
V
V
V
H
HRLatLong
HRLat
_
_
_
0
0
cos

from which
( )
( ) ( )
DownE
EastE
NorthE
V
td
Hd
LatHR
V
td
Longd
HR
V
td
Latd
_
0
_
0
_
cos
−=
+
=
+
=
AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE
HeightVehicleHRadiusEarthmRHRR =⋅=+= 6
00 10378135.6
29
SOLO
Coordinate Systems (continue – 8)
4. Local-Level-Local-North (L( (continue – 3)
Vehicle Velocity (continue – 1)
We assume that the atmosphere movement (velocity and acceleration) relative to Earth
At the vehicle position (Lat, Long, H) is known. Since the aerodynamic forces on the
vehicle are due to vehicle movement relative to atmosphere, let divide the vehicle
velocity in two parts:
WAE VVV

+=
( )










=
Down
East
North
L
A
V
V
V
V

- Vehicle Velocity relative to atmosphere
( )
( )










=
DownW
EastW
NorthW
L
W
V
V
V
HLongLatV
_
_
_
,,

- Wind Velocity at vehicle position
(known function of time)
AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE
30
SOLO
Coordinate Systems (continue – 9)
4. Local-Level-Local-North (L( (continue – 4)
Vehicle Acceleration
Since:
( ) ( ) ( ) ( )RV
td
Vd
R
td
d
td
Vd
RV
td
d
td
Vd
a EEL
L
E
II
E
I
E
I







×Ω×Ω+×Ω++=×Ω+=×Ω+== ← 2ω
WAE VVV

+=
( ) WWIL
L
W
AAIL
L
A
VV
td
Vd
RVV
td
Vd
a





×Ω+×++×Ω×Ω+×Ω+×+= ←← ωω
( )
  





Wa
WWEL
L
W
AAEL
L
A
VV
td
Vd
RVV
td
Vd
×Ω+×++×Ω×Ω+×Ω+×+= ←← 22 ωω
( ) ( ) ( ) ( )HLongLatVHLongLat
td
Vd
HLongLata WEL
L
W
W ,,2,,:,,



×Ω++= ←ω
( ) WAAEL
L
A
aRVV
td
Vd 

+×Ω×Ω+×Ω+×+= ← 2ω
where:
is the wind acceleration at vehicle position.
AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE
Table of Content
31
SOLO
Coordinate Systems (continue – 10)
5.Body Coordinates (B(
The origin of the Body coordinate system
is located at the instantaneous center of
gravity CG of the vehicle, with xB pointed
to the front of the Air Vehicle, yB pointed
toward the right wing and zB completing
the right-handed Cartesian reference frame.
Rotation Matrix from LLLN to B (Euler Angles(:
[ ] [ ] [ ]










−+
+−
−
==
θφψφψθφψφψθφ
θφψφψθφψφψθφ
θψθψθ
ψθφ
cccssscsscsc
csccssssccss
ssccc
CB
L 321
ψ - azimuth angle
θ - pitch angle
φ - roll angle
AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE
32
SOLO
Coordinate Systems (continue – 11)
5.Body Coordinates (B( (continue – 1( ψ
θ
φ Bx
Lx
Bz
Ly
Lz
By
Angular Velocity from L to B (Euler Angles(:
( )
[ ] [ ] [ ]










+










+










=










=←
ψ
θφθφ
φ
ω



0
0
0
0
0
0 211
R
Q
P
B
LB



















 −










−
+




















−
+










=
ψθθ
θθ
φφ
φφθ
φφ
φφ
φ



0
0
cos0sin
010
sin0cos
cossin0
sincos0
001
0
0
cossin0
sincos0
001
0
0
[ ]










=




















−
−
=
ψ
θ
φ
ψ
θ
φ
θφφ
θφφ
θ






G
coscossin0
cossincos0
sin01
AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE
33
SOLO
Coordinate Systems (continue – 12)
5.Body Coordinates (B( (continue – 2( ψ
θ
φ Bx
Lx
Bz
Ly
Lz
By
Rotation Matrix from LLLN to B (Quaternions(:
( ) [ ][ ] ( ) [ ][ ] { } { }
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )











−−−
−
−
−










−−
−−
−−
=
+×−×−=
321
412
143
234
3412
2143
1234
44 3333
BIBLBL
BLBLBL
BLBLBL
BLBLBL
BLBLBLBL
BLBLBIBL
BLBLBLBL
T
BLBLBLXBLBLXBL
B
L
qqq
qqq
qqq
qqq
qqqq
qqqq
qqqq
qqqIqqIqC

where: ( )
( )
( )
( )
( )
( )
( )
( )
{ }
( )
{ }
( )
( )
( )









=





=
























=












=
3
2
1
:&
4
4
3
2
1
4
3
2
1
BL
BL
BL
BL
BL
BL
BL
BL
BL
BL
BL
BL
BL
BL
BL
BL
q
q
q
q
q
q
qor
q
q
q
q
q
q
q
q
q


( ) 























−

















=
2
sin
2
sin
2
sin
2
cos
2
cos
2
cos4
ϕθψϕθψ
BLq
( ) 























+

















=
2
cos
2
sin
2
sin
2
sin
2
cos
2
cos1
ϕθψϕθψ
BLq
( ) 























−

















=
2
sin
2
cos
2
sin
2
cos
2
sin
2
cos2
ϕθψϕθψ
BLq
( ) 























+

















=
2
sin
2
sin
2
cos
2
cos
2
cos
2
sin3
ϕθψϕθψ
BLq
AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE
34
SOLO
Coordinate Systems (continue – 13)
5.Body Coordinates (B( (continue – 3( ψ
θ
φ Bx
Lx
Bz
Ly
Lz
By
Rotation Matrix from LLLN to B (Quaternions(
(continue – 1(
The quaternions are given by the following
differential equations:
( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
BL
L
IL
B
IBBLBLBL
B
ILBL
B
IBBL
B
IL
B
IBBL
B
LBBLBL qqqqqqqqq ⋅−⋅=⋅⋅⋅−⋅=−⋅=⋅= ←←←←←←← ωωωωωωω
2
1
2
1
*
2
1
2
1
2
1
2
1
( )
( )
( )
( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) 























−−−
−
−
−
=












04321
3412
2143
1234
2
1
4
3
2
1
B
B
B
BLBLBLBL
BLBLBLBL
BLBLBLBL
BLBLBLBL
BL
BL
BL
BL
r
q
p
qqqq
qqqq
qqqq
qqqq
q
q
q
q




( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( )
( )
( )
( )

























+Ω−+Ω−+Ω−
+Ω+Ω+Ω−
+Ω+Ω−+Ω
+Ω+Ω+Ω−
−
4
3
2
1
0
0
0
0
2
1
BL
BL
BL
BL
zLzLyLyLxLxL
zLzLxLxLyLyL
yLyLxLxLzLzL
xLxLyLyLzLzL
q
q
q
q
ρρρ
ρρρ
ρρρ
ρρρ
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( )
( )
( )
( )

























+Ω+−+Ω+−+Ω+−
+Ω−+Ω−−+Ω+
+Ω−+Ω++Ω−−
+Ω−+Ω−−+Ω+
=
4
3
2
1
0
0
0
0
2
1
BL
BL
BL
BL
zLzLByLyLBxLxLB
zLzLBxLxLByLyLB
yLyLBxLxLBzLzLB
xLxLByLyLBzLzLB
q
q
q
q
rqp
rpq
qpr
pqr
ρρρ
ρρρ
ρρρ
ρρρ
or:
AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE
35
SOLO
Coordinate Systems (continue – 14)
5.Body Coordinates (B( (continue – 4( ψ
θ
φ Bx
Lx
Bz
Ly
Lz
By
Vehicle Velocity
Vehicle Velocity relative to Earth is divided in:
WAE VVV

+=
( )










=
w
v
u
V
B
A
 ( )
( )










=










=
DownW
EastW
NorthW
B
L
zW
yW
xW
B
W
V
V
V
C
V
V
V
HLongLatV
B
B
B
_
_
_
,,

Vehicle Acceleration
( ) WWIB
B
W
AAIB
B
A
I
VV
td
Vd
RVV
td
Vd
td
Vd
a





×Ω+×++×Ω×Ω+×Ω+×+== ←← ωω
( ) ( )
W
AELALB
B
A
a
RVV
td
Vd



+
×Ω×Ω+×Ω++×+= ←← 2ωω
AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE
Table of Content
36
SOLO
Coordinate Systems (continue – 15)
6.Wind Coordinates (W(
The origin of the Wind coordinate system
is located at the instantaneous center of
gravity CG of the vehicle, with xW pointed
in the direction of the vehicle velocity vector
relative to air .AV

[ ] [ ]










−
−−=










−









−=−=
αα
βαββα
βαββα
αα
αα
ββ
ββ
αβ
cos0sin
sinsincossincos
cossinsincoscos
cos0sin
010
sin0cos
100
0cossin
0sincos
23
W
BC
The Wind coordinate frame is defined by the following two angles:
α - angle of attack
β - sideslip angle
AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE
37
SOLO
Coordinate Systems (continue – 16)
6.Wind Coordinates (W( (continue -1(
Rotation Matrix from L (LLLN) to W is:
χ - azimuth angle of the trajectory
γ - pitch angle of the trajectory
Rotation Matrix
[ ] [ ] [ ] [ ] [ ] 32123 ψθφαβ −== B
L
W
B
W
L CCC
The Rotation Matrix from L (LLLN) to W can also be defined by the following
Consecutive rotations:
σ - bank angle of the
trajectory
[ ] [ ] [ ] [ ]










−+
+−
−
===
γσχσχγσχσχγσ
γσχσχγσχσχγσ
γχγχγ
χγσσ
cccssscsscsc
csccssssccss
ssccc
CC W
L
W
L 321
*
1
We defined also the intermediate wind frame W* by:
[ ] [ ]










−
−
==
γχγχγ
χχ
γχγχγ
χγ
csscs
cs
ssccc
CW
L 032
*
AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE
38
SOLO
Coordinate Systems (continue – 17)
6.Wind Coordinates (W( (continue -2(
Angular Velocity of W* relative to LLLN is:
Angular Velocities
( )
[ ]









−
=



















 −
+










=










+










=










=←
γχ
γ
γχ
χγγ
γγ
γ
χ
γγω
cos
sin
0
0
cos0sin
010
sin0cos
0
0
0
0
0
0
2
*
*
*
*
*








W
W
W
W
LW
R
Q
P
Angular Velocity of W relative to LLLN is:
( )
[ ] [ ]




















−
−
=









−










−
+










=




















+










+










=










=←
χ
γ
σ
γσσ
γσσ
γ
γχ
γ
γχ
σσ
σσ
σ
χ
γγσ
σ
ω










coscossin0
cossincos0
sin01
cos
sin
cossin0
sincos0
001
0
00
0
0
0
0
0 21
W
W
W
W
LW
R
Q
P
AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE
39
SOLO
Coordinate Systems (continue – 18)
6.Wind Coordinates (W( (continue -3(
We have also:
Angular Velocities (continue – 1(
( ) ( )
( )
( ) 









Ω
Ω
Ω
=










Ω−
Ω
==










Ω
Ω
Ω
= ←←
Down
East
North
W
L
W
L
L
IE
W
L
zW
yW
xW
W
IE C
Lat
Lat
CC ***
*
*
*
*
sin
0
cos
ωω

( ) ( )
( )
( )










=














−
−==










=
•
•
•
←←
Down
East
North
W
L
W
L
L
EL
W
L
zW
yW
xW
W
EL C
LatLong
Lat
LatLong
CC
ρ
ρ
ρ
ω
ρ
ρ
ρ
ω ***
*
*
*
*
sin
cos

( ) ( )
( )
( )
[ ] ( )*
1
sin
0
cos
W
IE
W
L
L
IE
W
L
zW
yW
xW
W
IE
Lat
Lat
CC ←←← =










Ω−
Ω
==










Ω
Ω
Ω
= ωσωω

( ) ( )
( )
( )
[ ] ( )*
1
sin
cos
W
IL
W
L
L
IL
W
L
W
IL
LatLong
Lat
LatLong
CC ←
•
•
•
←← =
























+Ω−
−






+Ω
== ωσωω

AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE
40
SOLO
Coordinate Systems (continue – 19)
6.Wind Coordinates (W( (continue -4(
The Angular Velocity from I to W is:
Angular Velocities (continue – 2(
( ) ( ) ( ) ( )










Ω+
Ω+
Ω+
+










=+










=+=










= ←←←←
DownDown
EastEast
NorthNorth
W
L
W
W
W
L
IL
W
L
W
W
W
W
IL
W
LW
W
W
W
W
IW C
R
Q
P
C
R
Q
P
r
q
p
ρ
ρ
ρ
ωωωω

Using the angle of attack α and the sideslip angle β , we can write:
BWBW yz



11 αβω −=←
or:
( ) ( ) ( )
[ ]










−










=










−










=−= ←←←
0
0
0
0
3 αβ
β
ωωω 


r
q
p
C
r
q
p
W
B
W
W
W
W
IB
W
IW
W
BW
but also:
( ) ( ) ( )
[ ]










−










=










−










=−= ←←←
0
0
0
0
3 αβ
β
ωωω 


R
Q
P
C
R
Q
P
W
B
W
W
W
W
LB
W
LW
W
BW
AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE
41
SOLO
Coordinate Systems (continue – 20)
6.Wind Coordinates (W( (continue -5(
We can write:
Angular Velocities (continue – 3(










−










+




















−
−−=










0
cos
sin
0
0
cos0sin
sinsincossincos
cossinsincoscos
βα
βα
βαα
βαββα
βαββα


r
q
p
r
q
p
W
W
W
or:
( )
( )
βαα
βαβαβα
βαβαβα



++−=
−−+−=
+−+=
cossin
sinsincossincos
cossinsincoscos
rpr
rqpq
rqpp
W
W
W
This can be rewritten as:
( ) βαα
β
α tansincos
cos
rp
q
q W
+−−=
Wrrp +−= ααβ cossin
( ) ( ) ( )( )
( )
β
βαα
ββββααβαβαα
cos
sinsincos
tantansincossincossincossincos
W
WW
qrp
qrpqrpp
++
=
+++=−++= 
AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE
42
SOLO
Coordinate Systems (continue – 21)
6.Wind Coordinates (W( (continue -6(
We have also:
Angular Velocities (continue – 4(
( ) βαα
β
α tansincos
cos
RP
Q
Q W
+−−=
WRRP +−= ααβ cossin
( )
β
βαα
cos
sinsincos W
W
QRP
P
++
=
AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE
43
SOLO
Coordinate Systems (continue – 22)
6.Wind Coordinates (W( (continue -7(
The vehicle velocity was decomposed in:
Vehicle Velocity
WAE VVV

+=
( )










=
0
0
V
V
W
A

- vehicle velocity relative to atmosphere
( )
( )










=










=
DownW
EastW
NorthW
W
L
zW
yW
xW
W
W
V
V
V
C
V
V
V
HLongLatV
W
W
W
_
_
_
,,

- wind velocity at velocity position
also
( )
[ ] ( )
[ ]










=










−=−=
0
0
0
011
*
VV
VV
W
A
W
A σσ

( )
( )










=










=
DownW
EastW
NorthW
W
L
zW
yW
xW
W
W
V
V
V
C
V
V
V
HLongLatV
W
W
W
_
_
_
*
*
*
*
*
,,

AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE
44
SOLO
Coordinate Systems (continue – 23)
6.Wind Coordinates (W( (continue -8(
The vehicle acceleration in W* coordinates is
Vehicle Acceleration
( )
( ) ( ) WAELALW
W
A
WWIW
W
W
AAIW
W
A
I
C
aRVV
td
Vd
VV
td
Vd
RVV
td
Vd
td
Vd
a







+×Ω×Ω+×Ω++×+=
×Ω+×++×Ω×Ω+×Ω+×+==
←←
←←
2*
*
*
*
*
*
ωω
ωω
from which
( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( )*******
*
*
*
2
W
W
W
A
WW
EL
WW
A
W
LW
W
W
A
aVAV
td
Vd 

−×Ω+−=×+








←← ωω
where
( )RaA

×Ω×Ω−=:
AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE
45
SOLO
Coordinate Systems (continue – 24)
6.Wind Coordinates (W( (continue -9(
Vehicle Acceleration (continue – 1(
( ) ( )
( ) ( )
( ) ( ) 









−




















Ω+Ω+−
Ω+−Ω+
Ω+Ω+−
−










=




















−
−
−
+










**
*
*
****
****
****
*
*
*
**
**
**
0
0
022
202
220
0
0
0
0
0
0
0
zWW
yWW
xWW
xWxWyWyW
xWxWzWzW
yWyWzWzW
zW
yW
xW
WW
WW
WW
a
a
aV
A
A
AV
PQ
PR
QRV
ρρ
ρρ
ρρ
where
( )
( )
( )
( )HR
Lat
Lat
C
a
a
a
A
A
A
A
W
L
zW
yW
xW
zW
yW
xW
W
+Ω










−










=










= 2*
*
*
*
*
*
*
*
sin
0
cos
 - Acceleration due to external forces on the
Air Vehicle in W* coordinates
That gives
( )
( ) *****
*****
**
2
2
zWWyWyWzWW
yWWzWzWyWW
xWWxW
aVAVQ
aVAVR
aAV
−Ω++=−
−Ω+−=
−=
ρ
ρ

AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE
46
SOLO
Coordinate Systems (continue – 25(
6.Wind Coordinates (W) (continue -10)
Vehicle Acceleration (continue – 2)
Using ( )









−
=










=←
γχ
γ
γχ
ω
cos
sin
*
*
*
*
*




W
W
W
W
LW
R
Q
P
we have
** xWWxW aAV −=
( ) γρχ cos/2 **
**






Ω+−
−
= zWzW
yWWyW
V
aA

( )**
**
2 yWyW
zWWzW
V
aA
Ω+−
−
−= ργ
AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE
Table of Content
47
SOLO
Aerodynamic Forces
( )[ ]∫∫ +−= ∞
WS
A dstfnppF

11
ntonormalplanonVofprojectiont
dstonormaln
ˆˆ
ˆ

−
−
( )
airflowingthebyweatedsurfaceVehicleS
SsurfacetheonmNstressforcefrictionf
Ssurfacetheondifferencepressurepp
W
W
W
−
−
−−∞
)/( 2
AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE
7. Forces Acting on the Vehicle
48
SOLO
7. Forces Acting on the Vehicle (continue – 1)
Aerodynamic Forces (continue – 1)
( )










−
−
−
=
L
C
D
F
W
A

ForceLiftL
ForceSideC
ForceDragD
−
−
−
L
C
D
CSVL
CSVC
CSVD
2
2
2
2
1
2
1
2
1
ρ
ρ
ρ
=
=
=
( )
( )
( ) tCoefficienLiftRMC
tCoefficienSideRMC
tCoefficienDragRMC
eL
eC
eD
−
−
−
βα
βα
βα
,,,
,,,
,,,
ityvisdynamic
lengthsticcharacteril
soundofspeedHa
numberynoldslVR
numberMachaVM
e
cos
)(
Re/
/
−
−
−
−=
−=
µ
µρ
AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE
49
SOLO
7. Forces Acting on the Vehicle (continue – 2)
Aerodynamic Forces (continue -2)
∫∫ 





⋅+⋅−=
∫∫ 





⋅+⋅−=
∫∫ 





⋅+⋅−=
∧∧
∧∧
∧∧
W
W
W
S
fpL
S
fpC
S
fpD
dswztCwznC
S
C
dswytCwynC
S
C
dswxtCwxnC
S
C
1ˆ1ˆ
1
1ˆ1ˆ
1
1ˆ1ˆ
1
Wf
Wp
Ssurfacetheontcoefficienfriction
V
f
C
Ssurfacetheontcoefficienpressure
V
pp
C
−=
−
−
= ∞
2/
2/
2
2
ρ
ρ
ntonormalplanonVofprojectiont
dstonormaln
ˆˆ
ˆ

−
−
AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE
50
( ) ( ) ( )
  

  

MomentFriction
S
C
Momentessure
S
CCA
WW
dstRRfdsnRRppM ∫∫∫∫∑ ×−+×−−= ∞ 11
Pr
/
Aerodynamic Moments Relative to C can be divided in Pressure Moments and
Friction Moments.
( )


  

FrictionSkinor
FrictionViscous
S
essureNormal
S
A
WW
dstfdsnppF ∫∫∫∫∑ +−= ∞ 11
Pr
Aerodynamic Forces can be divided in Pressure Forces and Friction Forces.
AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE
AERODYNAMIC FORCES AND MOMENTS.
51
SOLO
( ) ( ) ( )∫∫ −++= ∞
<> iopenS
outflowoutopenflowinflowinopenflow dsnppmVmVT







1:
0
/
0
/ THRUST FORCES
( ) ( ) ( ) ( )[ ]∫∫ −×−+×−−×−= ∞
<> iopenS
OoutflowoutopenflowCoutopeninflowinopenflowCiopenCT dsnppRRmVRRmVRRM







1:
0
/
0
/,
THRUST MOMENTS
RELATIVE TO C
( ) ( )∫∫ −+ ∞
> inopenS
inflowinopenflow dsnppmV




1
00
/
( ) ( )∫∫ −+ ∞
< outopenS
outflowoutopenflow dsnppmV




1
0
/
T

outopenR

iopenR

CR

C
AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE
Table of Content
52
SOLO
7. Forces Acting on the Vehicle (continue – 3)
Thrust
( ) ( )




















−
−−==
B
B
B
z
y
x
BW
B
W
T
T
T
TCT
αα
βαββα
βαββα
cos0sin
sinsincossincos
cossinsincoscos
**

( )
[ ] ( )






















−
==










=
*
*
*
cossin0
sincos0
001
*
1
W
W
W
W
W
W
z
y
x
W
z
y
x
W
T
T
T
T
T
T
T
T
σσ
σσσ

AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE
F-35Thrust Vector Control
53
SOLO
7. Forces Acting on the Vehicle (continue – 4)
Gravitation Acceleration
( ) ( )
























−









 −










−
==
zg
yg
xg
gg
100
0
0
0
010
0
0
0
001
χχ
χχ
γγ
γγ
σσ
σσ cs
sc
cs
sc
cs
scC EW
E
W

( )
gg









−
=
γσ
γσ
γ
cc
cs
s
W

2sec/174.322sec/81.9
0
2
0
0
0
gg ftmg
HR
R
==
+
=










AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE
The derivation of Gravitation Acceleration assumes an Ellipsoidal Symmetrical Earth.
The Gravitational Potential U (R, ( is given byϕ
( ) ( )
( )
( )φ
φ
µ
φ
,
sin1, 2
RUg
P
R
a
J
R
RU
E
E
n n
n
n
∇=














−⋅−= ∑
∞
=

μ – The Earth Gravitational Constant
a – Mean Equatorial Radius of the Earth
R=[xE
2
+yE
2
+zE
2
]]/2
is the magnitude of
the Geocentric Position Vector
– Geocentric Latitude (sin =zϕ ϕ E/R(
Jn – Coefficients of Zonal Harmonics of the
Earth Potential Function
P (sin ( – Associated Legendre Polynomialsϕ
54
SOLO
7. Forces Acting on the Vehicle (continue – 5)
Gravitation Acceleration
AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE
Retaining only the first three terms of the
Gravitational Potential U (R, ( we obtain:ϕ
R
z
R
z
R
z
R
a
J
R
z
R
a
J
R
g
R
y
R
z
R
z
R
a
J
R
z
R
a
J
R
g
R
x
R
z
R
z
R
a
J
R
z
R
a
J
R
g
EEEE
z
EEEE
y
EEEE
x
E
E
E
⋅
















+⋅−⋅





⋅−







−⋅





⋅−⋅−=
⋅
















+⋅−⋅





⋅−







−⋅





⋅−⋅−=
⋅
















+⋅−⋅





⋅−







−⋅





⋅−⋅−=
34263
8
5
15
2
3
1
34263
8
5
15
2
3
1
34263
8
5
15
2
3
1
2
2
4
44
42
22
22
2
2
4
44
42
22
22
2
2
4
44
42
22
22
µ
µ
µ
φ
φλ
φλ
sin
cossin
coscos
=
⋅=
⋅=
R
z
R
y
R
x
E
E
E
( ) 2/1222
EEE zyxR ++=
55
SOLO
7. Forces Acting on the Vehicle (continue – 6)
Force Equations
Air Vehicle Acceleration
( ) ( ) WAELALW
W
A
I
C
aRVV
td
Vd
td
Vd
a



+×Ω×Ω+×Ω++×+== ←← 2ωω
( ) ( ) ( ) WAELALW
W
A
A aRVV
td
Vd
amTF
m


 
+×Ω×Ω+×Ω++×+==++ ←← 2
1
g ωω
( )Rg
 
×Ω×Ω−= g:Define


















+
−−
+
−−
−
−
=










γσ
α
γσ
βα
γ
βα
ccg
m
LT
csg
m
CT
sg
m
DT
A
A
A
zW
yW
xW
sin
sincos
coscos









−
+


















−−
−−
−










−=










γ
γ
α
βα
βα
σσ
σσ
cg
sg
m
LT
m
CT
m
DT
A
A
A
zW
yW
xW
0
sin
sincos
coscos
cossin0
sincos0
001
*
*
*
AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE
Table of Content
( )










=
0
0
T
T B

56
SOLO
23. Local Level Local North (LLLN( Computations for an Ellipsoidal Earth Model
( )
( )
( )
( )
( )2
22
10
2
0
2
0
2
0
5
2
1
2
0
6
0
sin
sin1
sin321
sin1
sec/10292116557.7
sec/051646.0
sec/780333.9
26.298/.1
10378135.6
Ae
e
p
m
e
HR
RLatgg
g
LatfRR
LatffRR
LatfRR
rad
mg
mg
f
mR
+
+
=
+≈
+−≈
−≈
⋅=Ω
=
=
=
⋅=
−
Lat
HR
V
HR
V
HR
V
Ap
East
Down
Am
North
East
Ap
East
North
tan
+
−=
+
−=
+
=
ρ
ρ
ρ
Lat
Lat
Down
East
North
sin
0
cos
Ω−=Ω
=Ω
Ω=Ω
DownDownDown
EastEast
NorthNorthNorth
Ω+=
=
Ω+=
ρφ
ρφ
ρφ
East
North
Lat
Lat
Long
ρ
ρ
−=
=
•
•
cos
( )
( ) ∫
∫
•
•
+=
+=
t
t
dtLatLattLat
dtLongLongtLong
0
0
0
0
AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE
SIMULATION EQUATIONS
57
SOLO AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE
SIMULATION EQUATIONS
Table of Content
58
SOLO
Missile Kinematics Model 1 in Vector Notation (Spherical Earth(
AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE
59
SOLO
Missile Kinematics Model 1 in Matrix Notation (Spherical Earth(
AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE
60
SOLO
Missile Kinematics Model 2 in Vector Notation (Spherical Earth(
AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE
61
SOLO
Missile Kinematics Model 2 in Matrix Notation (Spherical Earth(
AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE
SOLO
62
Navigation
Methods of Navigation
• Dead Reckoning (e.g. Inertial Navigation(
• Externally Dependent (e.g. GPS(
• Database Matching (e.g Celestial Navigation, or
Terrain Referenced Navigation(
SOLO
63
Navigation
Dead Reckoning Navigation
A Dead Reckoning System uses a Platform Initial Position and Initial Velocity
Vector and then Computes its Position and Velocity based on Measured or
Estimated Velocity Vector and Elapsed Time.
Dead Reckoning Evolution of a Vehicle’s Position Based on Velocity Vector
SOLO
64
Navigation
Dead Reckoning Navigation
Historical Development of Inertial Platforms
SOLO
65
Navigation
Dead Reckoning Navigation Based on an Inertial Measurement Unit (IMU(
An Inertial Measurement Unit uses Inertial Sensors (at least three Rate
and three Acceleration Sensors(.
- The Rate Sensors measure the Angular Rates, relative to Inertia, along
three orthogonal directions.
- The Acceleration Sensors (Accelerometers( measure the Acceleration, relative
to Inertia, along the same three orthogonal directions.
The Sensor Case can be attached to a Stabilized Platform (Gimbaled( or
Strap to the Vehicle Body.
(b) Strapdown(a) Gimbaled
SOLO
66
Navigation
Dead Reckoning Navigation Based on an Inertial Measurement Unit (IMU(
The Gimbaled System can be Local-Level Stabilized or Space-Stabilized
(a) Gimbaled
According to the chosen Azimuth Mechanization the Local-Level can be:
- North-Slaved (or North Pointing(
- Unipolar
- Free Azimuth
- Wander Azimuth
SOLO
67
Navigation
Input/Output of an Inertial System
Inputs
ADC.Angle_of_Attack
ADC.Mach_Number
ADC.Barometric_Altitude
ADC.Magnetic_Heading
ADC.True_Airspeed
INS.Body_Rates (roll, pitch, yaw(
INS.Acceleration (lateral, longitudinal,
normal(
INS.Present_Position (latitude, longitude(
INS.True_Heading
INS.Velocity (north, east, vertical(
RALT.Radar_Altitude
Outputs
INS.Reference_Velocity (north, east, vertical(
NAV.Airspeed
NAV.Rate_of_Change_Airspeed
NAV.Position (latitude, longitude, altitude(
NAV.Angle_of_Attack
NAV.Attitude (roll, pitch, yaw(
NAV.Body_Rates (roll, pitch, yaw(
NAV.Flight_Path_Angle
NAV.Ground_Speed
NAV.Ground_Track_Angle
NAV.Magnetic_Variation
NAV.Altitude
NAV.Velocity (north, east, vertical(
NAV.Acceleration (lateral, longitudinal,
normal(
NAV.Wind (direction, magnitude(
NAV.Body_to_Earth_Transform
NAV.Body_to_Horizon_Transform
NAV.Radar_to_Body_Transform
NAV.Radar_to_Earth_Transform
SOLO
68
Navigation
Platform Stabilization Using Rate-Integrated-Gyros (RIGs(
The only way to keep a Gimbaled
Platform in a Desired Angular
Position is by controlling its
Angular Rate. For this purpose we
use a Rate-Integrated-Gyros
(RIGs(
Platform Stabilization
Around ZP Azimuth Axis
To control the Platform Angular
Rate we use:
• Rate-Integrated-Gyro (RIG(
ZG- Input Axis
YP=YG – Output Axis
XG – Gyro’s Spin Axis
• Azimuth Gimbal Torque Motor
• K1 (s( – Filter and Torque Driver
Czω
SOLO
69
Navigation
Platform Stabilization Using Rate-Integrated-Gyros (RIGs(
The Dynamic Equation along
Rate-Integrated-Gyro (RIG(
Output Axis YP is:
Platform Stabilization Around ZP Azimuth Axis (continue – 1(
( ) θωωθ 
GDCzGyG BTTHJ PP
−−=++
( ) ( ) 





−
−
−=+ PP y
G
G
G
DC
zGGG
H
J
H
TT
HsBJss ωωθ 
JG – RIG Moment of Inertia around
Output Axis
θ – Pickoff Angle
- Platform Angular Acceleration around YP Axis
- Platform angular Rate around ZP Axis
HG – Gyro Angular Moment
TC – RIG Torque Command
TD – Disturbance Moment
BG - Damping Coefficient
Pyω
Pzω
Tacking Laplace Transform and rearranging:
SOLO
70
Navigation
Platform Stabilization Using Rate-Integrated-Gyros (RIGs(
Platform Stabilization Around ZP Azimuth Axis (continue – 2(
( ) ( ) 





−
−
−=+ PP y
G
G
G
DC
zGGG
H
J
H
TT
HsBJss ωωθ 
Define:
( ) Cz
G
C
k
H
T
ω∆+= 1: Angular Rate Command
(Δk –Scaling Error(
G
G
D
H
T
ε=: Gyro Bias
G
G
G
B
J
τ=: RIG Time Constant
( )
( )
( ) 





−−∆+−
+
−= PCP y
G
G
Gzz
GG
G
H
J
k
ssB
H
s ωεωω
τ
θ 1
1
1
SOLO
71
Navigation
Platform Stabilization Using Rate-Integrated-Gyros (RIGs(
Platform Stabilization Around ZP Azimuth Axis (continue – 3(
The Pickoff Signal θ, is the Feedback
Command to the Azimuth Torque Motor
( ) ( ) ( )ssKKsT Cz θ12=
K1(s( - Filter and Torque Driver
( ) fzxxyxzz TTJJJ CPPPPPP
−=−− ωωω
K2 - Torque Motor Gain
The Moment Equation along Platform
ZP Axis is:
SOLO
72
Navigation
Platform Stabilization Using Rate-Integrated-Gyros (RIGs(
Platform Stabilization Around ZP Azimuth Axis (continue – 4(
( ) ( )
( ) ( )
( ) ( )
( ) ( ) D
GGxGx
G
y
G
G
Gz
GGxGx
GG
z T
BHsKsKsJsJ
ss
H
J
k
BHsKsKsJsJ
BHsKsK
PP
CC
PP
P
/
1
1
/
/
1
23
1
23
1
++
+
−





−+∆+
++
=
τ
τ
ωεω
τ
ω 
( ) ( )
( )
( ) ( )
( )
( )
( ) ( )
( )
D
Gx
GG
x
y
G
G
Gz
Gx
GG
Gx
GG
z
T
ssJ
BH
sKsK
sJ
H
J
k
ssJ
BH
sKsK
ssJ
BH
sKsK
P
P
CC
P
P
P
1
/
1
1
1
1
/
1
1
/
21
21
21
+
+
−






−+∆+
+
+
+
=
τ
ωεω
τ
τ
ω 
or
From the Figure above we obtain:
SOLO
73
Navigation
Platform Stabilization Using Rate-Integrated-Gyros (RIGs(
Platform Stabilization Around ZP Azimuth Axis (continue – 5(
( ) ( )
( ) ( )
( ) ( )
( ) ( ) D
GGxGx
G
y
G
G
Gz
GGxGx
GG
z T
BHsKsKsJsJ
ss
H
J
k
BHsKsKsJsJ
BHsKsK
PP
CC
PP
P
/
1
1
/
/
1
23
1
23
1
++
+
−





−+∆+
++
=
τ
τ
ωεω
τ
ω 
At Steady-State we obtain:
( ) ( )
( ) ( )
( )D
s
GG
y
G
G
Gzz Ts
BHsKKH
J
kt CCP 0
1
lim
/0
1
1
→
−−+∆+=∞→ ωεωω 
We can see that to minimize External Disturbances effect we must have K1(0(K2HG/BG,
called “Loop Robustness”, as high as Loop Stability allows.
Also we must have HG>>JG in order to minimize the effect of . ThenCy
G
G
H
J
ω
( ) ( ) Gzz CP
kt εωω +∆+≈∞→ 1
Therefore the Misalignment Errors of the Platform are due to Gyros Drift and
Scaling Error. Both can be measured (off-line( and compensated by Navigation Computer.
SOLO
74
Navigation
Platform Stabilization Using Rate-Integrated-Gyros (RIGs(
SOLO
75
Navigation
Platform Stabilization Using Rate-Integrated-Gyros (RIGs(
The Platform is angular isolated from the Aircraft
via, at least, three Gimbals. Those Gimbals are,
from Aircraft to Platform:
- Azimuth (Heading( – Angle ψG
- Pitch – Angle θ
- Roll – Angle ϕ
The Rotation Matrix from Aircraft to Platform is:
[ ] [ ] [ ]










−









 −










−
==
100
0cossin
0sincos
cos0sin
010
sin0cos
cossin0
sincos0
001
321 GG
GG
G
P
AC ψψ
ψψ
θθ
θθ
φφ
φφψθφ
We want to apply Moments on the Platform, related to the Pjckoff
Outputs
of the Three RIGs mounted on the Platform
( )
( )










=










=
z
y
x
z
y
x
P
KsK
T
T
T
T
P
P
P
θ
θ
θ
21

The 3 Torque Motors Roll (TR(, Pitch (TP( and Heading (TH(
are located on Gimbal Axes .PA zyx 1,1,1 '

SOLO
76
Navigation
Platform Stabilization Using Rate-Integrated-Gyros (RIGs(
We want to find the relation between and
TR, TP, TH.
PPP zyx TTT ,,
The 3 Torque Motors Roll (TR(, Pitch (TP( and Heading (TH(
are located on Gimbal Axes .PA zyx 1,1,1 '

PAPPPPPP zHyPxRzzyyxx TTTTTTT 111111 '

++=++=
( )
[ ] [ ] [ ]
( )

[ ] [ ]
( )

[ ]
( )

P
Pzy
A
Ax
P
P
P
GHGPGR
z
y
x
P
TTT
T
T
T
T
1
3
1
23
1
123
1
0
0
0
1
0
0
0
1
,
'












−+










−−+










−−−=










= ψθψφθψ




















−
−
=










H
P
R
GG
GG
z
y
x
T
T
T
T
T
T
P
P
P
10sin
0coscossin
0sincoscos
θ
ψθψ
ψθψ




















−=










P
P
P
z
y
x
GG
GG
GG
H
P
R
T
T
T
T
T
T
1tansintancos
0cossin
0cos/sincos/cos
θψθψ
ψψ
θψθψ
SOLO
77
Navigation
Platform Stabilization Using Rate-Integrated-Gyros (RIGs(
To simplify the implementation the assumption of
small Pitch Angle θ is used (see Figure(:




















−=










P
P
P
z
y
x
GG
GG
GG
H
P
R
T
T
T
T
T
T
1tansintancos
0cossin
0cos/sincos/cos
θψθψ
ψψ
θψθψ




















−≈










P
P
P
z
y
x
GG
GG
H
P
R
T
T
T
T
T
T
100
0cossin
0sincos
ψψ
ψψ
( )
( )










=










=
z
y
x
z
y
x
P
KsK
T
T
T
T
P
P
P
θ
θ
θ
21

where:
SOLO
78
Navigation
SOLO
79
Navigation
Derivation of the IMU Position and Platform Misalignment Error Equations
Platform Misalignment Error Equations
Define:
(C(Computer Coordinate System
(the computed Platform coordinates(
(P( Platform Coordinate System
(real Platform coordinates(
The rotation from (C( to (P( is defined by
the three small angles ψx, ψy, ψz as
[ ] [ ] [ ]










−









 −










−
==
100
0cossin
0sincos
cos0sin
010
sin0cos
cossin0
sincos0
001
321 zz
zz
yy
yy
xx
xxzyx
P
CC ψψ
ψψ
ψψ
ψψ
ψψ
ψψψψψ










−
−
−
−










=










−
−
−
≈










−









 −










−
≈
0
0
0
100
010
001
1
1
1
100
01
01
10
010
01
10
10
001
xy
xz
yz
xy
xz
yz
z
z
y
y
x
x
ψψ
ψψ
ψψ
ψψ
ψψ
ψψ
ψ
ψ
ψ
ψ
ψ
ψ
[ ] [ ] [ ]










−
−
−
=×










=×−≈
0
0
0
:&:
xy
xz
yz
z
y
x
P
C IC
ψψ
ψψ
ψψ
ψ
ψ
ψ
ψ
ψψ

SOLO
80
Navigation
Derivation of the IMU Position and Platform Misalignment Error Equations
Platform Misalignment Error Equations (continue – 1(
Let find the angular rotation vector from C to P
( )
[ ] [ ] [ ] =






























+










+










=←
z
zyy
x
x
P
CP
ψ
ψψψ
ψ
ψω




0
0
0
0
0
0 321
ψ
ψ
ψ
ψ
ψ
ψψψ
ψψψ
ψψψ
ψψ
ψψ
ψ
ψ
ψψ










=










≈










+
−
=




















−
−
−
+



















 −
+










≈
z
y
x
z
zxy
zyx
zxy
xz
yz
y
y
yx
0
0
1
1
1
0
0
10
010
01
0
0
SOLO
81
Navigation
Derivation of the IMU Position and Platform Misalignment Error Equations
Platform Misalignment Error Equations (continue – 1(
The command to Platform Torques by the computer (C(
are affected by the IMU Gyros errors:
- Gyros Scaling Errors
- Misalignment of the gyros relative to Platform
- Gyros Drift
- Gyros Mass-Unbalances
( )
( ) ( ) ( )P
G
C
ICG
P
IP KI εωω

++= ←← Platform Rate Commands Vector










∆
∆
∆
=
33231
23221
13121
G
G
G
G
Kmm
mKm
mmK
K
Matrix of Gyros Scaling Errors,
Misalignments and Mass-Unbalances
( )
PPP zzyyxx
P
G 111

εεεε ++= Gyro Drift Vector
Computer Rate Commands VectorCCCCCC zzyyxxIC 111

ωωωω ++=←
SOLO
82
Navigation
Derivation of the IMU Position and Platform Misalignment Error Equations
Platform Misalignment Error Equations (continue – 2(
Let find the angular velocity vector of the Platform (P(
relative to the Computer (C(:
ICIPCP ←←← −= ωωω

( ) ( ) ( ) ( ) ( )C
IC
P
C
P
IP
P
IC
P
IP
P
CP C ←←←←← −=−= ωωωωω

( ) ( ) ( )
[ ]{ } ( )
[ ] ( ) ( ) ( )P
G
C
ICG
C
IC
C
IC
P
G
C
ICG KIKI εωωψωψεωψ

++×=×−−++= ←←←←
Using we obtain:[ ] ( ) ( )
[ ] ψωωψ

×−=× ←←
C
IC
C
IC
( )
[ ] ( ) ( )P
G
C
ICG
C
IC K εωψωψ

++×−= ←←
or










+




















∆
∆
∆
+




















−
−
−
−=










z
y
x
z
y
x
G
G
G
z
y
x
xy
xz
yz
z
y
x
C
C
C
CC
CC
CC
Kmm
mKm
mmK
ε
ε
ε
ω
ω
ω
ψ
ψ
ψ
ωω
ωω
ωω
ψ
ψ
ψ
33231
23221
13121
0
0
0



SOLO
83
Navigation
Derivation of the IMU Position and Platform Misalignment Error Equations
Position Error Equations
- vector representing position from the Earth Center
of mass to the Vehicle
r

( )rgAr


+=
- Ideal Accelerometers Measurement VectorA

( )
( )
r
rr
K
r
r
K
rg



2/33
⋅
−=−=
( )rg

- Gravity Vector
( )rrgAArr


δδδ +++=+
For Non-Ideal Accelerometers we have a error between Real Position and Computed
Position
r

δ
( ) ( )rgrrgAr


−++= δδδ
SOLO
84
Navigation
Derivation of the IMU Position and Platform Misalignment Error Equations
Position Error Equations (continue – 1(
( ) ( )rgrrgAr


−++= δδδ
( ) ( )
( ) ( )[ ]
r
r
K
r
rrrr
K
rgrrg



32/3
+
+⋅+
−=−+
δδ
δ
( )
( ) r
r
K
r
rr
rr
r
K
r
r
K
r
rrr
K 


 32332/32
31
2
+




 ⋅
−+−≈+
⋅+
−≈
δ
δ
δ
r
r
K
r
r
r
r
r
r
K
r
r
K
r
r
K 


3333
+





⋅+−−≈ δδ
therefore
Ar
r
r
r
r
r
r
K
r



δδδδ =











⋅−+ 33
SOLO
85
Navigation
Derivation of the IMU Position and Platform Misalignment Error Equations
Position Error Equations (continue – 2(
Define
r
g
r
K
S == 3
:ω
Maximilian Schuler
(1882 – 1972(
S
ST
ω
π2
= Shuler Period = 84.4 minutes at Sea Level
Ar
r
r
r
r
rr S



δδδωδ =











⋅−+ 32
SOLO
86
Navigation
Derivation of the IMU Position and Platform Misalignment Error Equations
Position Error Equations (continue – 3(
Let find the Accelerometer Measurements received by the Navigation Computer (C(
The Accelerometer Errors are related to:
- Accelerometers Scaling Errors
- Misalignment of the Accelerometers relative to Platform
- Accelerometers Biases
( )
( ) ( ) ( )PP
f
C
C bAKIA

δ++= Accelerometers Measurement Vector










∆
∆
∆
=
33231
23221
13121
fff
fff
fff
f
Kmm
mKm
mmK
K Matrix of Accelerometers Scaling Errors
and Misalignments
Ideal Accelerometer Measurement Vector
( )
PPPPPP zzyyxx
P
AAAA 111

++=
( )
PPPPPP zzyyxx
P
bbbb 111

δδδδ ++= Accelerometers Biases Vector
SOLO
87
Navigation
Derivation of the IMU Position and Platform Misalignment Error Equations
Position Error Equations (continue – 4(
AAA C

−=:δ Accelerometers Error Vector
( ) ( ) ( )
( ) ( ) ( )
[ ]( ) ( )PPP
f
PC
P
C
C
C
AIbAKIACAA

×+−++=−= ψδδ
We used the relation ( ) [ ]( ) [ ]( )×+≈×−==
−−
ψψ

IICC P
C
C
P
11
Finally we obtain
( )
[ ] ( ) ( ) ( )PP
f
PC
bAKAA

δψδ ++×−=
[ ] ( ) ( ) ( )PP
f
P
S bAKAr
r
r
r
r
rr



δψδδωδ ++×−=











⋅−+ 32
The Position Error Equation is
SOLO
88
Navigation
Derivation of the IMU Position and Platform Misalignment Error Equations
Position Error Equations (continue – 5(
Let compute ( )C
r
δ
( ) ( ) ( )
[ ] ( )CC
IC
CC
rrr


δωδδ ×+= ←
Therefore
( )
( )
( )
( ) ( )
CCCCCC
CCC
C
IC
C
CCC
CCC
CCCCCC
CCC
zzyyxxIC
C
ICzyxICzyx
zyx
C
zyxzyx
C
zyx
C
rzyxzyx
zyxr
zyxzyxr
zyxr
111
111111
111:
111111
111
11


















ωωωω
δωδδδωδδδ
δδδδ
δδδδδδδ
δδδδ
αα
ω
++=
×=++×=++
++=
+++++=
++=
←
←←
×= ←
In the same way
( ) ( ) ( )
[ ] ( ) ( ) ( )
[ ] ( ) ( )
( )
[ ] ( ) ( )
[ ] ( )
( )CC
IC
CC
IC
CC
IC
C
IC
C
IC
CC
IC
CC
rr
rrrr




  







δωδω
δωωωδωδδ
×+×+








×








×++×+=
←←
←←←←
0
SOLO
89
Navigation
Derivation of the IMU Position and Platform Misalignment Error Equations
Position Error Equations (continue – 6(
( ) ( ) ( )
[ ] ( )CC
IC
CC
rrr


δωδδ ×+= ←
Therefore
( ) ( ) ( )
[ ] ( ) ( )
[ ] ( )
[ ] ( )
[ ]( ) ( )CC
IC
C
IC
C
IC
CC
IC
CC
rrrr






δωωωδωδδ ××+×+×+= ←←←←2
( ) ( )
[ ] ( ) ( )
[ ] ( )
[ ] ( )
[ ]( ) ( ) ( )
( ) ( )
( )
[ ] ( ) ( ) ( )PP
f
P
C
CC
C
S
CC
IC
C
IC
C
IC
CC
IC
C
bAKA
r
r
r
r
r
rrrr









δψ
δδωδωωωδωδ
++×−=












⋅−+××+×+×+ ←←←← 32 2
Together with the Platform Misalignment Error Equations
( )
[ ] ( ) ( )P
G
C
ICG
C
IC K εωψωψ

++×−= ←←
SOLO
90
Navigation
Derivation of the IMU Position and Platform Misalignment Error Equations
Position Error Equations (continue – 7(
CCCCCC zzyyxxIC 111

ωωωω ++=←
( )
[ ]










−
−
−
=×←
0
0
0
CC
CC
CC
xy
xz
yz
C
IC
ωω
ωω
ωω
ω
 ( )
[ ]










−
−
−
=×←
0
0
0
CC
CC
CC
xy
xz
yz
C
IC
ωω
ωω
ωω
ω





( )
[ ] ( )
[ ]
( )
( )
( )











+−
+−
+−
=










−
−
−










−
−
−
=×× ←←
22
22
22
0
0
0
0
0
0
CCCCCC
CCCCCC
CCCCCC
CC
CC
CC
CC
CC
CC
yxzyzx
zyzxyx
zxyxzy
xy
xz
yz
xy
xz
yz
C
IC
C
IC
ωωωωωω
ωωωωωω
ωωωωωω
ωω
ωω
ωω
ωω
ωω
ωω
ωω

Czrr 1

= ( )
( )
( )
( )










−
=










−










=





⋅−
z
y
x
z
z
y
x
r
r
r
r
r
r
C
C
C
C
δ
δ
δ
δ
δ
δ
δ
δδ
21
0
0
33




SOLO
91
Navigation
Derivation of the IMU Position and Platform Misalignment Error Equations
Position Error Equations (continue – 8)
( )
( )
( ) 





















+−−+−
−+−+
+−+−
+




















−
−
−
+










z
y
x
z
y
x
z
y
x
CCCCCCCC
CCCCCCCC
CCCCCCCC
CC
CC
CC
yxSxzyyzx
xzyzxSzyx
yzxzyxzyS
xy
xz
yz
δ
δ
δ
ωωωωωωωωω
ωωωωωωωωω
ωωωωωωωωω
δ
δ
δ
ωω
ωω
ωω
δ
δ
δ
222
222
222
20
0
0
2



















−




















∆
∆
∆
+




















−
−
−
−=
P
P
P
P
P
P
P
P
P
z
y
x
z
y
x
fff
fff
fff
z
y
x
xy
xz
yz
b
b
b
A
A
A
Kmm
mKm
mmK
A
A
A
δ
δ
δ
ψψ
ψψ
ψψ
33231
23221
13121
0
0
0
Position Error Equations
Platform Misalignment Error Equations










+




















∆
∆
∆
+




















−
−
−
−=










z
y
x
z
y
x
G
G
G
z
y
x
xy
xz
yz
z
y
x
C
C
C
CC
CC
CC
Kmm
mKm
mmK
ε
ε
ε
ω
ω
ω
ψ
ψ
ψ
ωω
ωω
ωω
ψ
ψ
ψ
33231
23221
13121
0
0
0



Inertial rotation sensor classification:
Rotation sensorsRotation sensors
GyroscopicGyroscopic
Rate GyrosRate GyrosFree GyrosFree Gyros
Non-GyroscopicNon-Gyroscopic
Vibration
Sensors
Vibration
Sensors
Rate SensorsRate Sensors Angular
accelerometers
Angular
accelerometers
DTGDTG RGRGRIGRIGRVGRVG General
purpose
General
purpose MHDMHDOptic
Sensors
Optic
Sensors
RLGRLG IOGIOGFOGFOG Silicon
)MEMS(
Silicon
)MEMS(
HRGHRG Tuning
Fork
Tuning
Fork
QuartzQuartz CeramicCeramic
93
Rate gyro
DTG – Dynamically Tuned Gyro
Flex Inversion Cardan joint
95
Main Components of a DTG
Transverse Cut of a DTG
Rate gyro
DTG – Dynamically Tuned Gyro
SOLO
96
Navigation
Inertial Navigation Systems
SOLO
97
Navigation
Inertial Navigation Systems
98
SOLO
Strapdown Algorithm (Vector Notation)
Navigation
99
SOLO
Strapdown Algorithm
Navigation
SOLO
100
Navigation
Inertial Navigation Systems
Magnetic Compass
SOLO
101
Navigation
Inertial Navigation Systems
Gyrocompass
SOLO
102
Navigation
Radar Altimeter
SOLO
103
Navigation
Externally Navigation Add Systems
eLORAN
LORAN - C
Global Navigation Satelite System (GNSS)
Distance Measuring Equipment (DME)
VHF Omni Directional Radio-Range (VOR) System
Data Base Matching
Terrain Referenced Navigation (TRN)
Navigation Multi-Sensor Integration
SOLO
104
Navigation
Global Navigation Satelite System (GNSS)
Satellites of the
GPS
GLONASS and GALILEO
Systems
Four Satellite Navigation Systems have been designed to give three dimensional
Position, Velocity and Time data almost enywhere in the world with an accuracy
of a few meters
• The Global Positioning System, GPS (USA)
• The Global Navigation Satellite System , GLONASS (Rusia)
• GALILEO (European Union)
• COMPASS (China)
They all uses the Time of Arrival (range determination) Radio Navigation
Systems.
SOLO
105
Navigation
Global Navigation Satelite System (GNSS)
SOLO
106
Navigation
Global Navigation Satelite System (GNSS)
SOLO
107
Navigation
Global Navigation Satelite System (GNSS)
SOLO
108
Navigation
Global Navigation Satelite System (GNSS)
Differential GPS Systems (DGPS)
Differential GPS Systems (DGPS) techniques are based on installing one
or more Reference Receivers at known locations and the measured and
known ranges to the Satellites are broadcast to the other GPS Users in
the vicinity. This removes much of the Ranging Errors caused by
atmospheric conditions (locally) and Satellite Orbits and Clock Errors
(globally).
Global Positioning System (GPS)
SOLO
109
Navigation
A visual example of the GPS constellation in
motion with the Earth rotating. Notice how the
number of satellites in view from a given point
on the Earth's surface, in this example at 45°N,
changes with time
The Global Positioning System (GPS) is a space-
based satellite navigation system that provides
location and time information in all weather,
anywhere on or near the Earth, where there is an
unobstructed line of sight to four or more GPS
satellites. It is maintained by the United States
government and is freely accessible to anyone with
a GPS receiver.
Ground monitor station used from
1984 to 2007, on display at the Air
Force Space & Missile Museum
A GPS receiver calculates its position by precisely
timing the signals sent by GPS satellites high above
the Earth. Each satellite continually transmits
messages that include:
• the time the message was transmitted
• satellite position at time of message transmission
Global Navigation Satellite System (GNSS)
Global Positioning System
SOLO
110
Navigation
Other satellite navigation systems in use or
various states of development include:
• GLONASS – Russia's global navigation
system. Fully operational worldwide.
• GALILEO – a global system being
developed by the European Union and other
partner countries, planned to be operational
by 2014 (and fully deployed by 2019)
• BEIDOU – People's Republic of China's
regional system, currently limited to Asia and
the West Pacific[123]
• COMPASS – People's Republic of China's
global system, planned to be operational by
2020.
• IRNSS – India's regional navigation
system, planned to be operational by 2012,
covering India and Northern Indian Ocean.
• QZSS – Japanese regional system covering
Asia and Oceania.
Comparison of GPS, GLONASS, Galileo and Compass (medium earth orbit)
satellite navigation system orbits with the International Space Station, Hubble
Space Telescope and Iridium constellation orbits, Geostationary Earth Orbit, and
the nominal size of the Earth.[121]
The Moon's orbit is around 9 times larger (in
radius and length) than geostationary orbit
Satellite Position
SOLO
111
Navigation
GZ
GX
GY
Equatorial
Plane
εY
εZ
εX
Ascending
Node
Satellite
Orbit
Periapsis
Direction
Vernal Equinox
Direction
Ω
ω
i
→
N1
Θ
A sixth element is required to determine the position of the satellite along the orbit at a given time.
1. a semi-major axis – a constant defining the size of the conic orbit.
2. e, eccentricity – a constant defining the shape of the conic orbit.
3. i, inclination – the angle between Ze and the specific angular momentum of the orbit vrh

×=
4. Ω, longitude of the ascending node – the angle, in the Equatorial Plane, between the
unit vector and the point where the satellite crosses trough the Equatorial Plane in a northerly direction
(ascending node) measured counterclockwise where viewed from the northern hemisphere.
5. ω, argument of periapsis – the angle, in the plane of satellite’s orbit, between ascending node and the
periapsis point, measured in the direction of the satellite’s motion.
6. T, time of periapsis passage – the time when the satellite was at the periapsis.
GPS Broadcast Ephemerides
SOLO
112
Navigation
113
SOLO KEPLERIAN TRAJECTORIES
Time of Flight on an Elliptic Orbit
From the equation Θ= 2
rh we can write
h
Ad
h
dr
dt 2
2
=
Θ
=
where is the area defined by the radius vector as it moves through an
angle
2
2
Θ
=
dr
Ad
Θd
Θ
pΘ
pΘ−Θ
r
focus conic
section
x
y
→
P1
→
Q1
→
r1
→
t1
v

rv tv
Θd
Θ= drAd 2
2
1
periapsis
This proves the 2nd
Kepler’s Law that equal area are swept out equal in equal times
by the radius vector.
114
SOLO KEPLERIAN TRAJECTORIES
Time of Flight on an Elliptic Orbit (continue – 1)
The period of the orbit depends only on the major axis of the ellipse a.
( ) ( )
p
pa
h
eaa
h
ea
h
ba
T
eap
ph µ
ππππ
µ
2/3122/322
2
1
2
1
22
2
=
−=
=
−
=
−
==
or
2/3
2 aT
µ
π
=
The period of an elliptical orbit T is obtained by integrating from Θ= 0 to Θ=2π ,
and the radius vector sweeps the area of the ellipse A = π a b.
This proves the Kepler’s third law: “the square of the period of a planet orbit is equal
To the cube of its mean distance to the sun”.
115
SOLO KEPLERIAN TRAJECTORIES
Time of Flight on an Elliptic Orbit (continue – 2)
Let draw an auxiliary circle of radius a, and the same center O as the geometric center
of the ellipse.
x
y
eac =
a a
( ) 2/12
1 eab −=
r
Θ
FOCUS
EMPTY
FOCUS
c
→
P1
→
Q1
a
F
Q
O VS
E
P
Let take any point P on the ellipse with
polar coordinates r,Θ and define the point
Q on the circle at the same coordinate x as
P.
Eeary
r
a
x
ea
a
x
by
Ea
a
x
ay
ellipse
ellipse
circle
sin1sin
sin111
sin1
2
2
2
2
2
2
2
2
−=Θ=→







Θ=−−=−=
=−=
The angle E of OQ with x axis is called the
eccentric anomaly.
aeEarxellipse −=Θ= coscos
116
SOLO KEPLERIAN TRAJECTORIES
Time of Flight on an Elliptic Orbit (continue – 3)
Let compute
x
y
eac =
a a
( ) 2/12
1 eab −=
r
Θ
FOCUS
EMPTY
FOCUS
c
→
P1
→
Q1
a
F
Q
O VS
E
P
( )
( )( ) ( )( )
( ) 0cos11
sin1sincos1cos
1
2
22
2
>←−−=
−+−−=
−=×=−=
EEEeea
EEeaEaEEeaaeEa
xyyxvreah ellipseellipseellipseellpse




µ
We obtain
( ) n
a
EEe ==− :cos1 3
µ
( ) ( ) ( )pttntEetE −=− sin
Integrating this equation gives
Kepler’s Equation
where tp is the time of periapsis ( E (tp) = 0 )
117
SOLO KEPLERIAN TRAJECTORIES
Time of Flight on an Elliptic Orbit (continue – 4)
From
x
y
eac =
a a
( ) 2/12
1 eab −=
rΘ
FOCUS
EMPTY
FOCUS
c
→
P1
→
Q1
a
F
Q
O VS
E
P
Eeary
aeEarx
ellipse
ellipse
sin1sin
coscos
2
−=Θ=
−=Θ=
we have
( ) ( )[ ] [ ]
( )Eea
EeEeaEeaaeEar
cos1
coscos21sin1cos
2/1222/12222
−=
+−=−+−=
Therefore
Θ+
Θ−
=
−
−
=Θ
Θ+
Θ+
=
−
−
=Θ
cos1
sin1
sin
cos1
sin1
sin
cos1
cos
cos
cos1
cos
cos
22
e
e
E
Ee
Ee
e
e
E
Ee
eE
( )( )
Ee
Ee
Ee
eEEe
sin1
cos11
sin1
coscos1
sin
cos1
2
tan
22
−
−+
=
−
+−−
=
Θ
Θ−
=
Θ
From
2
tan
1
1
2
tan
E
e
e
−
+
=
Θ
or
and are always in the same quadrant.2
Θ
2
E
118
SOLO KEPLERIAN TRAJECTORIES
Time of Flight on an Elliptic Orbit (continue – 5)
We have
x
y
eac =
a a
( ) 2/12
1 eab −=
rΘ
FOCUS
EMPTY
FOCUS
c
→
P1
→
Q1
a
F
Q
O VS
E
P
Eeary
aeEarx
ellipse
ellipse
sin1sin
coscos
2
−=Θ=
−=Θ=
and
( )Eear cos1−=
The Position Vector of the Satellite is
( )












−
−
=










Θ
Θ
=










=
+=
0
sin1
cos
0
sin
cos
0
11
2
Eea
aeEa
r
r
y
x
q
QyPxq
ellipse
ellipse
Orbit
ellipseellipse


Differentiate in the Orbit Plane
( )
2
222
1
0
cos
sin
cos1
0
cos1
sin
0
cos1
sin
0
cos1
sin
e
an
e
Ee
an
Ee
E
EanEe
E
Ee
aeE
q
td
d
Orbit
Orbit
−
⋅
⋅










Θ+
Θ−
=
⋅−
⋅
⋅












−
−
=⋅⋅












−
−
=












−
−−
= 
GPS Broadcast Ephemerides
SOLO
119
Navigation
The Satellite Position can be computed as follows:
( ) ( )
( )
( ) ( )
( ) ( )
( ) ( ) ( )oeisic
rsrc
usuc
oe
oe
ttidotuCuCii
uCuCrr
uCuC
tt
ttnnMM
a
n
−⋅+⋅+⋅+=
⋅+⋅+=
⋅+⋅+=
−⋅Ω+Ω=Ω
−⋅∆++=
=
000
000
000
0
0
3
2sin2cos
2sin2cos
2sin2cosωω
µ

where:
( )
Θ+=








⋅
−
+
⋅=Θ
⋅−⋅=
⋅+=
−
00
1
0
2
tan
1
1
tan2
cos1
sin
ωu
E
e
e
Eear
EeME
Six Keplerian Elements Define the
Satellite Posision (Ω, I, ω, a, e, M0)
where M0 = n (t – tP)
GPS Broadcast Ephemerides
SOLO
120
Navigation
( )
Θ+=










=










= ωuur
ur
y
x
q ellipse
ellipse
Orbit
0
sin
cos
0

( )
2
1
0
cos
sin
0
e
an
ue
u
y
x
q ellipse
ellipse
Orbit
Orbit
−
⋅
⋅










+
−
=










= 


( ) oecoec ttt ⋅+−⋅=Θ ωω
[ ] [ ] [ ]










−−Ω−=










=










0
sin
cos
0
313 ur
ur
iy
x
C
z
y
x
ellipse
ellipse
G
G
ωε
Θ+= ωu
121
GPS Broadcast Ephemerides
SOLO Navigation
Global Positioning System
SOLO
122
Navigation
- x, y, z Satellite Coordinate in Geocentric-Equatorial Coordinate System
( ) ( ) ( )222
ZzYyXx −+−+−=ρ
- X, Y, Z User Coordinate in Geocentric-Equatorial Coordinate System
Squaring both sides gives
The User to Satellite Range is given by
( ) ( ) ( )
ZzYyXxzyxZYX
ZzYyXx
r
⋅⋅−⋅⋅−⋅⋅−+++++=
−+−+−=
222222222
2222
2

ρ
The four unknown are X, Y, Z, Crr.
Satellite position (x,y,z) is calculated from received Satellite Ephemeris Data.
Since we have four unknowns we need data from at least four Satellites.
( ) ZzYyXxCrrrzyxr ⋅⋅−⋅⋅−⋅⋅−=−++− 22222222
ρ
where r = Earth Radius
This is true if (x,y,z) and (X,Y,Z) are measured at the same time. The GPS
Satellites clocks are more accurate then the Receiver clock. Let assume that
Crr is the range-square bias due to time bias between Receiver GPS and
Satellites clocks. Therefore instead of the real Range ρ the Receiver GPS
measures the Pseudo-range ρr..
Global Positioning System
SOLO
123
Navigation
Global Positioning System
SOLO
124
Navigation
Using data from four Satellites we obtain
( )
( )
( )
( ) 444444
22
4
2
4
2
4
2
4
333333
22
3
2
3
2
3
2
3
222222
22
2
2
2
2
2
2
2
111111
22
1
2
1
2
1
2
1
222
222
222
222
ZzYyXxCrrrzyx
ZzYyXxCrrrzyx
ZzYyXxCrrrzyx
ZzYyXxCrrrzyx
r
r
r
r
⋅⋅−⋅⋅−⋅⋅−=−++−
⋅⋅−⋅⋅−⋅⋅−=−++−
⋅⋅−⋅⋅−⋅⋅−=−++−
⋅⋅−⋅⋅−⋅⋅−=−++−
ρ
ρ
ρ
ρ
or
( )
( )
( )
( )     
14
1444
22
4
2
4
2
4
2
4
22
3
2
3
2
3
2
3
22
2
2
2
2
2
2
2
22
1
2
1
2
1
2
1
444
333
222
111
1222
1222
1222
1222
x
xx
R
r
r
r
r
PM
rzyx
rzyx
rzyx
rzyx
Crr
Z
Y
X
zyx
zyx
zyx
zyx














−++−
−++−
−++−
−++−
=
























⋅−⋅−⋅−
⋅−⋅−⋅−
⋅−⋅−⋅−
⋅−⋅−⋅−
ρ
ρ
ρ
ρ
14
1
4414 xxx RM
Crr
Z
Y
X
P
−
=












=
Global Positioning System
SOLO
125
Navigation
Global Positioning System
SOLO
126
Navigation
Global Positioning System
SOLO
127
Navigation
GPS Satellite
GPS Control
Station
Global Positioning System
SOLO
128
Navigation
The key to the system accuracy is the fact that all signal components are
controlled by Atomic Clocks.
• Block II Satellites have four on-board clocks: two rubidium and two cesium
clocks. The long term frequency stability of these clocks reaches a few part in
10-13
and 10-14
over one day.
• Block III will use hydrogen masers with stability of 10-14
to 10-15
over one day.
The Fundamental L-Band Frequency of 10.23 MHz is produced from those Clocks.
Coherently derived from the Fundamental Frequency are three signals
(with in-phase (cos), and quadrature-phase (sin) components):
- L1 = 154 x 10.23 MHz = 1575.42 MHz
- L2 = 120 x 10.23 MHz = 1227.60 MHz
- L3 = 115 x 10.23 MHz = 1176.45 MHz
The in-phase components of L1 signal, is bi-phase modulated by a 50-bps data
stream and a pseudorandom code called C/A-code (Coarse Civilian) consisting of a
1023-chip sequence, that has a period of 1 ms and a chipping rate of 1.023 MHz:
( ) 
( ) ( ) ( )
signalL
code
ompseudorand
AC
ulation
bps
power
carrier
I ttctdPts
−−
+⋅⋅⋅⋅=
1/
mod
50
cos2 θω
Global Positioning System
SOLO
129
Navigation
The quadrature-phase components of L1, L2 and L3 signals, are bi-phase modulated
by the 50-bps data stream but a different pseudorandom code called P-code
(Precision-code) or Precision Positioning Service (PPS) for US Military use, , that
has a period of 1 week and a chipping rate of 10.23 MHz:
( ) 
( ) ( ) ( )
signalsLLL
code
ompseudorand
P
ulation
bps
power
carrier
Q ttptdPts
−−
+⋅⋅⋅⋅=
3,2,1
mod
50
sin2 θω
Global Positioning System
SOLO
130
Navigation
GPS Signal
Spectrum
SOLO
131
Navigation
Global Positioning System
SOLO
132
Navigation
GPS User Segment
(GPS Receiver)
Global Positioning System
SOLO
133
Navigation
GPS User Segment
(GPS Receiver)
GPS vs GALILEO
SOLO
134
Navigation
GALILEO GPS
Satelites 27 + 3 24 (32!)
Planes 3 6
Satellite per Plane 10 4 - 7
Plane Spacing 120 ͦ 60 ͦ
Inclination 56 ͦ 55 ͦ
Orbit Type MEO Circular MEO Circular
Orbit Radius 29,500 km 26,500 km
Period 141
/4 hour 12 hour
Satellite Ground Track
Repetition
10 days 1 day
Higher GALILEO Orbit coupled with Inclination
increase give better coverage at high latitudes.
GPS, GLONASS and GALILEO
SOLO
135
Navigation
SOLO
136
Navigation
GALILEO
GALILEO
SOLO
137
Navigation
GALILEO/ GPS/ GLONASS
GPS Jamming, Anti-Jamming
SOLO
138
Navigation
Rubidium Clocks
SOLO
139
Navigation
Rubidium Clocks
SOLO
140
Navigation
GNSS Status
SOLO
141
Navigation
GPS Status, November 2011
SOLO
142
Navigation
GPS Modernization
SOLO
143
Navigation
GPS III Payload Evolution
SOLO
144
Navigation
GLONASS Constellation, November 2011
SOLO
145
Navigation
GLONASS Modernisation
SOLO
146
Navigation
COMPASS/ BeiDou, November 2011
SOLO
147
Navigation
Quasi Zenith Satellite System (QZSS) - Japan
SOLO
148
Navigation
Indian Regional National Satellite System (IRNSS)
SOLO
149
Navigation
SOLO
150
Navigation
Differential GPS Augmented Systems
SOLO
151
Navigation
Differential GPS Augmented Systems
SOLO
152
Navigation
GNSS Aviation Operational Performance Requirements
SOLO
153
Navigation
SOLO
154
Navigation
Externally Navigation Add Systems
LORAN - C
A LORAN receiver measures the
Time Difference of arrival between
pulses from pairs of stations. This
time difference measurement places
the Receiver somewhere along a
Hyperbolic Line of Position (LOP).
The intersection of two or more
Hyperbolic LOPs, provided by two or
more Time Difference measurement,
defines the Receiver’s Position.
Accuracies of 150 to 300 m are
typical.
LOP from Transmitter Stations
(1&2 and 1&3)
LORAN – C (LOng RAnge Navigation) is a Time Difference Of Arrival
(TDOA), Low-Frequency Navigation and Timing System originally
designed for Ship and Aircraft Navigation.
SOLO
155
Navigation
Externally Navigation Add Systems
eLORAN
eLORAN receiver employ Time of Arrival
(TOA) position techniques, similar to those used
in Satellite Navigation Systems. They track the
signals of many LORAN Stations at the same
time and use them to make accurate and reliable
Position and Timing measurements. It is now
possible to obtain absolut accuracies of 8 – 20 m
and recover time to 50 ns with new low-cost
receivers in areas served by eLORAN.
The Differential eLORAN
Concept
Enhanced LORAN , or eLORAN, is an
International initiative underway to
upgrade the traditional LORAN – C
System for modern applications. The
infrastructure is being installed in the US,
and a variation of eLORAN is already
operational in northwest Europe.
A Combined GPS/eLORAN
Receiver and Antenna from
Reelektronika
SOLO
156
Navigation
Externally Navigation Add Systems
Distance Measuring Equipment (DME)
Aircraft DME Range
Determination System
Distance Measuring Equipment (DME)
Stations for Aircraft Navigation were
developed in the late 1950’s and are still in
world-wide use as primary Navigation Aid.
The DME Ground Station receive a signal
from the User ant transmits it back. The
User’s Receiving Equipment measures the
total round trip time for the
interrogation/replay sequence, which is
then halved and converted into a Slant
Range between the User’s Aircraft and the
DME Station
There are no plans to improve the DME Network, through it is forecast to remain in
service for many years. Over time the system will be relegated to a secondary role as a
backup to GNSS-based navigation,
SOLO
157
Navigation
Externally Navigation Add Systems
Angle (Bearing Determination)
Determining Bearing to a
VOR Station
VHF Omni Directional Radio-Range (VOR) System
The VHF Omni Directional Radio-Range (VOR) System is comp[rised of a serie of
Ground-Based Beacons operating in the VHF Band (108 to 118 MHz).
A VOR Station transmits a reference carrier
Frequency Modulated (FM) with:
30 Hz signal from the main antenna.
An Amplitude Modulated (AM) carrier
electrically swept around several smaller
Antennas surrounding the main
Antenna. This rotating pattern
creates a 30 Hz Doppler effect on
the Receiver. The Phase Difference
of the two 30 Hz signals gives the
User’s Azimuth with respect to the North
from the VOR Site. The Bearing measurement
accuracy of a VOR System is typically on the
order of 2 degrees, with a range that
extends from 25 to 130 miles.
SOLO
158
Navigation
Externally Navigation Add Systems
TACAN is the Military
Enhancement of
VOR/DME
VHF Omni Directional Radio-Range (VOR) System
TACAN (Tactical Air Navigation) is an enhanced VOR/DME System designed for
Military applications. The VOR component of TACAN, which operates in the UHF
spectrum, make use of two-frequency principle, enabling higher bearing accuracies.
The DME Component of TACAN operates with the
same specifications as civil DME.
The accuracy of the azimuth component is
about ±1 degree, while the accuracy of the DME
position is ± 0.1 nautical miles. For Military
usage a primary drawback is the lack of radio
silence caused by Aircraft DME Transmission.
SOLO
159
Navigation
Data Base Matching
SOLO
160
Navigation
Terrain Referenced Navigation (TRN)
SOLO
161
Navigation
Terrain Referenced Navigation (TRN)
SOLO
162
Navigation
Externally Navigation Add Systems
SOLO
163
Navigation
Navigation Multi-Sensor Integration
Navigation Data
164
SOLO
Technion
Israeli Institute of Technology
1964 – 1968 BSc EE
1968 – 1971 MSc EE
Israeli Air Force
1970 – 1974
RAFAEL
Israeli Armament Development Authority
1974 – 2013
Stanford University
1983 – 1986 PhD AA
SOLO
165
Navigation
World Geodetic System (WGS 84)
Geoid - Mean Sea Level of the Earth
Reference Ellipsoid – Approximation of Sea Level
Reference Earth Model
h - Vehicle Altitude (the distance from the
Vehicle to Ellipsoid along the Normal
to Ellipsoid
RN - the distance from the Ellipsoid Surface
along the Normal to Ellipsoid to
intersection to yz plane (see Figure)
N - Height of the Geoid above the Reference Ellipsoid
The Reference Ellipsoid was obtained by minimizing the integral of the square of
N over the Earth. Values of N over the Earth have been derived from extensive gravity
and satellite measurements. The latest result is the reference Earth Model known as the
World Geodetic System of 1984 (WGS 84).
SOLO
166
Navigation
World Geodetic System (WGS 84)
Reference Earth Model
Clairaut's theorem
Clairaut's theorem, published in 1743 by Alexis Claude Clairaut in
his Théorie de la figure de la terre, tirée des principes de
l'hydrostatique,[1]
synthesized physical and geodetic evidence that
the Earth is an oblate rotational ellipsoid. It is a general
mathematical law applying to spheroids of revolution. It was
initially used to relate the gravity at any point on the Earth's
surface to the position of that point, allowing the ellipticity of the
Earth to be calculated from measurements of gravity at different
latitudes.
Clairaut's formula for the acceleration due to gravity g on the surface of a spheroid
at latitude φ, was:
where G is the value of the acceleration of gravity at the equator, m the ratio of
the centrifugal force to gravity at the equator, and f the flattening of a meridian
section of the earth, defined as:
a
ba
f
−
=:
Alexis Claude Clairaut
)1713–1765(












−+= φ2
sin
2
5
1 fmGg
SOLO
167
Navigation
World Geodetic System (WGS 84)
Reference Earth Model
Carlo Somigliana
(1860 –1955)
The Theoretical Gravity on the surface of the Ellipsoid
is given by the Somigliana Formula (1929)
  
84
22
2
2222
22
sin1
sin1
sincos
sincos
WGS
e
pe
e
k
ba
ba
φ
φ
γ
φφ
φγφγ
γ
−
+
=
+
+
=
where
1: −=
e
p
a
b
k
γ
γ
2
22
:
a
ba
e
−
= - Ellipsoid Eccentricity
a - Ellipsoid Semi-major Axis = 6378137.0 m
b - Ellipsoid Semi-minor Axis = 6356752.314 m
γp – Gravity at the Poles = 983.21849378 cm/s2
γe – Gravity at the Equator = 978.03267714 cm/s2
– Geodetic Latitudeϕ
The Theory of the Equipotential Ellipsoid was first given by
P. Pizzetti (1894)
SOLO
168
Navigation
World Geodetic System (WGS 84)
Reference Earth Model
The coordinate origin of WGS 84 is meant to be located at the
Earth's center of mass; the error is believed to be less than 2 cm.
The WGS 84 meridian of zero longitude is the IERS Reference
Meridian. 5.31 arc seconds or 102.5 meters (336.3 ft) east of the
Greenwich meridian at the latitude of the Royal Observatory.
The WGS 84 datum surface is an oblate spheroid (ellipsoid) with major
(transverse) radius a = 6378137 m at the equator and flattening
f = 1/298.257223563.The polar semi-minor (conjugate) radius b then equals a
times (1−f), or b = 6356752.3142 m.
Presently WGS 84 uses the EGM96 (Earth Gravitational Model 1996) Geoid,
revised in 2004. This Geoid defines the nominal sea level surface by means of a
spherical harmonics series of degree 360 (which provides about 100 km
horizontal resolution).[7]
The deviations of the EGM96 Geoid from the WGS 84
Reference Ellipsoid range from about −105 m to about +85 m.[8]
EGM96 differs
from the original WGS 84 Geoid, referred to as EGM84.
SOLO
169
Navigation
The Reference Ellipsoid has the same mass,
the same center of mass and the same
angular velocity as the real Earth.
The Potential U0 on Ellipsoid Surface
equals to Potential W0 on the Geoid.
World Geodetic System (WGS 84)
Reference Earth Model
The Equi-potential Ellipsoid furnishes a
simple, consistent and uniform reference
system for Geodesy, Geophysics and
Satellite Navigation. The Normal Gravity
Field on the Earth Surface and in Space, is
defined in terms of closed formula as a
reference for Gravimetry and Satellite
Geodesy.
SOLO
170
Navigation
World Geodetic System (WGS 84)
Reference Earth Model
Geoid product, the 15-minute, worldwide Geoid Height for EGM96
The difference between the Geoid and the Reference Ellipsoid exhibit the
following statistics:
Mean = - 0.57 m, Standard Deviation = 30.56 m
Minimum = -106.99 m, Maximum = 85.39 m
SOLO
171
Navigation
World Geodetic System (WGS – 84)
Reference Earth Model
Parameters Notation Value
Ellipsoid Semi-major Axis a 6.378.137 m
Ellipsoid Flattening (Ellipticity) f 1/298.257223563
(0.00335281066474)
Second Degree Zonal Harmonic Coefficient of the Geopotential C2,0 -484.16685x10-6
Angular Velocity of the Earth Ω 7.292115x10-5
rad/s
The Earth’s Gravitational Constant (Mass of Earth includes
Atmosphere)
GM 3.986005x1014
m3
/s2
Mass of Earth (Includes Atmosphere) M 5.9733328x1024
kg
Theoretical (Normal) Gravity at the Equator (on the Ellipsoid) γe 9.7803267714 m/s2
Theoretical (Normal) Gravity at the Poles (on the Ellipsoid) γp 9.8321863685 m/s2
Mean Value of Theoretical (Normal) Gravity γ 9.7976446561 m/s2
Geodetic and Geophysical Parameters of the WGS-84 Ellipsoid
SOLO
172
Navigation
World Geodetic System (WGS 84)
Reference Earth Model
a
ba
f
−
=:f - Ellipsoid Flattening (Ellipticity)
a - Ellipsoid Semi-major Axis
b - Ellipsoid Semi-minor Axis
e - Ellipsoid Eccentricity 2
2
22
2
2: ff
a
ba
e −=
−
=
( ) 2
11 eafab −=−=
Reference Ellipsoid
SOLO
173
Navigation
Reference Ellipsoid
Ellipse Equation: 12
2
2
2
=+
b
y
a
x
Slope of the Normal to Ellipse:
2
2
tan
bx
ay
yd
xd
=−=φ
The Slope of the Geocentric Line to the same point
x
y
=λtan λλ sincos RyRx ==
Deviation Angle between Geographic and Geodetic
At Ellipsoid Surface
λφ tantan 2
2
b
a
=






= −
λφ tantan 2
2
1
b
a ( ) φφλ tan1tantan 2
2
2
e
a
b
−==
SOLO
174
Navigation
Reference Ellipsoid
Ellipse Equation:
λφδ −=
12
2
2
2
=+
b
y
a
x
Slope of the Normal to Ellipse:
2
2
tan
bx
ay
yd
xd
=−=φ
The Slope of the Geocentric Line to the same point
x
y
=λtan






−=






−+






−
=
+
−
=
+
−
= 1
11
1
1
tantan1
tantan
tan 2
2
2
2
2
2
2
2
2
22
22
2
2
b
a
a
yx
a
x
x
a
b
a
x
y
bx
ay
x
y
bx
ay
λφ
λφ
δ
λλ sincos RyRx ==
( )

( ) ( )λλλδ 2sin2sin
2
tan2sin
2
tan
1
2
11
12
22
22
1
f
ba
R
b
ba
a
ba
R
ba
ba
f
≈












+





 −
=










 −
=
≈≈<<
−−

Deviation Angle between Geographic and Geodetic
At Ellipsoid Surface
SOLO
175
Navigation
Reference Ellipsoid
For a point at a Height h near the Ellipsoid the
value of δ must be corrected:
u−= 1δδ
From the Law of Sine we have:
Deviation Angle between Geographic and Geodetic
At Altitude h from Ellipsoid Surface
( ) R
h
hR
huu
≈
+
≈=
− 11 sin
sin
sin
sin
δδπ
Since u and δ1 are small: 1δ
R
h
u ≈
The corrected value of δ is:
( )λδδδ 2sin11 11 f
R
h
R
h
u 





−=





−=−=
Therefore:
( )λλδλφ 2sin1 f
R
h






−+=+=
SOLO
176
Navigation
World Geodetic System (WGS 84)
where
λ – Longitude
e – Eccentricity = 0.08181919
Reference Earth Model
In Earth Center Earth Fixed Coordinate –ECEF-System (E)
the Vehicle Position is given by:
( )
( )
( )
( ) 









+
+
+
=










=
φ
φλ
φλ
sin
cossin
coscos
HR
HR
HR
z
y
x
P
M
N
N
E
E
E
E

( )
NhH
e
a
RN
+=
−
= 2/12
sin1 φ
Another variable, used frequently, is the radius of the
Ellipsoid referred as the Meridian Radius
( )
( ) 2/32
2
sin1
1
φe
ea
RM
−
−
=
SOLO
177
Navigation
Reference Ellipsoid
Let develop the RN and RM:
Deviation Angle between Geographic and Geodetic
At Altitude h from Ellipsoid Surface
Ellipse Equation: ( ) 222
2
2
2
2
11 aeb
b
y
a
x
−==+
From this Equation, at any point (x,y) on the Ellipse,
we have:
φtan
1
2
2
−=−=
ay
bx
xd
yd
32
4
32
2222
2
2
2
2
22
2
22
2
2
2
111
ya
b
ya
xbya
a
b
y
x
a
b
y
x
ya
b
xd
yd
y
x
ya
b
xd
yd
−=
+
−=





+−=





−−=
From the Ellipse Equation:
( ) φ
φ
φ 2
22
2
2
2
222
2
2
2
2
2
2
2
2
cos
sin1
1
1
tan1111
e
a
x
e
e
a
x
b
a
x
y
a
x −
=





−
−+=





+=
( )
( )
( ) 2/122
2
2
2
2/122
sin1
sin1
tan
sin1
cos
φ
φ
φ
φ
φ
e
ea
x
a
b
y
e
a
x
−
−
==→
−
=
From the Figure above: ( ) 2/122
sin1cos φφ e
ax
RN
−
==
SOLO
178
Navigation
Reference Ellipsoid
Let develop the RN and RM (continue):
Deviation Angle between Geographic and Geodetic
At Altitude h from Ellipsoid Surface
we have at any point (x,y) on the Ellipse:
φtan
1
2
2
−=−=
ay
bx
xd
yd ( )
3
22
32
4
2
2
11
y
ea
ya
b
xd
yd −
−=−=
The Radius of Curvature of the Ellipse at the point (x,y) is:
( )
( )
( )
( )
( ) 2/322
2
2/322
3323
22
2/3
2
2
2
2/32
sin1
1
sin1
sin1
1
tan
1
11
:
φφ
φφ
e
ea
e
ea
ea
xd
yd
xd
yd
RM
−
−
=
−
−
−






+
=














+
=
( )
( )
( ) 2/122
2
2
2
2/122
sin1
sin1
tan
sin1
cos
φ
φ
φ
φ
φ
e
ea
x
a
b
y
e
a
x
−
−
==→
−
=
( )
( ) 2/322
2
sin1
1
:
φe
ea
RM
−
−
=
SOLO
179
Navigation
Reference Ellipsoid
Deviation Angle between Geographic and Geodetic
At Altitude h from Ellipsoid Surface
( )
( ) 2/322
2
sin1
1
:
φe
ea
RM
−
−
=
( ) 2/122
sin1cos φφ e
ax
RN
−
==
a
ba
f
−
=: 2
2
22
2
2: ff
a
ba
e −=
−
=Using
( )
( )[ ]
( ) ( ) [ ] ++−≈





+−++−≈
−−
−
= φφ
φ
2222
2/322
2
sin321sin2
2
3
121
sin21
1
: ffaffffa
ff
fa
RM
( )[ ]
( ) [ ]φφ
φ
222
2/122
sin31sin2
2
3
1
sin21
faffa
ff
a
RN +≈



+−+≈
−−
= 
[ ]φ2
sin321 ffaRM +−≈
[ ]φ2
sin31 faRN +≈
We used and we neglect f2
terms
( )
( ) +
−
++=
− !2
1
1
1
1 nn
xn
x
n
SOLO
180
Navigation
World Geodetic System (WGS 84)
Reference Earth Model
The definition of geodetic latitude (φ) and
longitude (λ) on an ellipsoid. The normal
to the surface does not pass through the
centre
Reference Ellipsoid
Geodetic latitude: the angle between the
normal and the equatorial plane. The
standard notation in English publications is ϕ
Geocentric latitude: the equatorial plane and
the radius from the centre to a point on the
surface. The relation between the geocentric
latitude (ψ) and the geodetic latitude ( ) isϕ
derived in the above references as
The definition of geodetic (or
geographic) and geocentric latitudes
( ) ( )[ ]φφψ tan1tan 21
e−= −

More Related Content

PPTX
DepEd ETULAY Week Number 7 Presentation in Physical Science
PPTX
ANGULAR MOMENTUM _ SPP.pptx
PPTX
Work, energy and power ppt
PDF
Insights into Dark Matter
PDF
Problemas resueltos rozamiento
PPT
Mass vs. Weight & Inertia
PDF
engineering physics
PPTX
Assignment about electromagnetism.pptx..
DepEd ETULAY Week Number 7 Presentation in Physical Science
ANGULAR MOMENTUM _ SPP.pptx
Work, energy and power ppt
Insights into Dark Matter
Problemas resueltos rozamiento
Mass vs. Weight & Inertia
engineering physics
Assignment about electromagnetism.pptx..

What's hot (20)

PDF
Quantum computation: EPR Paradox and Bell's Inequality
PDF
document (1).pdf
PPTX
DAMPED FREE VIBRATION.pptx
PPT
Law of inertia
PPT
032616 week3 impulse_and_momentum
PPTX
Earthquakes and faults
PDF
Virtual work 0910
PPTX
Tracking the path of a tropical cyclone
PPT
Dark matter and dark energy (1)
PPTX
Physics conservation of momentum
PPT
Free Fall & Projectiles 4
PPT
2-vector operation and force analysis.ppt
PPTX
Mechanical energy for 9th grade physics, chapter 6
PPTX
Triangle law of vector addition
PPT
AP Physics - Chapter 6 Powerpoint
PPTX
Processes occur along Plate Boundaries.pptx
PDF
Group Theory
PPT
Physics - Chapter 6 - Momentum and Collisions
PPTX
Inertial frame of reference
PPT
Free body diagram
Quantum computation: EPR Paradox and Bell's Inequality
document (1).pdf
DAMPED FREE VIBRATION.pptx
Law of inertia
032616 week3 impulse_and_momentum
Earthquakes and faults
Virtual work 0910
Tracking the path of a tropical cyclone
Dark matter and dark energy (1)
Physics conservation of momentum
Free Fall & Projectiles 4
2-vector operation and force analysis.ppt
Mechanical energy for 9th grade physics, chapter 6
Triangle law of vector addition
AP Physics - Chapter 6 Powerpoint
Processes occur along Plate Boundaries.pptx
Group Theory
Physics - Chapter 6 - Momentum and Collisions
Inertial frame of reference
Free body diagram
Ad

Viewers also liked (20)

PPT
10 fighter aircraft avionics - part iii
PPT
8 fighter aircraft avionics-part i
PPT
9 fighter aircraft avionics-part ii
PPT
2 aircraft flight instruments
PPT
5 introduction to quantum mechanics
PPT
11 fighter aircraft avionics - part iv
PPT
3 modern aircraft cutaway
PPT
12 performance of an aircraft with parabolic polar
PPT
3 earth atmosphere
PPT
6 computing gunsight, hud and hms
PPTX
Aircraft navigation system
PPT
1 radar basic - part ii
PPT
Reduced order observers
PPT
Analytic dynamics
PPT
Keplerian trajectories
PPT
Sliding Mode Observers
PPT
14 fixed wing fighter aircraft- flight performance - ii
PPT
13 fixed wing fighter aircraft- flight performance - i
PPT
Stabilization of linear time invariant systems, Factorization Approach
PPTX
Aerodynamics part iii
10 fighter aircraft avionics - part iii
8 fighter aircraft avionics-part i
9 fighter aircraft avionics-part ii
2 aircraft flight instruments
5 introduction to quantum mechanics
11 fighter aircraft avionics - part iv
3 modern aircraft cutaway
12 performance of an aircraft with parabolic polar
3 earth atmosphere
6 computing gunsight, hud and hms
Aircraft navigation system
1 radar basic - part ii
Reduced order observers
Analytic dynamics
Keplerian trajectories
Sliding Mode Observers
14 fixed wing fighter aircraft- flight performance - ii
13 fixed wing fighter aircraft- flight performance - i
Stabilization of linear time invariant systems, Factorization Approach
Aerodynamics part iii
Ad

Similar to 4 navigation systems (20)

PPTX
Surveying geodesy ajith sir
DOCX
Web excerpts-md-navcrs-v5-aug14
PPT
Air navigation PILOTS
PPTX
Orbital parameters of asteroids using analytical propagation
PPT
Field.astronomy
PPT
orbital aspects of space communication in ece
PDF
SATELLITE_COMMUNICATION.pdf
PPTX
3.2.2.a_orbitmechmodeling.pptx
PPT
Field Astronomy
PPTX
Orbits and space flight, types of orbits
PPTX
Field Astronomy
PPTX
Coordinate system used in Satellite Navigation.pptx
PPT
GPS sattelite orbit
PPT
ASTRO3_1.PPT astro navigation ppt for study
ODT
PPTX
Chapter Two_Earth, moon and sky.pptx
PPT
Celestial coordinate systems
PDF
TheCelestialSphere how the stars are placed
PPT
ARO309 - Astronautics and Spacecraft Design
PPTX
Satellite Geodesy Lecture Notes MSU 2015.pptx
Surveying geodesy ajith sir
Web excerpts-md-navcrs-v5-aug14
Air navigation PILOTS
Orbital parameters of asteroids using analytical propagation
Field.astronomy
orbital aspects of space communication in ece
SATELLITE_COMMUNICATION.pdf
3.2.2.a_orbitmechmodeling.pptx
Field Astronomy
Orbits and space flight, types of orbits
Field Astronomy
Coordinate system used in Satellite Navigation.pptx
GPS sattelite orbit
ASTRO3_1.PPT astro navigation ppt for study
Chapter Two_Earth, moon and sky.pptx
Celestial coordinate systems
TheCelestialSphere how the stars are placed
ARO309 - Astronautics and Spacecraft Design
Satellite Geodesy Lecture Notes MSU 2015.pptx

More from Solo Hermelin (12)

PPT
Slide Mode Control (S.M.C.)
PPT
Inner outer and spectral factorizations
PPT
Anti ballistic missiles ii
PPT
Anti ballistic missiles i
PPT
2Anti-aircraft Warhead
PPT
1 susceptibility vulnerability
PPT
15 sky cars
PPT
Calculus of variation problems
PPT
Calculus of variations
PPT
7 air-to-air combat
PPT
Aerodynamics part ii
PPT
Aerodynamics part i
Slide Mode Control (S.M.C.)
Inner outer and spectral factorizations
Anti ballistic missiles ii
Anti ballistic missiles i
2Anti-aircraft Warhead
1 susceptibility vulnerability
15 sky cars
Calculus of variation problems
Calculus of variations
7 air-to-air combat
Aerodynamics part ii
Aerodynamics part i

Recently uploaded (20)

PPTX
famous lake in india and its disturibution and importance
PDF
ELS_Q1_Module-11_Formation-of-Rock-Layers_v2.pdf
PDF
Mastering Bioreactors and Media Sterilization: A Complete Guide to Sterile Fe...
PPTX
The KM-GBF monitoring framework – status & key messages.pptx
PPTX
cpcsea ppt.pptxssssssssssssssjjdjdndndddd
PPTX
TOTAL hIP ARTHROPLASTY Presentation.pptx
PDF
CAPERS-LRD-z9:AGas-enshroudedLittleRedDotHostingaBroad-lineActive GalacticNuc...
PPTX
Taita Taveta Laboratory Technician Workshop Presentation.pptx
PPTX
microscope-Lecturecjchchchchcuvuvhc.pptx
PDF
bbec55_b34400a7914c42429908233dbd381773.pdf
PPTX
EPIDURAL ANESTHESIA ANATOMY AND PHYSIOLOGY.pptx
PPTX
ECG_Course_Presentation د.محمد صقران ppt
PPTX
Introduction to Cardiovascular system_structure and functions-1
PPTX
2. Earth - The Living Planet earth and life
PPTX
2Systematics of Living Organisms t-.pptx
PDF
Biophysics 2.pdffffffffffffffffffffffffff
PPTX
G5Q1W8 PPT SCIENCE.pptx 2025-2026 GRADE 5
PDF
Placing the Near-Earth Object Impact Probability in Context
PPTX
DRUG THERAPY FOR SHOCK gjjjgfhhhhh.pptx.
PPTX
GEN. BIO 1 - CELL TYPES & CELL MODIFICATIONS
famous lake in india and its disturibution and importance
ELS_Q1_Module-11_Formation-of-Rock-Layers_v2.pdf
Mastering Bioreactors and Media Sterilization: A Complete Guide to Sterile Fe...
The KM-GBF monitoring framework – status & key messages.pptx
cpcsea ppt.pptxssssssssssssssjjdjdndndddd
TOTAL hIP ARTHROPLASTY Presentation.pptx
CAPERS-LRD-z9:AGas-enshroudedLittleRedDotHostingaBroad-lineActive GalacticNuc...
Taita Taveta Laboratory Technician Workshop Presentation.pptx
microscope-Lecturecjchchchchcuvuvhc.pptx
bbec55_b34400a7914c42429908233dbd381773.pdf
EPIDURAL ANESTHESIA ANATOMY AND PHYSIOLOGY.pptx
ECG_Course_Presentation د.محمد صقران ppt
Introduction to Cardiovascular system_structure and functions-1
2. Earth - The Living Planet earth and life
2Systematics of Living Organisms t-.pptx
Biophysics 2.pdffffffffffffffffffffffffff
G5Q1W8 PPT SCIENCE.pptx 2025-2026 GRADE 5
Placing the Near-Earth Object Impact Probability in Context
DRUG THERAPY FOR SHOCK gjjjgfhhhhh.pptx.
GEN. BIO 1 - CELL TYPES & CELL MODIFICATIONS

4 navigation systems

  • 3. NavigationSOLO Aircraft Steering to Waypoints 1. T-HDG – True Heading 2. M-HDG – Magnetic Heading 3. T-TK - True Track 4. M-TK - Magnetic Track Angle 5. TKE – Track Angle Error 6. T-DTK – True Desired Track 7. XTK – Cross-Track Distance 8. DIS – Distance to Destination 9. GS - Ground Speed 10. WS – Wind Speed 11. WD – Wind Direction 12. TAS – True Airspeed 13. DA – Drift Angle In order to minimize Fuel, Time and Distances the Aircraft will tend to fly between Waypoints, on the Earth Surface, on the Great Circle connecting the Initial and Final Waypoints, since is the Shortest Distance between two points on a Sphere. During Flight the Aircraft will deviate from the desired flight path (see Figure). Those deviation must be measured and corrected by Steering the Aircraft. The Task of Steering the Aircraft can be performed Manually by the Pilot or by an Automatic Flight-Control System (AFCS).
  • 5. 5 Spherical TrigonometrySOLO Assume three points on a unit radius sphere, defined by the vectors →→→ CBA 1,1,1 Laws of Cosines for Spherical Triangle Sides ab abc ca cab bc bca ˆsinˆsin ˆcosˆcosˆcos ˆcos ˆsinˆsin ˆcosˆcosˆcosˆcos ˆsinˆsin ˆcosˆcosˆcos ˆcos − = − = − = γ β α Law of Sines for Spherical Triangle Sides. cba abccba cba ˆsinˆsinˆsin ˆcosˆcosˆcos2ˆcosˆcosˆcos1 ˆsin ˆsin ˆsin ˆsin ˆsin ˆsin 222 +−−− === γβα The three great circles passing trough those three points define a spherical triangle with CBA ,, - three spherical triangle vertices cba ˆ,ˆˆ -three spherical triangle side angles γβα ˆ,ˆˆ - three spherical triangle angles defined by the angles between the tangents to the great circles at the vertices.
  • 6. 6 SOLO Assume three points on a unit radius sphere, defined by the vectors →→→ CBA 1,1,1 Laws of Cosines for Spherical Triangle Sides The three great circles passing trough those three points define a spherical triangle with CBA ,, - three spherical triangle vertices cba ˆ,ˆˆ -three spherical triangle side angles γβα ˆ,ˆˆ - three spherical triangle angles defined by the angles between the tangents to the great circles at the vertices. βα βαγ αγ αγβ γβ γβα ˆsinˆsin ˆcosˆcosˆcos ˆcos ˆsinˆsin ˆcosˆcosˆcosˆcos ˆsinˆsin ˆcosˆcosˆcos ˆcos + = + = + = c b a Spherical Trigonometry
  • 7. 7 NavigationSOLO Flight on Earth Great Circles The Shortest Flight Path between two points 1 and 2 on the Earth is on the Great Circles (centered at Earth Center) passing through those points. 1 2 111 ,, λφR 222 ,, λφR The Great Circle Distance between two points 1 and 2 is ρ. The average Radius on the Great Circle is a = (R1+R2)/2 θρ ⋅= a R – radius - Latitudeϕ λ - Longitude kmNmNma 852.11deg/76.60/ =≈ρ
  • 8. 8 NavigationSOLO Flight on Earth Great Circles 1 2 111 ,, λφR 222 ,, λφR The Great Circle Distance between two points 1 and 2 is ρ. θρ ⋅= a R – radius - Latitudeϕ λ - Longitude ( ) ( ) ( ) ( ) ( ) ( )212121 cos90sin90sin90cos90cos /coscos λλφφφφ ρθ −⋅−⋅−+−⋅−= =  a From the Law of Cosines for Spherical Triangles or ( ) ( )212121 coscoscossinsin/cos λλφφφφρ −⋅⋅+⋅=a ( ){ }212121 1 coscoscossinsincos λλφφφφρ −⋅⋅+⋅⋅= − a The Initial Heading Angle ψ0 can be obtained using the Law of Cosines for Spherical Triangles as follows ( ) ( )a a /sincos /cossinsin cos 1 12 0 ρφ ρφφ ψ ⋅ ⋅− = ( )[ ] ( )[ ]2 222 22221 coscoscossinsin1cos coscoscossinsinsinsin cos λλφφφφφ λλφφφφφφ ψ −⋅⋅+⋅−⋅ −⋅⋅+⋅⋅− = − The Heading Angle ψ from the Present Position (R, ,λ) to Destination Point (Rϕ 2,ϕ2,λ2)
  • 9. 9 NavigationSOLO Flight on Earth Great Circles The Distance on the Great Circle between two points 1 and 2 is ρ. 1 2 111 ,, λφR 222 ,, λφR R – radius - Latitudeϕ λ - Longitude The Time required to travel along the Great Circle between points 1 and 2 is given by ( ){ } 22 212121 1 coscoscossinsincos yxHoriz HorizHoriz VVV V a V t += −⋅⋅+⋅⋅==∆ − λλφφφφ ρ ( ){ }212121 1 coscoscossinsincos λλφφφφρ −⋅⋅+⋅⋅= − a
  • 10. 10 NavigationSOLO Flight on Earth Great Circles 1 2 111 ,, λφR 222 ,, λφR If the Aircraft flies with an Heading Error Δψ we want to calculate the Down Range Error Xd and Cross Range Error Yd, in the Spherical Triangle APB. R – radius - Latitudeϕ λ - Longitude Using the Law of Cosines for Spherical Triangle APB we have ( ) ( )aaYd /sin 90sin /sin sin ρ ψ  = ∆ ( ) ( ) ( ) ( ) ( ) 2/sin/sin /cos/cos/cos 0ˆcos 21 90ˆ RR a aYaX aYaXa P dd dd P + = ⋅ ⋅− == = ρ  Using the Law of Sines for Spherical Triangle APB we have ( ) ( )      ⋅= − aY a aX d d /cos /cos cos 1 ρ ( )[ ]ψρ ∆⋅⋅= − sin/sinsin 1 aaYd
  • 11. 11 SOLO Coordinate Systems 1. Heliocentric (Heliocentric) Coordinate System COORDINATES IN THE SOLAR SYSTEM Sun at the center of coordinate system (Heliocentric) Earth plan orbit (Ecliptic) on which Xε and Yε are defined as: • Xε the direction between the Sun to Earth on the First Day of Autumn. This is called Vernal Equinox Direction and points in the direction of constellation Aries (the Ram) • Zε normal to the Ecliptic in the North hemisphere direction. • Yε on the Ecliptic and completing the right hand coordinate system.
  • 12. 12 SOLO 1.Heliocentric (Heliocentric) Coordinate System (Continue) COORDINATES IN THE SOLAR SYSTEM The Earth axis of rotation is tilted relative to Ecliptic and vobbles slightly, in a clockwise direction opposite to that of the Earth spin, from 22.1° to 24.5° , with a cycle of approximately 41,000 years. G Gz Ω Gx Gy Ecliptic plane normal (Ecliptic Pole) Locus of Lunar plane normal (Lunar Pole) Lunar Orbital Plane Earth Orbital Plane (Ecliptic) Equatorial Plane Ascending Node  5.23 15.5 Vernal Equinox Direction The Moon’s gravity tends to tilt the Earth’s axis so that it becomes perpendicular to Moon’s Orbit, and to a lesser extent the same is true for the Sun. This effect is called precession and is produced by the interaction between Earth and Moon.
  • 13. 13 SOLO 2. Geocentric-Equatorial Coordinate System COORDINATES IN THE SOLAR SYSTEM The origin at the center of the Earth . G Gz Ω Gx Gy Ecliptic plane normal (Ecliptic Pole) Locus of Lunar plane normal (Lunar Pole) Lunar Orbital Plane Earth Orbital Plane (Ecliptic) Equatorial Plane Ascending Node  5.23 15.5 Vernal Equinox Direction • XG axis on the Equatorial Plane in the vernal equinox direction. • ZG axis in the direction of North pole. • YG axis completes the right hand coordinate system. XG, YG, ZG system is not fixed to the Earth; rather, the geocentric-equatorial frame is non-rotating to the stars (except to the precession of equinoxes) and the Earth turns relative to it.
  • 14. 14 SOLO 3. The Right Ascension-Declination System COORDINATES IN THE SOLAR SYSTEM The Right Ascension-Declination System defines the position of objects in space. • Celestial Equator that contains the Earth Equatorial Plane. • The XG, YG, ZG axes are parallel to the Geocentric-Equatorial Plane. • The origin of the system can be at the Earth origin (geocentric) or at the surface of the Earth (topocentric). Because of he enormous distance of the star the location of the origin doesn’t effect their angular position. GZ Ω GX GY Equatorial Planeα δ Vernal Equinox Direction The fundamental plane is: The position of a star is defined by two parameters: • right ascension, α, is measured eastward in the plane of the celestial equator from the vernal equinox direction. • declination,δ, is measured northward from the celestial equator to the line of sight of the object.
  • 15. 15 SOLO Coordinate Systems 4. The Perifocal Coordinate System COORDINATES IN THE SOLAR SYSTEM The Perifocal Coordinate System is related to a satellite’s orbit. • Xω axis in the direction of the orbit Periapsis (direction from the focal point to the point of minimum range of the orbit). Plane of the Satellite’s Orbit is the fundamental plane with: • Zω axis in the direction of (perpendicular to the Satellite’s Orbit and showing the satellite’s movement direction). vrh  ×= • Yω axis completes the right hand coordinate system.
  • 16. 16 SOLO 4. The Perifocal Coordinate System (Continue) COORDINATES IN THE SOLAR SYSTEM Five independent quantities, called orbital elements, describe size, shape and orientation of an orbit. A sixth element is required to determine the position of the satellite along the orbit at a given time. 1. a – semi-major axis – a constant defining the size of the coning orbit. 2. e – eccentricity – a constant defining the shape of the coning orbit. 3. i – inclination – the angle between ZG and the specific angular momentum of the coning orbit . vrh  ×= 4. Ω – longitude of the ascending node – the angle, in the Equatorial Plane, between the unit vector and the point where the satellite crosses through the Equatorial Plane in a northerly direction (ascending node) measured counterclockwise where viewed from the northern emisphere. 5. ω – argument of the periapsis – the angle, in the plane of the satellite’s orbit, between ascending node and the periapsis point, measured in the direction of satellite’s motion. 6. T – time of periapsis passage – the time when the satellite was at the periapsis. Classical Orbital Parameters
  • 17. 17 SOLO 4. The Perifocal Coordinate System (Continue) COORDINATES IN THE SOLAR SYSTEM Let find a, e, ω, i, Ω from the initial position and velocity vectors .00 ,vr  1. From the specific angular momentum of the orbit we can findvrh  ×= 00 vrh  ×= 01 00 ≠ × = → h h vr Z  ε 2. From the specific mechanical energy of an elliptic orbit equation ar vv E 22 0 00 µµ −=− ⋅ =  we obtain 00 0 2 vv r a  ⋅− = µ µ 3. i inclination is computed using →→ ⋅= GZZi 11cos ε 22 11cos 1 ππ ε ≤≤−      ⋅= →→ − iZZi G 4. The eccentricity vector of a Keplerian trajectory is defined as ( ) → =      ⋅−      −⋅= ε µ µ Xevvrr r vve 1 1 0000 0 00  from which ee  = 01 ≠= → e e e X  ε →→→ ×= εεη XZY 111
  • 18. 18 SOLO 4. The Perifocal Coordinate System (Continue) COORDINATES IN THE SOLAR SYSTEM Let find a, e, ω, i, Ω from the initial position and velocity vectors (continue).00 ,vr  5. The ascending node (intersection of the equatorial and orbit planes) is given by 011 11 11 1 ≠×← × × = →→ →→ →→ → ε ε ε ZZ ZZ ZZ N G G G Ω – longitude of the ascending node – is computed using →→ ⋅=Ω NXG 11cos →→→ ⋅      ×=Ω GG ZNX 111sin       Ω Ω =Ω − cos sin tan 1 6. ω – argument of the periapsis – is computed using →→ ⋅= εω XN 11cos →→→ ⋅      ×= εεω ZXN 111sin       = − ω ω ω cos sin tan 1 7. Ө – satellite position from the periapsis – is computed using →→ ⋅=Θ rX 11cos ε →→→ ⋅      ×=Θ εε ZrX 111sin       Θ Θ =Θ − cos sin tan 1
  • 19. 19 SOLO 4. The Perifocal Coordinate System (Continue) COORDINATES IN THE SOLAR SYSTEM Let find a, e, ω, i, Ω from the initial position and velocity vectors (continue).00 ,vr  The rotation matrix from the Perifocal Coordinate System Xε , Yε, Zε to the Geocentric-Equatorial Coordinate System XG, YG, ZG is given by: [ ] [ ] [ ]           ΩΩ− ΩΩ           −          −=Ω= 100 0cossin 0sincos cossin0 sincos0 001 100 0cossin 0sincos 313 ii iiiCG ωω ωω ωε           Ω−Ω Ω+Ω−Ω−Ω− Ω+ΩΩ−Ω = iii iii iii cossincossinsin sincoscoscoscossinsinsincoscoscossin sinsincoscossinsincossincossincoscos ωωωωω ωωωωω
  • 20. 20 SOLO AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE 1. Inertial System Frame 2. Earth-Center Fixed Coordinate System (E) 3. Earth Fixed Coordinate System (E0) 4. Local-Level-Local-North (L) for a Spherical Earth Model 5. Body Coordinates (B) 6. Wind Coordinates (W) 7. Forces Acting on the Vehicle 8. Simulation 8.1 Summary of the Equation of Motion of a Variable Mass System 8.2 Missile Kinematics Model 1 (Spherical Earth) 8.3 Missile Kinematics Model 2 (Spherical Earth)
  • 21. 21 Given an Air Vehicle, we define: 1. Inertial System Frame III zyx ,, 3. Body Coordinates (B) , with the origin at the center of mass.BBB zyx ,, 2. Local-Level-Local-North (L) for a Spherical Earth Model LLL zyx ,, 4. Wind Coordinates (W) , with the origin at the center of mass.WWW zyx ,, AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERESOLO Coordinate Systems Table of Content
  • 22. 22 SOLO Coordinate Systems 1.Inertial System (I( R  - vehicle position vector I td Rd V   = - vehicle velocity vector, relative to inertia II td Rd td Vd a 2 2   == - vehicle acceleration vector, relative to inertia AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE Table of Content
  • 23. 23 SOLO Coordinate Systems (continue – 2) 2. Earth Center Earth Fixed Coordinate –ECEF-System (E( xE, yE in the equatorial plan with xE pointed to the intersection between the equator to zero longitude meridian. The Earth rotates relative to Inertial system I, with the angular velocity sec/10.292116557.7 5 rad− =Ω EIIE zz  11 Ω=Ω=Ω=←ω ( )           Ω =← 0 0 EC IEω  Rotation Matrix from I to E [ ] ( ) ( ) ( ) ( )           ΩΩ− ΩΩ =Ω= 100 0cossin 0sincos 3 tt tt tCE I AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE
  • 24. 24 SOLO Coordinate Systems (continue – 3) 2. Earth Center Earth Fixed Coordinate System (E( (continue – 1( Vehicle Position ( ) ( ) ( ) ( )ETE I EI E I RCRCR  == Vehicle Velocity Vehicle Acceleration RVR td Rd td Rd V EIE EI    ×Ω+=×+== ←ω - vehicle velocity relative to Inertia R td Rd td Rd V IE LE E    ×+== ←ω: - vehicle velocity relative to Earth ( ) ( ) II E I E I R td d td Vd RV td d td Vd a      ×Ω+=×Ω+== ( ) ( )RV td Vd R td Rd R td d V td Vd EIEEU U E EE EIU U E IU              ×Ω×Ω+×             Ω+++=×Ω×Ω+×Ω+× Ω +×+= ← Ω ←←← ω ωωω 0 ( ) ( ) ( )RV td Vd RV td Vd a E E E EEU U E      ×Ω×Ω+×Ω+=×Ω×Ω+×Ω++= ← 22ω or where U is any coordinate system. In our case U = E. AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE Table of Content
  • 25. 25 SOLO Coordinate Systems (continue – 4) 3.Earth Fixed Coordinate System (E0( The origin of the system is fixed on the earth at some given point on the Earth surface (topocentric) of Longitude Long0 and latitude Lat0. xE0 is pointed to the geodesic North, yE0 is pointed to the East parallel to Earth surface, zE0 is pointed down. [ ] [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) =           −           −− − =−−= 100 0cossin 0sincos sin0cos 010 cos0sin 2/ 00 00 00 00 3020 0 LongLong LongLong LatLat LatLat LongLatCE E π ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )          −−− − −− = 00000 00 00000 sinsincoscoscos 0cossin cossinsincossin LatLongLatLongLat LongLong LatLongLatLongLat The Angular Velocity of E relative to I is: EIIEIE zz  110 Ω=Ω== ←← ωω or ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )          Ω− Ω =           Ω          −−− − −− =           Ω =← 0 0 00000 00 00000 00 0 sin 0 cos 0 0 sinsincoscoscos 0cossin cossinsincossin 0 0 Lat Lat LatLongLatLongLat LongLong LatLongLatLongLat CE E E IEω  AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE Table of Content
  • 26. 26 SOLO Coordinate Systems (continue – 5) 4. Local-Level-Local-North (L) or Navigation Frame The origin of the LLLN coordinate system is located at the projection of the center of gravity CG of the vehicle on the Earth surface, with zDown axis pointed down, xNorth, yEast plan parallel to the local level, with xNorth pointed to the local North and yEast pointed to the local East. The vehicle is located at:. Latitude = Lat, Longitude = Long, Height = H Rotation Matrix from E to L [ ] [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) =           −           −− − =−−= 100 0cossin 0sincos sin0cos 010 cos0sin 2/ 32 LongLong LongLong LatLat LatLat LongLatCL E π ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )          −−− − −− = LatLongLatLongLat LongLong LatLongLatLongLat sinsincoscoscos 0cossin cossinsincossin AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE
  • 27. 27 SOLO Coordinate Systems (continue – 6) 4. Local-Level-Local-North (L( (continue – 1) Angular Velocity IEELIL ←←← += ωωω  Angular Velocity of L relative to I ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )          Ω− Ω =           Ω          − − −− =           Ω =           Ω Ω Ω =← Lat Lat LatLongLatLongLat LongLong LatLongLatLongLat CL E Down East North L IE sin 0 cos 0 0 sinsincoscoscos 0cossin cossinsincossin 0 0 ω  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )               − −=             −+                       −−− − −− =             −+             =           = • • • • • • • ← LatLong Lat LatLong Lat Long LatLongLatLongLat LongLong LatLongLatLongLat Lat Long CL E Down East North L EL sin cos 0 0 0 0 sinsincoscoscos 0cossin cossinsincossin 0 0 0 0 ρ ρ ρ ω  ( ) ( ) ( ) ( ) ( )                         +Ω− −       +Ω =           Ω+ Ω+ Ω+ =+= • • • ←←← LatLong Lat LatLong DownDown EastEast NorthNorth L IEC L ECL L IL sin cos ρ ρ ρ ωωω  Therefore AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE
  • 28. 28 SOLO Coordinate Systems (continue – 7) 4. Local-Level-Local-North (L( (continue – 2) Vehicle Velocity Vehicle Velocity relative to I RVR td Rd td Rd V EIE EI    ×Ω+=×+== ←ω ( ) ( ) ( ) ( ) ( ) ( ) ( )          +−               −− − +           +− =×+= •• •• •• ← HR LatLongLat LatLongLatLong LatLatLong HR R td Rd V EL L L E 00 0 0 0cos cos0sin sin0 0 0     ω where is the vehicle velocity relative to Earth.EV  ( ) ( ) ( )           =               − + + = • • DownE EastE NorthE V V V H HRLatLong HRLat _ _ _ 0 0 cos  from which ( ) ( ) ( ) DownE EastE NorthE V td Hd LatHR V td Longd HR V td Latd _ 0 _ 0 _ cos −= + = + = AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE HeightVehicleHRadiusEarthmRHRR =⋅=+= 6 00 10378135.6
  • 29. 29 SOLO Coordinate Systems (continue – 8) 4. Local-Level-Local-North (L( (continue – 3) Vehicle Velocity (continue – 1) We assume that the atmosphere movement (velocity and acceleration) relative to Earth At the vehicle position (Lat, Long, H) is known. Since the aerodynamic forces on the vehicle are due to vehicle movement relative to atmosphere, let divide the vehicle velocity in two parts: WAE VVV  += ( )           = Down East North L A V V V V  - Vehicle Velocity relative to atmosphere ( ) ( )           = DownW EastW NorthW L W V V V HLongLatV _ _ _ ,,  - Wind Velocity at vehicle position (known function of time) AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE
  • 30. 30 SOLO Coordinate Systems (continue – 9) 4. Local-Level-Local-North (L( (continue – 4) Vehicle Acceleration Since: ( ) ( ) ( ) ( )RV td Vd R td d td Vd RV td d td Vd a EEL L E II E I E I        ×Ω×Ω+×Ω++=×Ω+=×Ω+== ← 2ω WAE VVV  += ( ) WWIL L W AAIL L A VV td Vd RVV td Vd a      ×Ω+×++×Ω×Ω+×Ω+×+= ←← ωω ( )         Wa WWEL L W AAEL L A VV td Vd RVV td Vd ×Ω+×++×Ω×Ω+×Ω+×+= ←← 22 ωω ( ) ( ) ( ) ( )HLongLatVHLongLat td Vd HLongLata WEL L W W ,,2,,:,,    ×Ω++= ←ω ( ) WAAEL L A aRVV td Vd   +×Ω×Ω+×Ω+×+= ← 2ω where: is the wind acceleration at vehicle position. AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE Table of Content
  • 31. 31 SOLO Coordinate Systems (continue – 10) 5.Body Coordinates (B( The origin of the Body coordinate system is located at the instantaneous center of gravity CG of the vehicle, with xB pointed to the front of the Air Vehicle, yB pointed toward the right wing and zB completing the right-handed Cartesian reference frame. Rotation Matrix from LLLN to B (Euler Angles(: [ ] [ ] [ ]           −+ +− − == θφψφψθφψφψθφ θφψφψθφψφψθφ θψθψθ ψθφ cccssscsscsc csccssssccss ssccc CB L 321 ψ - azimuth angle θ - pitch angle φ - roll angle AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE
  • 32. 32 SOLO Coordinate Systems (continue – 11) 5.Body Coordinates (B( (continue – 1( ψ θ φ Bx Lx Bz Ly Lz By Angular Velocity from L to B (Euler Angles(: ( ) [ ] [ ] [ ]           +           +           =           =← ψ θφθφ φ ω    0 0 0 0 0 0 211 R Q P B LB                     −           − +                     − +           = ψθθ θθ φφ φφθ φφ φφ φ    0 0 cos0sin 010 sin0cos cossin0 sincos0 001 0 0 cossin0 sincos0 001 0 0 [ ]           =                     − − = ψ θ φ ψ θ φ θφφ θφφ θ       G coscossin0 cossincos0 sin01 AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE
  • 33. 33 SOLO Coordinate Systems (continue – 12) 5.Body Coordinates (B( (continue – 2( ψ θ φ Bx Lx Bz Ly Lz By Rotation Matrix from LLLN to B (Quaternions(: ( ) [ ][ ] ( ) [ ][ ] { } { } ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )            −−− − − −           −− −− −− = +×−×−= 321 412 143 234 3412 2143 1234 44 3333 BIBLBL BLBLBL BLBLBL BLBLBL BLBLBLBL BLBLBIBL BLBLBLBL T BLBLBLXBLBLXBL B L qqq qqq qqq qqq qqqq qqqq qqqq qqqIqqIqC  where: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) { } ( ) { } ( ) ( ) ( )          =      =                         =             = 3 2 1 :& 4 4 3 2 1 4 3 2 1 BL BL BL BL BL BL BL BL BL BL BL BL BL BL BL BL q q q q q q qor q q q q q q q q q   ( )                         −                  = 2 sin 2 sin 2 sin 2 cos 2 cos 2 cos4 ϕθψϕθψ BLq ( )                         +                  = 2 cos 2 sin 2 sin 2 sin 2 cos 2 cos1 ϕθψϕθψ BLq ( )                         −                  = 2 sin 2 cos 2 sin 2 cos 2 sin 2 cos2 ϕθψϕθψ BLq ( )                         +                  = 2 sin 2 sin 2 cos 2 cos 2 cos 2 sin3 ϕθψϕθψ BLq AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE
  • 34. 34 SOLO Coordinate Systems (continue – 13) 5.Body Coordinates (B( (continue – 3( ψ θ φ Bx Lx Bz Ly Lz By Rotation Matrix from LLLN to B (Quaternions( (continue – 1( The quaternions are given by the following differential equations: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) BL L IL B IBBLBLBL B ILBL B IBBL B IL B IBBL B LBBLBL qqqqqqqqq ⋅−⋅=⋅⋅⋅−⋅=−⋅=⋅= ←←←←←←← ωωωωωωω 2 1 2 1 * 2 1 2 1 2 1 2 1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )                         −−− − − − =             04321 3412 2143 1234 2 1 4 3 2 1 B B B BLBLBLBL BLBLBLBL BLBLBLBL BLBLBLBL BL BL BL BL r q p qqqq qqqq qqqq qqqq q q q q     ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )                          +Ω−+Ω−+Ω− +Ω+Ω+Ω− +Ω+Ω−+Ω +Ω+Ω+Ω− − 4 3 2 1 0 0 0 0 2 1 BL BL BL BL zLzLyLyLxLxL zLzLxLxLyLyL yLyLxLxLzLzL xLxLyLyLzLzL q q q q ρρρ ρρρ ρρρ ρρρ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )                          +Ω+−+Ω+−+Ω+− +Ω−+Ω−−+Ω+ +Ω−+Ω++Ω−− +Ω−+Ω−−+Ω+ = 4 3 2 1 0 0 0 0 2 1 BL BL BL BL zLzLByLyLBxLxLB zLzLBxLxLByLyLB yLyLBxLxLBzLzLB xLxLByLyLBzLzLB q q q q rqp rpq qpr pqr ρρρ ρρρ ρρρ ρρρ or: AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE
  • 35. 35 SOLO Coordinate Systems (continue – 14) 5.Body Coordinates (B( (continue – 4( ψ θ φ Bx Lx Bz Ly Lz By Vehicle Velocity Vehicle Velocity relative to Earth is divided in: WAE VVV  += ( )           = w v u V B A  ( ) ( )           =           = DownW EastW NorthW B L zW yW xW B W V V V C V V V HLongLatV B B B _ _ _ ,,  Vehicle Acceleration ( ) WWIB B W AAIB B A I VV td Vd RVV td Vd td Vd a      ×Ω+×++×Ω×Ω+×Ω+×+== ←← ωω ( ) ( ) W AELALB B A a RVV td Vd    + ×Ω×Ω+×Ω++×+= ←← 2ωω AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE Table of Content
  • 36. 36 SOLO Coordinate Systems (continue – 15) 6.Wind Coordinates (W( The origin of the Wind coordinate system is located at the instantaneous center of gravity CG of the vehicle, with xW pointed in the direction of the vehicle velocity vector relative to air .AV  [ ] [ ]           − −−=           −          −=−= αα βαββα βαββα αα αα ββ ββ αβ cos0sin sinsincossincos cossinsincoscos cos0sin 010 sin0cos 100 0cossin 0sincos 23 W BC The Wind coordinate frame is defined by the following two angles: α - angle of attack β - sideslip angle AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE
  • 37. 37 SOLO Coordinate Systems (continue – 16) 6.Wind Coordinates (W( (continue -1( Rotation Matrix from L (LLLN) to W is: χ - azimuth angle of the trajectory γ - pitch angle of the trajectory Rotation Matrix [ ] [ ] [ ] [ ] [ ] 32123 ψθφαβ −== B L W B W L CCC The Rotation Matrix from L (LLLN) to W can also be defined by the following Consecutive rotations: σ - bank angle of the trajectory [ ] [ ] [ ] [ ]           −+ +− − === γσχσχγσχσχγσ γσχσχγσχσχγσ γχγχγ χγσσ cccssscsscsc csccssssccss ssccc CC W L W L 321 * 1 We defined also the intermediate wind frame W* by: [ ] [ ]           − − == γχγχγ χχ γχγχγ χγ csscs cs ssccc CW L 032 * AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE
  • 38. 38 SOLO Coordinate Systems (continue – 17) 6.Wind Coordinates (W( (continue -2( Angular Velocity of W* relative to LLLN is: Angular Velocities ( ) [ ]          − =                     − +           =           +           =           =← γχ γ γχ χγγ γγ γ χ γγω cos sin 0 0 cos0sin 010 sin0cos 0 0 0 0 0 0 2 * * * * *         W W W W LW R Q P Angular Velocity of W relative to LLLN is: ( ) [ ] [ ]                     − − =          −           − +           =                     +           +           =           =← χ γ σ γσσ γσσ γ γχ γ γχ σσ σσ σ χ γγσ σ ω           coscossin0 cossincos0 sin01 cos sin cossin0 sincos0 001 0 00 0 0 0 0 0 21 W W W W LW R Q P AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE
  • 39. 39 SOLO Coordinate Systems (continue – 18) 6.Wind Coordinates (W( (continue -3( We have also: Angular Velocities (continue – 1( ( ) ( ) ( ) ( )           Ω Ω Ω =           Ω− Ω ==           Ω Ω Ω = ←← Down East North W L W L L IE W L zW yW xW W IE C Lat Lat CC *** * * * * sin 0 cos ωω  ( ) ( ) ( ) ( )           =               − −==           = • • • ←← Down East North W L W L L EL W L zW yW xW W EL C LatLong Lat LatLong CC ρ ρ ρ ω ρ ρ ρ ω *** * * * * sin cos  ( ) ( ) ( ) ( ) [ ] ( )* 1 sin 0 cos W IE W L L IE W L zW yW xW W IE Lat Lat CC ←←← =           Ω− Ω ==           Ω Ω Ω = ωσωω  ( ) ( ) ( ) ( ) [ ] ( )* 1 sin cos W IL W L L IL W L W IL LatLong Lat LatLong CC ← • • • ←← =                         +Ω− −       +Ω == ωσωω  AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE
  • 40. 40 SOLO Coordinate Systems (continue – 19) 6.Wind Coordinates (W( (continue -4( The Angular Velocity from I to W is: Angular Velocities (continue – 2( ( ) ( ) ( ) ( )           Ω+ Ω+ Ω+ +           =+           =+=           = ←←←← DownDown EastEast NorthNorth W L W W W L IL W L W W W W IL W LW W W W W IW C R Q P C R Q P r q p ρ ρ ρ ωωωω  Using the angle of attack α and the sideslip angle β , we can write: BWBW yz    11 αβω −=← or: ( ) ( ) ( ) [ ]           −           =           −           =−= ←←← 0 0 0 0 3 αβ β ωωω    r q p C r q p W B W W W W IB W IW W BW but also: ( ) ( ) ( ) [ ]           −           =           −           =−= ←←← 0 0 0 0 3 αβ β ωωω    R Q P C R Q P W B W W W W LB W LW W BW AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE
  • 41. 41 SOLO Coordinate Systems (continue – 20) 6.Wind Coordinates (W( (continue -5( We can write: Angular Velocities (continue – 3(           −           +                     − −−=           0 cos sin 0 0 cos0sin sinsincossincos cossinsincoscos βα βα βαα βαββα βαββα   r q p r q p W W W or: ( ) ( ) βαα βαβαβα βαβαβα    ++−= −−+−= +−+= cossin sinsincossincos cossinsincoscos rpr rqpq rqpp W W W This can be rewritten as: ( ) βαα β α tansincos cos rp q q W +−−= Wrrp +−= ααβ cossin ( ) ( ) ( )( ) ( ) β βαα ββββααβαβαα cos sinsincos tantansincossincossincossincos W WW qrp qrpqrpp ++ = +++=−++=  AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE
  • 42. 42 SOLO Coordinate Systems (continue – 21) 6.Wind Coordinates (W( (continue -6( We have also: Angular Velocities (continue – 4( ( ) βαα β α tansincos cos RP Q Q W +−−= WRRP +−= ααβ cossin ( ) β βαα cos sinsincos W W QRP P ++ = AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE
  • 43. 43 SOLO Coordinate Systems (continue – 22) 6.Wind Coordinates (W( (continue -7( The vehicle velocity was decomposed in: Vehicle Velocity WAE VVV  += ( )           = 0 0 V V W A  - vehicle velocity relative to atmosphere ( ) ( )           =           = DownW EastW NorthW W L zW yW xW W W V V V C V V V HLongLatV W W W _ _ _ ,,  - wind velocity at velocity position also ( ) [ ] ( ) [ ]           =           −=−= 0 0 0 011 * VV VV W A W A σσ  ( ) ( )           =           = DownW EastW NorthW W L zW yW xW W W V V V C V V V HLongLatV W W W _ _ _ * * * * * ,,  AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE
  • 44. 44 SOLO Coordinate Systems (continue – 23) 6.Wind Coordinates (W( (continue -8( The vehicle acceleration in W* coordinates is Vehicle Acceleration ( ) ( ) ( ) WAELALW W A WWIW W W AAIW W A I C aRVV td Vd VV td Vd RVV td Vd td Vd a        +×Ω×Ω+×Ω++×+= ×Ω+×++×Ω×Ω+×Ω+×+== ←← ←← 2* * * * * * ωω ωω from which ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )******* * * * 2 W W W A WW EL WW A W LW W W A aVAV td Vd   −×Ω+−=×+         ←← ωω where ( )RaA  ×Ω×Ω−=: AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE
  • 45. 45 SOLO Coordinate Systems (continue – 24) 6.Wind Coordinates (W( (continue -9( Vehicle Acceleration (continue – 1( ( ) ( ) ( ) ( ) ( ) ( )           −                     Ω+Ω+− Ω+−Ω+ Ω+Ω+− −           =                     − − − +           ** * * **** **** **** * * * ** ** ** 0 0 022 202 220 0 0 0 0 0 0 0 zWW yWW xWW xWxWyWyW xWxWzWzW yWyWzWzW zW yW xW WW WW WW a a aV A A AV PQ PR QRV ρρ ρρ ρρ where ( ) ( ) ( ) ( )HR Lat Lat C a a a A A A A W L zW yW xW zW yW xW W +Ω           −           =           = 2* * * * * * * * sin 0 cos  - Acceleration due to external forces on the Air Vehicle in W* coordinates That gives ( ) ( ) ***** ***** ** 2 2 zWWyWyWzWW yWWzWzWyWW xWWxW aVAVQ aVAVR aAV −Ω++=− −Ω+−= −= ρ ρ  AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE
  • 46. 46 SOLO Coordinate Systems (continue – 25( 6.Wind Coordinates (W) (continue -10) Vehicle Acceleration (continue – 2) Using ( )          − =           =← γχ γ γχ ω cos sin * * * * *     W W W W LW R Q P we have ** xWWxW aAV −= ( ) γρχ cos/2 ** **       Ω+− − = zWzW yWWyW V aA  ( )** ** 2 yWyW zWWzW V aA Ω+− − −= ργ AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE Table of Content
  • 47. 47 SOLO Aerodynamic Forces ( )[ ]∫∫ +−= ∞ WS A dstfnppF  11 ntonormalplanonVofprojectiont dstonormaln ˆˆ ˆ  − − ( ) airflowingthebyweatedsurfaceVehicleS SsurfacetheonmNstressforcefrictionf Ssurfacetheondifferencepressurepp W W W − − −−∞ )/( 2 AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE 7. Forces Acting on the Vehicle
  • 48. 48 SOLO 7. Forces Acting on the Vehicle (continue – 1) Aerodynamic Forces (continue – 1) ( )           − − − = L C D F W A  ForceLiftL ForceSideC ForceDragD − − − L C D CSVL CSVC CSVD 2 2 2 2 1 2 1 2 1 ρ ρ ρ = = = ( ) ( ) ( ) tCoefficienLiftRMC tCoefficienSideRMC tCoefficienDragRMC eL eC eD − − − βα βα βα ,,, ,,, ,,, ityvisdynamic lengthsticcharacteril soundofspeedHa numberynoldslVR numberMachaVM e cos )( Re/ / − − − −= −= µ µρ AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE
  • 49. 49 SOLO 7. Forces Acting on the Vehicle (continue – 2) Aerodynamic Forces (continue -2) ∫∫       ⋅+⋅−= ∫∫       ⋅+⋅−= ∫∫       ⋅+⋅−= ∧∧ ∧∧ ∧∧ W W W S fpL S fpC S fpD dswztCwznC S C dswytCwynC S C dswxtCwxnC S C 1ˆ1ˆ 1 1ˆ1ˆ 1 1ˆ1ˆ 1 Wf Wp Ssurfacetheontcoefficienfriction V f C Ssurfacetheontcoefficienpressure V pp C −= − − = ∞ 2/ 2/ 2 2 ρ ρ ntonormalplanonVofprojectiont dstonormaln ˆˆ ˆ  − − AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE
  • 50. 50 ( ) ( ) ( )         MomentFriction S C Momentessure S CCA WW dstRRfdsnRRppM ∫∫∫∫∑ ×−+×−−= ∞ 11 Pr / Aerodynamic Moments Relative to C can be divided in Pressure Moments and Friction Moments. ( )       FrictionSkinor FrictionViscous S essureNormal S A WW dstfdsnppF ∫∫∫∫∑ +−= ∞ 11 Pr Aerodynamic Forces can be divided in Pressure Forces and Friction Forces. AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE AERODYNAMIC FORCES AND MOMENTS.
  • 51. 51 SOLO ( ) ( ) ( )∫∫ −++= ∞ <> iopenS outflowoutopenflowinflowinopenflow dsnppmVmVT        1: 0 / 0 / THRUST FORCES ( ) ( ) ( ) ( )[ ]∫∫ −×−+×−−×−= ∞ <> iopenS OoutflowoutopenflowCoutopeninflowinopenflowCiopenCT dsnppRRmVRRmVRRM        1: 0 / 0 /, THRUST MOMENTS RELATIVE TO C ( ) ( )∫∫ −+ ∞ > inopenS inflowinopenflow dsnppmV     1 00 / ( ) ( )∫∫ −+ ∞ < outopenS outflowoutopenflow dsnppmV     1 0 / T  outopenR  iopenR  CR  C AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE Table of Content
  • 52. 52 SOLO 7. Forces Acting on the Vehicle (continue – 3) Thrust ( ) ( )                     − −−== B B B z y x BW B W T T T TCT αα βαββα βαββα cos0sin sinsincossincos cossinsincoscos **  ( ) [ ] ( )                       − ==           = * * * cossin0 sincos0 001 * 1 W W W W W W z y x W z y x W T T T T T T T T σσ σσσ  AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE F-35Thrust Vector Control
  • 53. 53 SOLO 7. Forces Acting on the Vehicle (continue – 4) Gravitation Acceleration ( ) ( )                         −           −           − == zg yg xg gg 100 0 0 0 010 0 0 0 001 χχ χχ γγ γγ σσ σσ cs sc cs sc cs scC EW E W  ( ) gg          − = γσ γσ γ cc cs s W  2sec/174.322sec/81.9 0 2 0 0 0 gg ftmg HR R == + =           AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE The derivation of Gravitation Acceleration assumes an Ellipsoidal Symmetrical Earth. The Gravitational Potential U (R, ( is given byϕ ( ) ( ) ( ) ( )φ φ µ φ , sin1, 2 RUg P R a J R RU E E n n n n ∇=               −⋅−= ∑ ∞ =  μ – The Earth Gravitational Constant a – Mean Equatorial Radius of the Earth R=[xE 2 +yE 2 +zE 2 ]]/2 is the magnitude of the Geocentric Position Vector – Geocentric Latitude (sin =zϕ ϕ E/R( Jn – Coefficients of Zonal Harmonics of the Earth Potential Function P (sin ( – Associated Legendre Polynomialsϕ
  • 54. 54 SOLO 7. Forces Acting on the Vehicle (continue – 5) Gravitation Acceleration AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE Retaining only the first three terms of the Gravitational Potential U (R, ( we obtain:ϕ R z R z R z R a J R z R a J R g R y R z R z R a J R z R a J R g R x R z R z R a J R z R a J R g EEEE z EEEE y EEEE x E E E ⋅                 +⋅−⋅      ⋅−        −⋅      ⋅−⋅−= ⋅                 +⋅−⋅      ⋅−        −⋅      ⋅−⋅−= ⋅                 +⋅−⋅      ⋅−        −⋅      ⋅−⋅−= 34263 8 5 15 2 3 1 34263 8 5 15 2 3 1 34263 8 5 15 2 3 1 2 2 4 44 42 22 22 2 2 4 44 42 22 22 2 2 4 44 42 22 22 µ µ µ φ φλ φλ sin cossin coscos = ⋅= ⋅= R z R y R x E E E ( ) 2/1222 EEE zyxR ++=
  • 55. 55 SOLO 7. Forces Acting on the Vehicle (continue – 6) Force Equations Air Vehicle Acceleration ( ) ( ) WAELALW W A I C aRVV td Vd td Vd a    +×Ω×Ω+×Ω++×+== ←← 2ωω ( ) ( ) ( ) WAELALW W A A aRVV td Vd amTF m     +×Ω×Ω+×Ω++×+==++ ←← 2 1 g ωω ( )Rg   ×Ω×Ω−= g:Define                   + −− + −− − − =           γσ α γσ βα γ βα ccg m LT csg m CT sg m DT A A A zW yW xW sin sincos coscos          − +                   −− −− −           −=           γ γ α βα βα σσ σσ cg sg m LT m CT m DT A A A zW yW xW 0 sin sincos coscos cossin0 sincos0 001 * * * AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE Table of Content ( )           = 0 0 T T B 
  • 56. 56 SOLO 23. Local Level Local North (LLLN( Computations for an Ellipsoidal Earth Model ( ) ( ) ( ) ( ) ( )2 22 10 2 0 2 0 2 0 5 2 1 2 0 6 0 sin sin1 sin321 sin1 sec/10292116557.7 sec/051646.0 sec/780333.9 26.298/.1 10378135.6 Ae e p m e HR RLatgg g LatfRR LatffRR LatfRR rad mg mg f mR + + = +≈ +−≈ −≈ ⋅=Ω = = = ⋅= − Lat HR V HR V HR V Ap East Down Am North East Ap East North tan + −= + −= + = ρ ρ ρ Lat Lat Down East North sin 0 cos Ω−=Ω =Ω Ω=Ω DownDownDown EastEast NorthNorthNorth Ω+= = Ω+= ρφ ρφ ρφ East North Lat Lat Long ρ ρ −= = • • cos ( ) ( ) ∫ ∫ • • += += t t dtLatLattLat dtLongLongtLong 0 0 0 0 AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE SIMULATION EQUATIONS
  • 57. 57 SOLO AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE SIMULATION EQUATIONS Table of Content
  • 58. 58 SOLO Missile Kinematics Model 1 in Vector Notation (Spherical Earth( AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE
  • 59. 59 SOLO Missile Kinematics Model 1 in Matrix Notation (Spherical Earth( AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE
  • 60. 60 SOLO Missile Kinematics Model 2 in Vector Notation (Spherical Earth( AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE
  • 61. 61 SOLO Missile Kinematics Model 2 in Matrix Notation (Spherical Earth( AIR VEHICLE IN SPHERICAL EARTH ATMOSPHERE
  • 62. SOLO 62 Navigation Methods of Navigation • Dead Reckoning (e.g. Inertial Navigation( • Externally Dependent (e.g. GPS( • Database Matching (e.g Celestial Navigation, or Terrain Referenced Navigation(
  • 63. SOLO 63 Navigation Dead Reckoning Navigation A Dead Reckoning System uses a Platform Initial Position and Initial Velocity Vector and then Computes its Position and Velocity based on Measured or Estimated Velocity Vector and Elapsed Time. Dead Reckoning Evolution of a Vehicle’s Position Based on Velocity Vector
  • 64. SOLO 64 Navigation Dead Reckoning Navigation Historical Development of Inertial Platforms
  • 65. SOLO 65 Navigation Dead Reckoning Navigation Based on an Inertial Measurement Unit (IMU( An Inertial Measurement Unit uses Inertial Sensors (at least three Rate and three Acceleration Sensors(. - The Rate Sensors measure the Angular Rates, relative to Inertia, along three orthogonal directions. - The Acceleration Sensors (Accelerometers( measure the Acceleration, relative to Inertia, along the same three orthogonal directions. The Sensor Case can be attached to a Stabilized Platform (Gimbaled( or Strap to the Vehicle Body. (b) Strapdown(a) Gimbaled
  • 66. SOLO 66 Navigation Dead Reckoning Navigation Based on an Inertial Measurement Unit (IMU( The Gimbaled System can be Local-Level Stabilized or Space-Stabilized (a) Gimbaled According to the chosen Azimuth Mechanization the Local-Level can be: - North-Slaved (or North Pointing( - Unipolar - Free Azimuth - Wander Azimuth
  • 67. SOLO 67 Navigation Input/Output of an Inertial System Inputs ADC.Angle_of_Attack ADC.Mach_Number ADC.Barometric_Altitude ADC.Magnetic_Heading ADC.True_Airspeed INS.Body_Rates (roll, pitch, yaw( INS.Acceleration (lateral, longitudinal, normal( INS.Present_Position (latitude, longitude( INS.True_Heading INS.Velocity (north, east, vertical( RALT.Radar_Altitude Outputs INS.Reference_Velocity (north, east, vertical( NAV.Airspeed NAV.Rate_of_Change_Airspeed NAV.Position (latitude, longitude, altitude( NAV.Angle_of_Attack NAV.Attitude (roll, pitch, yaw( NAV.Body_Rates (roll, pitch, yaw( NAV.Flight_Path_Angle NAV.Ground_Speed NAV.Ground_Track_Angle NAV.Magnetic_Variation NAV.Altitude NAV.Velocity (north, east, vertical( NAV.Acceleration (lateral, longitudinal, normal( NAV.Wind (direction, magnitude( NAV.Body_to_Earth_Transform NAV.Body_to_Horizon_Transform NAV.Radar_to_Body_Transform NAV.Radar_to_Earth_Transform
  • 68. SOLO 68 Navigation Platform Stabilization Using Rate-Integrated-Gyros (RIGs( The only way to keep a Gimbaled Platform in a Desired Angular Position is by controlling its Angular Rate. For this purpose we use a Rate-Integrated-Gyros (RIGs( Platform Stabilization Around ZP Azimuth Axis To control the Platform Angular Rate we use: • Rate-Integrated-Gyro (RIG( ZG- Input Axis YP=YG – Output Axis XG – Gyro’s Spin Axis • Azimuth Gimbal Torque Motor • K1 (s( – Filter and Torque Driver Czω
  • 69. SOLO 69 Navigation Platform Stabilization Using Rate-Integrated-Gyros (RIGs( The Dynamic Equation along Rate-Integrated-Gyro (RIG( Output Axis YP is: Platform Stabilization Around ZP Azimuth Axis (continue – 1( ( ) θωωθ  GDCzGyG BTTHJ PP −−=++ ( ) ( )       − − −=+ PP y G G G DC zGGG H J H TT HsBJss ωωθ  JG – RIG Moment of Inertia around Output Axis θ – Pickoff Angle - Platform Angular Acceleration around YP Axis - Platform angular Rate around ZP Axis HG – Gyro Angular Moment TC – RIG Torque Command TD – Disturbance Moment BG - Damping Coefficient Pyω Pzω Tacking Laplace Transform and rearranging:
  • 70. SOLO 70 Navigation Platform Stabilization Using Rate-Integrated-Gyros (RIGs( Platform Stabilization Around ZP Azimuth Axis (continue – 2( ( ) ( )       − − −=+ PP y G G G DC zGGG H J H TT HsBJss ωωθ  Define: ( ) Cz G C k H T ω∆+= 1: Angular Rate Command (Δk –Scaling Error( G G D H T ε=: Gyro Bias G G G B J τ=: RIG Time Constant ( ) ( ) ( )       −−∆+− + −= PCP y G G Gzz GG G H J k ssB H s ωεωω τ θ 1 1 1
  • 71. SOLO 71 Navigation Platform Stabilization Using Rate-Integrated-Gyros (RIGs( Platform Stabilization Around ZP Azimuth Axis (continue – 3( The Pickoff Signal θ, is the Feedback Command to the Azimuth Torque Motor ( ) ( ) ( )ssKKsT Cz θ12= K1(s( - Filter and Torque Driver ( ) fzxxyxzz TTJJJ CPPPPPP −=−− ωωω K2 - Torque Motor Gain The Moment Equation along Platform ZP Axis is:
  • 72. SOLO 72 Navigation Platform Stabilization Using Rate-Integrated-Gyros (RIGs( Platform Stabilization Around ZP Azimuth Axis (continue – 4( ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) D GGxGx G y G G Gz GGxGx GG z T BHsKsKsJsJ ss H J k BHsKsKsJsJ BHsKsK PP CC PP P / 1 1 / / 1 23 1 23 1 ++ + −      −+∆+ ++ = τ τ ωεω τ ω  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) D Gx GG x y G G Gz Gx GG Gx GG z T ssJ BH sKsK sJ H J k ssJ BH sKsK ssJ BH sKsK P P CC P P P 1 / 1 1 1 1 / 1 1 / 21 21 21 + + −       −+∆+ + + + = τ ωεω τ τ ω  or From the Figure above we obtain:
  • 73. SOLO 73 Navigation Platform Stabilization Using Rate-Integrated-Gyros (RIGs( Platform Stabilization Around ZP Azimuth Axis (continue – 5( ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) D GGxGx G y G G Gz GGxGx GG z T BHsKsKsJsJ ss H J k BHsKsKsJsJ BHsKsK PP CC PP P / 1 1 / / 1 23 1 23 1 ++ + −      −+∆+ ++ = τ τ ωεω τ ω  At Steady-State we obtain: ( ) ( ) ( ) ( ) ( )D s GG y G G Gzz Ts BHsKKH J kt CCP 0 1 lim /0 1 1 → −−+∆+=∞→ ωεωω  We can see that to minimize External Disturbances effect we must have K1(0(K2HG/BG, called “Loop Robustness”, as high as Loop Stability allows. Also we must have HG>>JG in order to minimize the effect of . ThenCy G G H J ω ( ) ( ) Gzz CP kt εωω +∆+≈∞→ 1 Therefore the Misalignment Errors of the Platform are due to Gyros Drift and Scaling Error. Both can be measured (off-line( and compensated by Navigation Computer.
  • 74. SOLO 74 Navigation Platform Stabilization Using Rate-Integrated-Gyros (RIGs(
  • 75. SOLO 75 Navigation Platform Stabilization Using Rate-Integrated-Gyros (RIGs( The Platform is angular isolated from the Aircraft via, at least, three Gimbals. Those Gimbals are, from Aircraft to Platform: - Azimuth (Heading( – Angle ψG - Pitch – Angle θ - Roll – Angle ϕ The Rotation Matrix from Aircraft to Platform is: [ ] [ ] [ ]           −           −           − == 100 0cossin 0sincos cos0sin 010 sin0cos cossin0 sincos0 001 321 GG GG G P AC ψψ ψψ θθ θθ φφ φφψθφ We want to apply Moments on the Platform, related to the Pjckoff Outputs of the Three RIGs mounted on the Platform ( ) ( )           =           = z y x z y x P KsK T T T T P P P θ θ θ 21  The 3 Torque Motors Roll (TR(, Pitch (TP( and Heading (TH( are located on Gimbal Axes .PA zyx 1,1,1 ' 
  • 76. SOLO 76 Navigation Platform Stabilization Using Rate-Integrated-Gyros (RIGs( We want to find the relation between and TR, TP, TH. PPP zyx TTT ,, The 3 Torque Motors Roll (TR(, Pitch (TP( and Heading (TH( are located on Gimbal Axes .PA zyx 1,1,1 '  PAPPPPPP zHyPxRzzyyxx TTTTTTT 111111 '  ++=++= ( ) [ ] [ ] [ ] ( )  [ ] [ ] ( )  [ ] ( )  P Pzy A Ax P P P GHGPGR z y x P TTT T T T T 1 3 1 23 1 123 1 0 0 0 1 0 0 0 1 , '             −+           −−+           −−−=           = ψθψφθψ                     − − =           H P R GG GG z y x T T T T T T P P P 10sin 0coscossin 0sincoscos θ ψθψ ψθψ                     −=           P P P z y x GG GG GG H P R T T T T T T 1tansintancos 0cossin 0cos/sincos/cos θψθψ ψψ θψθψ
  • 77. SOLO 77 Navigation Platform Stabilization Using Rate-Integrated-Gyros (RIGs( To simplify the implementation the assumption of small Pitch Angle θ is used (see Figure(:                     −=           P P P z y x GG GG GG H P R T T T T T T 1tansintancos 0cossin 0cos/sincos/cos θψθψ ψψ θψθψ                     −≈           P P P z y x GG GG H P R T T T T T T 100 0cossin 0sincos ψψ ψψ ( ) ( )           =           = z y x z y x P KsK T T T T P P P θ θ θ 21  where:
  • 79. SOLO 79 Navigation Derivation of the IMU Position and Platform Misalignment Error Equations Platform Misalignment Error Equations Define: (C(Computer Coordinate System (the computed Platform coordinates( (P( Platform Coordinate System (real Platform coordinates( The rotation from (C( to (P( is defined by the three small angles ψx, ψy, ψz as [ ] [ ] [ ]           −           −           − == 100 0cossin 0sincos cos0sin 010 sin0cos cossin0 sincos0 001 321 zz zz yy yy xx xxzyx P CC ψψ ψψ ψψ ψψ ψψ ψψψψψ           − − − −           =           − − − ≈           −           −           − ≈ 0 0 0 100 010 001 1 1 1 100 01 01 10 010 01 10 10 001 xy xz yz xy xz yz z z y y x x ψψ ψψ ψψ ψψ ψψ ψψ ψ ψ ψ ψ ψ ψ [ ] [ ] [ ]           − − − =×           =×−≈ 0 0 0 :&: xy xz yz z y x P C IC ψψ ψψ ψψ ψ ψ ψ ψ ψψ 
  • 80. SOLO 80 Navigation Derivation of the IMU Position and Platform Misalignment Error Equations Platform Misalignment Error Equations (continue – 1( Let find the angular rotation vector from C to P ( ) [ ] [ ] [ ] =                               +           +           =← z zyy x x P CP ψ ψψψ ψ ψω     0 0 0 0 0 0 321 ψ ψ ψ ψ ψ ψψψ ψψψ ψψψ ψψ ψψ ψ ψ ψψ           =           ≈           + − =                     − − − +                     − +           ≈ z y x z zxy zyx zxy xz yz y y yx 0 0 1 1 1 0 0 10 010 01 0 0
  • 81. SOLO 81 Navigation Derivation of the IMU Position and Platform Misalignment Error Equations Platform Misalignment Error Equations (continue – 1( The command to Platform Torques by the computer (C( are affected by the IMU Gyros errors: - Gyros Scaling Errors - Misalignment of the gyros relative to Platform - Gyros Drift - Gyros Mass-Unbalances ( ) ( ) ( ) ( )P G C ICG P IP KI εωω  ++= ←← Platform Rate Commands Vector           ∆ ∆ ∆ = 33231 23221 13121 G G G G Kmm mKm mmK K Matrix of Gyros Scaling Errors, Misalignments and Mass-Unbalances ( ) PPP zzyyxx P G 111  εεεε ++= Gyro Drift Vector Computer Rate Commands VectorCCCCCC zzyyxxIC 111  ωωωω ++=←
  • 82. SOLO 82 Navigation Derivation of the IMU Position and Platform Misalignment Error Equations Platform Misalignment Error Equations (continue – 2( Let find the angular velocity vector of the Platform (P( relative to the Computer (C(: ICIPCP ←←← −= ωωω  ( ) ( ) ( ) ( ) ( )C IC P C P IP P IC P IP P CP C ←←←←← −=−= ωωωωω  ( ) ( ) ( ) [ ]{ } ( ) [ ] ( ) ( ) ( )P G C ICG C IC C IC P G C ICG KIKI εωωψωψεωψ  ++×=×−−++= ←←←← Using we obtain:[ ] ( ) ( ) [ ] ψωωψ  ×−=× ←← C IC C IC ( ) [ ] ( ) ( )P G C ICG C IC K εωψωψ  ++×−= ←← or           +                     ∆ ∆ ∆ +                     − − − −=           z y x z y x G G G z y x xy xz yz z y x C C C CC CC CC Kmm mKm mmK ε ε ε ω ω ω ψ ψ ψ ωω ωω ωω ψ ψ ψ 33231 23221 13121 0 0 0   
  • 83. SOLO 83 Navigation Derivation of the IMU Position and Platform Misalignment Error Equations Position Error Equations - vector representing position from the Earth Center of mass to the Vehicle r  ( )rgAr   += - Ideal Accelerometers Measurement VectorA  ( ) ( ) r rr K r r K rg    2/33 ⋅ −=−= ( )rg  - Gravity Vector ( )rrgAArr   δδδ +++=+ For Non-Ideal Accelerometers we have a error between Real Position and Computed Position r  δ ( ) ( )rgrrgAr   −++= δδδ
  • 84. SOLO 84 Navigation Derivation of the IMU Position and Platform Misalignment Error Equations Position Error Equations (continue – 1( ( ) ( )rgrrgAr   −++= δδδ ( ) ( ) ( ) ( )[ ] r r K r rrrr K rgrrg    32/3 + +⋅+ −=−+ δδ δ ( ) ( ) r r K r rr rr r K r r K r rrr K     32332/32 31 2 +      ⋅ −+−≈+ ⋅+ −≈ δ δ δ r r K r r r r r r K r r K r r K    3333 +      ⋅+−−≈ δδ therefore Ar r r r r r r K r    δδδδ =            ⋅−+ 33
  • 85. SOLO 85 Navigation Derivation of the IMU Position and Platform Misalignment Error Equations Position Error Equations (continue – 2( Define r g r K S == 3 :ω Maximilian Schuler (1882 – 1972( S ST ω π2 = Shuler Period = 84.4 minutes at Sea Level Ar r r r r rr S    δδδωδ =            ⋅−+ 32
  • 86. SOLO 86 Navigation Derivation of the IMU Position and Platform Misalignment Error Equations Position Error Equations (continue – 3( Let find the Accelerometer Measurements received by the Navigation Computer (C( The Accelerometer Errors are related to: - Accelerometers Scaling Errors - Misalignment of the Accelerometers relative to Platform - Accelerometers Biases ( ) ( ) ( ) ( )PP f C C bAKIA  δ++= Accelerometers Measurement Vector           ∆ ∆ ∆ = 33231 23221 13121 fff fff fff f Kmm mKm mmK K Matrix of Accelerometers Scaling Errors and Misalignments Ideal Accelerometer Measurement Vector ( ) PPPPPP zzyyxx P AAAA 111  ++= ( ) PPPPPP zzyyxx P bbbb 111  δδδδ ++= Accelerometers Biases Vector
  • 87. SOLO 87 Navigation Derivation of the IMU Position and Platform Misalignment Error Equations Position Error Equations (continue – 4( AAA C  −=:δ Accelerometers Error Vector ( ) ( ) ( ) ( ) ( ) ( ) [ ]( ) ( )PPP f PC P C C C AIbAKIACAA  ×+−++=−= ψδδ We used the relation ( ) [ ]( ) [ ]( )×+≈×−== −− ψψ  IICC P C C P 11 Finally we obtain ( ) [ ] ( ) ( ) ( )PP f PC bAKAA  δψδ ++×−= [ ] ( ) ( ) ( )PP f P S bAKAr r r r r rr    δψδδωδ ++×−=            ⋅−+ 32 The Position Error Equation is
  • 88. SOLO 88 Navigation Derivation of the IMU Position and Platform Misalignment Error Equations Position Error Equations (continue – 5( Let compute ( )C r δ ( ) ( ) ( ) [ ] ( )CC IC CC rrr   δωδδ ×+= ← Therefore ( ) ( ) ( ) ( ) ( ) CCCCCC CCC C IC C CCC CCC CCCCCC CCC zzyyxxIC C ICzyxICzyx zyx C zyxzyx C zyx C rzyxzyx zyxr zyxzyxr zyxr 111 111111 111: 111111 111 11                   ωωωω δωδδδωδδδ δδδδ δδδδδδδ δδδδ αα ω ++= ×=++×=++ ++= +++++= ++= ← ←← ×= ← In the same way ( ) ( ) ( ) [ ] ( ) ( ) ( ) [ ] ( ) ( ) ( ) [ ] ( ) ( ) [ ] ( ) ( )CC IC CC IC CC IC C IC C IC CC IC CC rr rrrr               δωδω δωωωδωδδ ×+×+         ×         ×++×+= ←← ←←←← 0
  • 89. SOLO 89 Navigation Derivation of the IMU Position and Platform Misalignment Error Equations Position Error Equations (continue – 6( ( ) ( ) ( ) [ ] ( )CC IC CC rrr   δωδδ ×+= ← Therefore ( ) ( ) ( ) [ ] ( ) ( ) [ ] ( ) [ ] ( ) [ ]( ) ( )CC IC C IC C IC CC IC CC rrrr       δωωωδωδδ ××+×+×+= ←←←←2 ( ) ( ) [ ] ( ) ( ) [ ] ( ) [ ] ( ) [ ]( ) ( ) ( ) ( ) ( ) ( ) [ ] ( ) ( ) ( )PP f P C CC C S CC IC C IC C IC CC IC C bAKA r r r r r rrrr          δψ δδωδωωωδωδ ++×−=             ⋅−+××+×+×+ ←←←← 32 2 Together with the Platform Misalignment Error Equations ( ) [ ] ( ) ( )P G C ICG C IC K εωψωψ  ++×−= ←←
  • 90. SOLO 90 Navigation Derivation of the IMU Position and Platform Misalignment Error Equations Position Error Equations (continue – 7( CCCCCC zzyyxxIC 111  ωωωω ++=← ( ) [ ]           − − − =×← 0 0 0 CC CC CC xy xz yz C IC ωω ωω ωω ω  ( ) [ ]           − − − =×← 0 0 0 CC CC CC xy xz yz C IC ωω ωω ωω ω      ( ) [ ] ( ) [ ] ( ) ( ) ( )            +− +− +− =           − − −           − − − =×× ←← 22 22 22 0 0 0 0 0 0 CCCCCC CCCCCC CCCCCC CC CC CC CC CC CC yxzyzx zyzxyx zxyxzy xy xz yz xy xz yz C IC C IC ωωωωωω ωωωωωω ωωωωωω ωω ωω ωω ωω ωω ωω ωω  Czrr 1  = ( ) ( ) ( ) ( )           − =           −           =      ⋅− z y x z z y x r r r r r r C C C C δ δ δ δ δ δ δ δδ 21 0 0 33    
  • 91. SOLO 91 Navigation Derivation of the IMU Position and Platform Misalignment Error Equations Position Error Equations (continue – 8) ( ) ( ) ( )                       +−−+− −+−+ +−+− +                     − − − +           z y x z y x z y x CCCCCCCC CCCCCCCC CCCCCCCC CC CC CC yxSxzyyzx xzyzxSzyx yzxzyxzyS xy xz yz δ δ δ ωωωωωωωωω ωωωωωωωωω ωωωωωωωωω δ δ δ ωω ωω ωω δ δ δ 222 222 222 20 0 0 2                    −                     ∆ ∆ ∆ +                     − − − −= P P P P P P P P P z y x z y x fff fff fff z y x xy xz yz b b b A A A Kmm mKm mmK A A A δ δ δ ψψ ψψ ψψ 33231 23221 13121 0 0 0 Position Error Equations Platform Misalignment Error Equations           +                     ∆ ∆ ∆ +                     − − − −=           z y x z y x G G G z y x xy xz yz z y x C C C CC CC CC Kmm mKm mmK ε ε ε ω ω ω ψ ψ ψ ωω ωω ωω ψ ψ ψ 33231 23221 13121 0 0 0   
  • 92. Inertial rotation sensor classification: Rotation sensorsRotation sensors GyroscopicGyroscopic Rate GyrosRate GyrosFree GyrosFree Gyros Non-GyroscopicNon-Gyroscopic Vibration Sensors Vibration Sensors Rate SensorsRate Sensors Angular accelerometers Angular accelerometers DTGDTG RGRGRIGRIGRVGRVG General purpose General purpose MHDMHDOptic Sensors Optic Sensors RLGRLG IOGIOGFOGFOG Silicon )MEMS( Silicon )MEMS( HRGHRG Tuning Fork Tuning Fork QuartzQuartz CeramicCeramic
  • 93. 93
  • 94. Rate gyro DTG – Dynamically Tuned Gyro Flex Inversion Cardan joint
  • 95. 95 Main Components of a DTG Transverse Cut of a DTG Rate gyro DTG – Dynamically Tuned Gyro
  • 98. 98 SOLO Strapdown Algorithm (Vector Notation) Navigation
  • 103. SOLO 103 Navigation Externally Navigation Add Systems eLORAN LORAN - C Global Navigation Satelite System (GNSS) Distance Measuring Equipment (DME) VHF Omni Directional Radio-Range (VOR) System Data Base Matching Terrain Referenced Navigation (TRN) Navigation Multi-Sensor Integration
  • 104. SOLO 104 Navigation Global Navigation Satelite System (GNSS) Satellites of the GPS GLONASS and GALILEO Systems Four Satellite Navigation Systems have been designed to give three dimensional Position, Velocity and Time data almost enywhere in the world with an accuracy of a few meters • The Global Positioning System, GPS (USA) • The Global Navigation Satellite System , GLONASS (Rusia) • GALILEO (European Union) • COMPASS (China) They all uses the Time of Arrival (range determination) Radio Navigation Systems.
  • 108. SOLO 108 Navigation Global Navigation Satelite System (GNSS) Differential GPS Systems (DGPS) Differential GPS Systems (DGPS) techniques are based on installing one or more Reference Receivers at known locations and the measured and known ranges to the Satellites are broadcast to the other GPS Users in the vicinity. This removes much of the Ranging Errors caused by atmospheric conditions (locally) and Satellite Orbits and Clock Errors (globally).
  • 109. Global Positioning System (GPS) SOLO 109 Navigation A visual example of the GPS constellation in motion with the Earth rotating. Notice how the number of satellites in view from a given point on the Earth's surface, in this example at 45°N, changes with time The Global Positioning System (GPS) is a space- based satellite navigation system that provides location and time information in all weather, anywhere on or near the Earth, where there is an unobstructed line of sight to four or more GPS satellites. It is maintained by the United States government and is freely accessible to anyone with a GPS receiver. Ground monitor station used from 1984 to 2007, on display at the Air Force Space & Missile Museum A GPS receiver calculates its position by precisely timing the signals sent by GPS satellites high above the Earth. Each satellite continually transmits messages that include: • the time the message was transmitted • satellite position at time of message transmission Global Navigation Satellite System (GNSS)
  • 110. Global Positioning System SOLO 110 Navigation Other satellite navigation systems in use or various states of development include: • GLONASS – Russia's global navigation system. Fully operational worldwide. • GALILEO – a global system being developed by the European Union and other partner countries, planned to be operational by 2014 (and fully deployed by 2019) • BEIDOU – People's Republic of China's regional system, currently limited to Asia and the West Pacific[123] • COMPASS – People's Republic of China's global system, planned to be operational by 2020. • IRNSS – India's regional navigation system, planned to be operational by 2012, covering India and Northern Indian Ocean. • QZSS – Japanese regional system covering Asia and Oceania. Comparison of GPS, GLONASS, Galileo and Compass (medium earth orbit) satellite navigation system orbits with the International Space Station, Hubble Space Telescope and Iridium constellation orbits, Geostationary Earth Orbit, and the nominal size of the Earth.[121] The Moon's orbit is around 9 times larger (in radius and length) than geostationary orbit
  • 111. Satellite Position SOLO 111 Navigation GZ GX GY Equatorial Plane εY εZ εX Ascending Node Satellite Orbit Periapsis Direction Vernal Equinox Direction Ω ω i → N1 Θ A sixth element is required to determine the position of the satellite along the orbit at a given time. 1. a semi-major axis – a constant defining the size of the conic orbit. 2. e, eccentricity – a constant defining the shape of the conic orbit. 3. i, inclination – the angle between Ze and the specific angular momentum of the orbit vrh  ×= 4. Ω, longitude of the ascending node – the angle, in the Equatorial Plane, between the unit vector and the point where the satellite crosses trough the Equatorial Plane in a northerly direction (ascending node) measured counterclockwise where viewed from the northern hemisphere. 5. ω, argument of periapsis – the angle, in the plane of satellite’s orbit, between ascending node and the periapsis point, measured in the direction of the satellite’s motion. 6. T, time of periapsis passage – the time when the satellite was at the periapsis.
  • 113. 113 SOLO KEPLERIAN TRAJECTORIES Time of Flight on an Elliptic Orbit From the equation Θ= 2 rh we can write h Ad h dr dt 2 2 = Θ = where is the area defined by the radius vector as it moves through an angle 2 2 Θ = dr Ad Θd Θ pΘ pΘ−Θ r focus conic section x y → P1 → Q1 → r1 → t1 v  rv tv Θd Θ= drAd 2 2 1 periapsis This proves the 2nd Kepler’s Law that equal area are swept out equal in equal times by the radius vector.
  • 114. 114 SOLO KEPLERIAN TRAJECTORIES Time of Flight on an Elliptic Orbit (continue – 1) The period of the orbit depends only on the major axis of the ellipse a. ( ) ( ) p pa h eaa h ea h ba T eap ph µ ππππ µ 2/3122/322 2 1 2 1 22 2 = −= = − = − == or 2/3 2 aT µ π = The period of an elliptical orbit T is obtained by integrating from Θ= 0 to Θ=2π , and the radius vector sweeps the area of the ellipse A = π a b. This proves the Kepler’s third law: “the square of the period of a planet orbit is equal To the cube of its mean distance to the sun”.
  • 115. 115 SOLO KEPLERIAN TRAJECTORIES Time of Flight on an Elliptic Orbit (continue – 2) Let draw an auxiliary circle of radius a, and the same center O as the geometric center of the ellipse. x y eac = a a ( ) 2/12 1 eab −= r Θ FOCUS EMPTY FOCUS c → P1 → Q1 a F Q O VS E P Let take any point P on the ellipse with polar coordinates r,Θ and define the point Q on the circle at the same coordinate x as P. Eeary r a x ea a x by Ea a x ay ellipse ellipse circle sin1sin sin111 sin1 2 2 2 2 2 2 2 2 −=Θ=→        Θ=−−=−= =−= The angle E of OQ with x axis is called the eccentric anomaly. aeEarxellipse −=Θ= coscos
  • 116. 116 SOLO KEPLERIAN TRAJECTORIES Time of Flight on an Elliptic Orbit (continue – 3) Let compute x y eac = a a ( ) 2/12 1 eab −= r Θ FOCUS EMPTY FOCUS c → P1 → Q1 a F Q O VS E P ( ) ( )( ) ( )( ) ( ) 0cos11 sin1sincos1cos 1 2 22 2 >←−−= −+−−= −=×=−= EEEeea EEeaEaEEeaaeEa xyyxvreah ellipseellipseellipseellpse     µ We obtain ( ) n a EEe ==− :cos1 3 µ ( ) ( ) ( )pttntEetE −=− sin Integrating this equation gives Kepler’s Equation where tp is the time of periapsis ( E (tp) = 0 )
  • 117. 117 SOLO KEPLERIAN TRAJECTORIES Time of Flight on an Elliptic Orbit (continue – 4) From x y eac = a a ( ) 2/12 1 eab −= rΘ FOCUS EMPTY FOCUS c → P1 → Q1 a F Q O VS E P Eeary aeEarx ellipse ellipse sin1sin coscos 2 −=Θ= −=Θ= we have ( ) ( )[ ] [ ] ( )Eea EeEeaEeaaeEar cos1 coscos21sin1cos 2/1222/12222 −= +−=−+−= Therefore Θ+ Θ− = − − =Θ Θ+ Θ+ = − − =Θ cos1 sin1 sin cos1 sin1 sin cos1 cos cos cos1 cos cos 22 e e E Ee Ee e e E Ee eE ( )( ) Ee Ee Ee eEEe sin1 cos11 sin1 coscos1 sin cos1 2 tan 22 − −+ = − +−− = Θ Θ− = Θ From 2 tan 1 1 2 tan E e e − + = Θ or and are always in the same quadrant.2 Θ 2 E
  • 118. 118 SOLO KEPLERIAN TRAJECTORIES Time of Flight on an Elliptic Orbit (continue – 5) We have x y eac = a a ( ) 2/12 1 eab −= rΘ FOCUS EMPTY FOCUS c → P1 → Q1 a F Q O VS E P Eeary aeEarx ellipse ellipse sin1sin coscos 2 −=Θ= −=Θ= and ( )Eear cos1−= The Position Vector of the Satellite is ( )             − − =           Θ Θ =           = += 0 sin1 cos 0 sin cos 0 11 2 Eea aeEa r r y x q QyPxq ellipse ellipse Orbit ellipseellipse   Differentiate in the Orbit Plane ( ) 2 222 1 0 cos sin cos1 0 cos1 sin 0 cos1 sin 0 cos1 sin e an e Ee an Ee E EanEe E Ee aeE q td d Orbit Orbit − ⋅ ⋅           Θ+ Θ− = ⋅− ⋅ ⋅             − − =⋅⋅             − − =             − −− = 
  • 119. GPS Broadcast Ephemerides SOLO 119 Navigation The Satellite Position can be computed as follows: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )oeisic rsrc usuc oe oe ttidotuCuCii uCuCrr uCuC tt ttnnMM a n −⋅+⋅+⋅+= ⋅+⋅+= ⋅+⋅+= −⋅Ω+Ω=Ω −⋅∆++= = 000 000 000 0 0 3 2sin2cos 2sin2cos 2sin2cosωω µ  where: ( ) Θ+=         ⋅ − + ⋅=Θ ⋅−⋅= ⋅+= − 00 1 0 2 tan 1 1 tan2 cos1 sin ωu E e e Eear EeME Six Keplerian Elements Define the Satellite Posision (Ω, I, ω, a, e, M0) where M0 = n (t – tP)
  • 120. GPS Broadcast Ephemerides SOLO 120 Navigation ( ) Θ+=           =           = ωuur ur y x q ellipse ellipse Orbit 0 sin cos 0  ( ) 2 1 0 cos sin 0 e an ue u y x q ellipse ellipse Orbit Orbit − ⋅ ⋅           + − =           =    ( ) oecoec ttt ⋅+−⋅=Θ ωω [ ] [ ] [ ]           −−Ω−=           =           0 sin cos 0 313 ur ur iy x C z y x ellipse ellipse G G ωε Θ+= ωu
  • 122. Global Positioning System SOLO 122 Navigation - x, y, z Satellite Coordinate in Geocentric-Equatorial Coordinate System ( ) ( ) ( )222 ZzYyXx −+−+−=ρ - X, Y, Z User Coordinate in Geocentric-Equatorial Coordinate System Squaring both sides gives The User to Satellite Range is given by ( ) ( ) ( ) ZzYyXxzyxZYX ZzYyXx r ⋅⋅−⋅⋅−⋅⋅−+++++= −+−+−= 222222222 2222 2  ρ The four unknown are X, Y, Z, Crr. Satellite position (x,y,z) is calculated from received Satellite Ephemeris Data. Since we have four unknowns we need data from at least four Satellites. ( ) ZzYyXxCrrrzyxr ⋅⋅−⋅⋅−⋅⋅−=−++− 22222222 ρ where r = Earth Radius This is true if (x,y,z) and (X,Y,Z) are measured at the same time. The GPS Satellites clocks are more accurate then the Receiver clock. Let assume that Crr is the range-square bias due to time bias between Receiver GPS and Satellites clocks. Therefore instead of the real Range ρ the Receiver GPS measures the Pseudo-range ρr..
  • 124. Global Positioning System SOLO 124 Navigation Using data from four Satellites we obtain ( ) ( ) ( ) ( ) 444444 22 4 2 4 2 4 2 4 333333 22 3 2 3 2 3 2 3 222222 22 2 2 2 2 2 2 2 111111 22 1 2 1 2 1 2 1 222 222 222 222 ZzYyXxCrrrzyx ZzYyXxCrrrzyx ZzYyXxCrrrzyx ZzYyXxCrrrzyx r r r r ⋅⋅−⋅⋅−⋅⋅−=−++− ⋅⋅−⋅⋅−⋅⋅−=−++− ⋅⋅−⋅⋅−⋅⋅−=−++− ⋅⋅−⋅⋅−⋅⋅−=−++− ρ ρ ρ ρ or ( ) ( ) ( ) ( )      14 1444 22 4 2 4 2 4 2 4 22 3 2 3 2 3 2 3 22 2 2 2 2 2 2 2 22 1 2 1 2 1 2 1 444 333 222 111 1222 1222 1222 1222 x xx R r r r r PM rzyx rzyx rzyx rzyx Crr Z Y X zyx zyx zyx zyx               −++− −++− −++− −++− =                         ⋅−⋅−⋅− ⋅−⋅−⋅− ⋅−⋅−⋅− ⋅−⋅−⋅− ρ ρ ρ ρ 14 1 4414 xxx RM Crr Z Y X P − =             =
  • 127. Global Positioning System SOLO 127 Navigation GPS Satellite GPS Control Station
  • 128. Global Positioning System SOLO 128 Navigation The key to the system accuracy is the fact that all signal components are controlled by Atomic Clocks. • Block II Satellites have four on-board clocks: two rubidium and two cesium clocks. The long term frequency stability of these clocks reaches a few part in 10-13 and 10-14 over one day. • Block III will use hydrogen masers with stability of 10-14 to 10-15 over one day. The Fundamental L-Band Frequency of 10.23 MHz is produced from those Clocks. Coherently derived from the Fundamental Frequency are three signals (with in-phase (cos), and quadrature-phase (sin) components): - L1 = 154 x 10.23 MHz = 1575.42 MHz - L2 = 120 x 10.23 MHz = 1227.60 MHz - L3 = 115 x 10.23 MHz = 1176.45 MHz The in-phase components of L1 signal, is bi-phase modulated by a 50-bps data stream and a pseudorandom code called C/A-code (Coarse Civilian) consisting of a 1023-chip sequence, that has a period of 1 ms and a chipping rate of 1.023 MHz: ( )  ( ) ( ) ( ) signalL code ompseudorand AC ulation bps power carrier I ttctdPts −− +⋅⋅⋅⋅= 1/ mod 50 cos2 θω
  • 129. Global Positioning System SOLO 129 Navigation The quadrature-phase components of L1, L2 and L3 signals, are bi-phase modulated by the 50-bps data stream but a different pseudorandom code called P-code (Precision-code) or Precision Positioning Service (PPS) for US Military use, , that has a period of 1 week and a chipping rate of 10.23 MHz: ( )  ( ) ( ) ( ) signalsLLL code ompseudorand P ulation bps power carrier Q ttptdPts −− +⋅⋅⋅⋅= 3,2,1 mod 50 sin2 θω
  • 134. GPS vs GALILEO SOLO 134 Navigation GALILEO GPS Satelites 27 + 3 24 (32!) Planes 3 6 Satellite per Plane 10 4 - 7 Plane Spacing 120 ͦ 60 ͦ Inclination 56 ͦ 55 ͦ Orbit Type MEO Circular MEO Circular Orbit Radius 29,500 km 26,500 km Period 141 /4 hour 12 hour Satellite Ground Track Repetition 10 days 1 day Higher GALILEO Orbit coupled with Inclination increase give better coverage at high latitudes.
  • 135. GPS, GLONASS and GALILEO SOLO 135 Navigation
  • 142. GPS Status, November 2011 SOLO 142 Navigation
  • 144. GPS III Payload Evolution SOLO 144 Navigation
  • 145. GLONASS Constellation, November 2011 SOLO 145 Navigation
  • 147. COMPASS/ BeiDou, November 2011 SOLO 147 Navigation
  • 148. Quasi Zenith Satellite System (QZSS) - Japan SOLO 148 Navigation
  • 149. Indian Regional National Satellite System (IRNSS) SOLO 149 Navigation
  • 153. GNSS Aviation Operational Performance Requirements SOLO 153 Navigation
  • 154. SOLO 154 Navigation Externally Navigation Add Systems LORAN - C A LORAN receiver measures the Time Difference of arrival between pulses from pairs of stations. This time difference measurement places the Receiver somewhere along a Hyperbolic Line of Position (LOP). The intersection of two or more Hyperbolic LOPs, provided by two or more Time Difference measurement, defines the Receiver’s Position. Accuracies of 150 to 300 m are typical. LOP from Transmitter Stations (1&2 and 1&3) LORAN – C (LOng RAnge Navigation) is a Time Difference Of Arrival (TDOA), Low-Frequency Navigation and Timing System originally designed for Ship and Aircraft Navigation.
  • 155. SOLO 155 Navigation Externally Navigation Add Systems eLORAN eLORAN receiver employ Time of Arrival (TOA) position techniques, similar to those used in Satellite Navigation Systems. They track the signals of many LORAN Stations at the same time and use them to make accurate and reliable Position and Timing measurements. It is now possible to obtain absolut accuracies of 8 – 20 m and recover time to 50 ns with new low-cost receivers in areas served by eLORAN. The Differential eLORAN Concept Enhanced LORAN , or eLORAN, is an International initiative underway to upgrade the traditional LORAN – C System for modern applications. The infrastructure is being installed in the US, and a variation of eLORAN is already operational in northwest Europe. A Combined GPS/eLORAN Receiver and Antenna from Reelektronika
  • 156. SOLO 156 Navigation Externally Navigation Add Systems Distance Measuring Equipment (DME) Aircraft DME Range Determination System Distance Measuring Equipment (DME) Stations for Aircraft Navigation were developed in the late 1950’s and are still in world-wide use as primary Navigation Aid. The DME Ground Station receive a signal from the User ant transmits it back. The User’s Receiving Equipment measures the total round trip time for the interrogation/replay sequence, which is then halved and converted into a Slant Range between the User’s Aircraft and the DME Station There are no plans to improve the DME Network, through it is forecast to remain in service for many years. Over time the system will be relegated to a secondary role as a backup to GNSS-based navigation,
  • 157. SOLO 157 Navigation Externally Navigation Add Systems Angle (Bearing Determination) Determining Bearing to a VOR Station VHF Omni Directional Radio-Range (VOR) System The VHF Omni Directional Radio-Range (VOR) System is comp[rised of a serie of Ground-Based Beacons operating in the VHF Band (108 to 118 MHz). A VOR Station transmits a reference carrier Frequency Modulated (FM) with: 30 Hz signal from the main antenna. An Amplitude Modulated (AM) carrier electrically swept around several smaller Antennas surrounding the main Antenna. This rotating pattern creates a 30 Hz Doppler effect on the Receiver. The Phase Difference of the two 30 Hz signals gives the User’s Azimuth with respect to the North from the VOR Site. The Bearing measurement accuracy of a VOR System is typically on the order of 2 degrees, with a range that extends from 25 to 130 miles.
  • 158. SOLO 158 Navigation Externally Navigation Add Systems TACAN is the Military Enhancement of VOR/DME VHF Omni Directional Radio-Range (VOR) System TACAN (Tactical Air Navigation) is an enhanced VOR/DME System designed for Military applications. The VOR component of TACAN, which operates in the UHF spectrum, make use of two-frequency principle, enabling higher bearing accuracies. The DME Component of TACAN operates with the same specifications as civil DME. The accuracy of the azimuth component is about ±1 degree, while the accuracy of the DME position is ± 0.1 nautical miles. For Military usage a primary drawback is the lack of radio silence caused by Aircraft DME Transmission.
  • 164. 164 SOLO Technion Israeli Institute of Technology 1964 – 1968 BSc EE 1968 – 1971 MSc EE Israeli Air Force 1970 – 1974 RAFAEL Israeli Armament Development Authority 1974 – 2013 Stanford University 1983 – 1986 PhD AA
  • 165. SOLO 165 Navigation World Geodetic System (WGS 84) Geoid - Mean Sea Level of the Earth Reference Ellipsoid – Approximation of Sea Level Reference Earth Model h - Vehicle Altitude (the distance from the Vehicle to Ellipsoid along the Normal to Ellipsoid RN - the distance from the Ellipsoid Surface along the Normal to Ellipsoid to intersection to yz plane (see Figure) N - Height of the Geoid above the Reference Ellipsoid The Reference Ellipsoid was obtained by minimizing the integral of the square of N over the Earth. Values of N over the Earth have been derived from extensive gravity and satellite measurements. The latest result is the reference Earth Model known as the World Geodetic System of 1984 (WGS 84).
  • 166. SOLO 166 Navigation World Geodetic System (WGS 84) Reference Earth Model Clairaut's theorem Clairaut's theorem, published in 1743 by Alexis Claude Clairaut in his Théorie de la figure de la terre, tirée des principes de l'hydrostatique,[1] synthesized physical and geodetic evidence that the Earth is an oblate rotational ellipsoid. It is a general mathematical law applying to spheroids of revolution. It was initially used to relate the gravity at any point on the Earth's surface to the position of that point, allowing the ellipticity of the Earth to be calculated from measurements of gravity at different latitudes. Clairaut's formula for the acceleration due to gravity g on the surface of a spheroid at latitude φ, was: where G is the value of the acceleration of gravity at the equator, m the ratio of the centrifugal force to gravity at the equator, and f the flattening of a meridian section of the earth, defined as: a ba f − =: Alexis Claude Clairaut )1713–1765(             −+= φ2 sin 2 5 1 fmGg
  • 167. SOLO 167 Navigation World Geodetic System (WGS 84) Reference Earth Model Carlo Somigliana (1860 –1955) The Theoretical Gravity on the surface of the Ellipsoid is given by the Somigliana Formula (1929)    84 22 2 2222 22 sin1 sin1 sincos sincos WGS e pe e k ba ba φ φ γ φφ φγφγ γ − + = + + = where 1: −= e p a b k γ γ 2 22 : a ba e − = - Ellipsoid Eccentricity a - Ellipsoid Semi-major Axis = 6378137.0 m b - Ellipsoid Semi-minor Axis = 6356752.314 m γp – Gravity at the Poles = 983.21849378 cm/s2 γe – Gravity at the Equator = 978.03267714 cm/s2 – Geodetic Latitudeϕ The Theory of the Equipotential Ellipsoid was first given by P. Pizzetti (1894)
  • 168. SOLO 168 Navigation World Geodetic System (WGS 84) Reference Earth Model The coordinate origin of WGS 84 is meant to be located at the Earth's center of mass; the error is believed to be less than 2 cm. The WGS 84 meridian of zero longitude is the IERS Reference Meridian. 5.31 arc seconds or 102.5 meters (336.3 ft) east of the Greenwich meridian at the latitude of the Royal Observatory. The WGS 84 datum surface is an oblate spheroid (ellipsoid) with major (transverse) radius a = 6378137 m at the equator and flattening f = 1/298.257223563.The polar semi-minor (conjugate) radius b then equals a times (1−f), or b = 6356752.3142 m. Presently WGS 84 uses the EGM96 (Earth Gravitational Model 1996) Geoid, revised in 2004. This Geoid defines the nominal sea level surface by means of a spherical harmonics series of degree 360 (which provides about 100 km horizontal resolution).[7] The deviations of the EGM96 Geoid from the WGS 84 Reference Ellipsoid range from about −105 m to about +85 m.[8] EGM96 differs from the original WGS 84 Geoid, referred to as EGM84.
  • 169. SOLO 169 Navigation The Reference Ellipsoid has the same mass, the same center of mass and the same angular velocity as the real Earth. The Potential U0 on Ellipsoid Surface equals to Potential W0 on the Geoid. World Geodetic System (WGS 84) Reference Earth Model The Equi-potential Ellipsoid furnishes a simple, consistent and uniform reference system for Geodesy, Geophysics and Satellite Navigation. The Normal Gravity Field on the Earth Surface and in Space, is defined in terms of closed formula as a reference for Gravimetry and Satellite Geodesy.
  • 170. SOLO 170 Navigation World Geodetic System (WGS 84) Reference Earth Model Geoid product, the 15-minute, worldwide Geoid Height for EGM96 The difference between the Geoid and the Reference Ellipsoid exhibit the following statistics: Mean = - 0.57 m, Standard Deviation = 30.56 m Minimum = -106.99 m, Maximum = 85.39 m
  • 171. SOLO 171 Navigation World Geodetic System (WGS – 84) Reference Earth Model Parameters Notation Value Ellipsoid Semi-major Axis a 6.378.137 m Ellipsoid Flattening (Ellipticity) f 1/298.257223563 (0.00335281066474) Second Degree Zonal Harmonic Coefficient of the Geopotential C2,0 -484.16685x10-6 Angular Velocity of the Earth Ω 7.292115x10-5 rad/s The Earth’s Gravitational Constant (Mass of Earth includes Atmosphere) GM 3.986005x1014 m3 /s2 Mass of Earth (Includes Atmosphere) M 5.9733328x1024 kg Theoretical (Normal) Gravity at the Equator (on the Ellipsoid) γe 9.7803267714 m/s2 Theoretical (Normal) Gravity at the Poles (on the Ellipsoid) γp 9.8321863685 m/s2 Mean Value of Theoretical (Normal) Gravity γ 9.7976446561 m/s2 Geodetic and Geophysical Parameters of the WGS-84 Ellipsoid
  • 172. SOLO 172 Navigation World Geodetic System (WGS 84) Reference Earth Model a ba f − =:f - Ellipsoid Flattening (Ellipticity) a - Ellipsoid Semi-major Axis b - Ellipsoid Semi-minor Axis e - Ellipsoid Eccentricity 2 2 22 2 2: ff a ba e −= − = ( ) 2 11 eafab −=−= Reference Ellipsoid
  • 173. SOLO 173 Navigation Reference Ellipsoid Ellipse Equation: 12 2 2 2 =+ b y a x Slope of the Normal to Ellipse: 2 2 tan bx ay yd xd =−=φ The Slope of the Geocentric Line to the same point x y =λtan λλ sincos RyRx == Deviation Angle between Geographic and Geodetic At Ellipsoid Surface λφ tantan 2 2 b a =       = − λφ tantan 2 2 1 b a ( ) φφλ tan1tantan 2 2 2 e a b −==
  • 174. SOLO 174 Navigation Reference Ellipsoid Ellipse Equation: λφδ −= 12 2 2 2 =+ b y a x Slope of the Normal to Ellipse: 2 2 tan bx ay yd xd =−=φ The Slope of the Geocentric Line to the same point x y =λtan       −=       −+       − = + − = + − = 1 11 1 1 tantan1 tantan tan 2 2 2 2 2 2 2 2 2 22 22 2 2 b a a yx a x x a b a x y bx ay x y bx ay λφ λφ δ λλ sincos RyRx == ( )  ( ) ( )λλλδ 2sin2sin 2 tan2sin 2 tan 1 2 11 12 22 22 1 f ba R b ba a ba R ba ba f ≈             +       − =            − = ≈≈<< −−  Deviation Angle between Geographic and Geodetic At Ellipsoid Surface
  • 175. SOLO 175 Navigation Reference Ellipsoid For a point at a Height h near the Ellipsoid the value of δ must be corrected: u−= 1δδ From the Law of Sine we have: Deviation Angle between Geographic and Geodetic At Altitude h from Ellipsoid Surface ( ) R h hR huu ≈ + ≈= − 11 sin sin sin sin δδπ Since u and δ1 are small: 1δ R h u ≈ The corrected value of δ is: ( )λδδδ 2sin11 11 f R h R h u       −=      −=−= Therefore: ( )λλδλφ 2sin1 f R h       −+=+=
  • 176. SOLO 176 Navigation World Geodetic System (WGS 84) where λ – Longitude e – Eccentricity = 0.08181919 Reference Earth Model In Earth Center Earth Fixed Coordinate –ECEF-System (E) the Vehicle Position is given by: ( ) ( ) ( ) ( )           + + + =           = φ φλ φλ sin cossin coscos HR HR HR z y x P M N N E E E E  ( ) NhH e a RN += − = 2/12 sin1 φ Another variable, used frequently, is the radius of the Ellipsoid referred as the Meridian Radius ( ) ( ) 2/32 2 sin1 1 φe ea RM − − =
  • 177. SOLO 177 Navigation Reference Ellipsoid Let develop the RN and RM: Deviation Angle between Geographic and Geodetic At Altitude h from Ellipsoid Surface Ellipse Equation: ( ) 222 2 2 2 2 11 aeb b y a x −==+ From this Equation, at any point (x,y) on the Ellipse, we have: φtan 1 2 2 −=−= ay bx xd yd 32 4 32 2222 2 2 2 2 22 2 22 2 2 2 111 ya b ya xbya a b y x a b y x ya b xd yd y x ya b xd yd −= + −=      +−=      −−= From the Ellipse Equation: ( ) φ φ φ 2 22 2 2 2 222 2 2 2 2 2 2 2 2 cos sin1 1 1 tan1111 e a x e e a x b a x y a x − =      − −+=      += ( ) ( ) ( ) 2/122 2 2 2 2/122 sin1 sin1 tan sin1 cos φ φ φ φ φ e ea x a b y e a x − − ==→ − = From the Figure above: ( ) 2/122 sin1cos φφ e ax RN − ==
  • 178. SOLO 178 Navigation Reference Ellipsoid Let develop the RN and RM (continue): Deviation Angle between Geographic and Geodetic At Altitude h from Ellipsoid Surface we have at any point (x,y) on the Ellipse: φtan 1 2 2 −=−= ay bx xd yd ( ) 3 22 32 4 2 2 11 y ea ya b xd yd − −=−= The Radius of Curvature of the Ellipse at the point (x,y) is: ( ) ( ) ( ) ( ) ( ) 2/322 2 2/322 3323 22 2/3 2 2 2 2/32 sin1 1 sin1 sin1 1 tan 1 11 : φφ φφ e ea e ea ea xd yd xd yd RM − − = − − −       + =               + = ( ) ( ) ( ) 2/122 2 2 2 2/122 sin1 sin1 tan sin1 cos φ φ φ φ φ e ea x a b y e a x − − ==→ − = ( ) ( ) 2/322 2 sin1 1 : φe ea RM − − =
  • 179. SOLO 179 Navigation Reference Ellipsoid Deviation Angle between Geographic and Geodetic At Altitude h from Ellipsoid Surface ( ) ( ) 2/322 2 sin1 1 : φe ea RM − − = ( ) 2/122 sin1cos φφ e ax RN − == a ba f − =: 2 2 22 2 2: ff a ba e −= − =Using ( ) ( )[ ] ( ) ( ) [ ] ++−≈      +−++−≈ −− − = φφ φ 2222 2/322 2 sin321sin2 2 3 121 sin21 1 : ffaffffa ff fa RM ( )[ ] ( ) [ ]φφ φ 222 2/122 sin31sin2 2 3 1 sin21 faffa ff a RN +≈    +−+≈ −− =  [ ]φ2 sin321 ffaRM +−≈ [ ]φ2 sin31 faRN +≈ We used and we neglect f2 terms ( ) ( ) + − ++= − !2 1 1 1 1 nn xn x n
  • 180. SOLO 180 Navigation World Geodetic System (WGS 84) Reference Earth Model The definition of geodetic latitude (φ) and longitude (λ) on an ellipsoid. The normal to the surface does not pass through the centre Reference Ellipsoid Geodetic latitude: the angle between the normal and the equatorial plane. The standard notation in English publications is ϕ Geocentric latitude: the equatorial plane and the radius from the centre to a point on the surface. The relation between the geocentric latitude (ψ) and the geodetic latitude ( ) isϕ derived in the above references as The definition of geodetic (or geographic) and geocentric latitudes ( ) ( )[ ]φφψ tan1tan 21 e−= −

Editor's Notes

  • #4: George M. Siouris, “Aerospace Avionics Systems, A Modern Synthesis”, Academic Press, Inc., 1993
  • #5: George M. Siouris, “Aerospace Avionics Systems, A Modern Synthesis”, Academic Press, Inc., 1993
  • #6: Solo Hermelin, “Spherical Trigonometry”,
  • #7: Solo Hermelin, “Spherical Trigonometry”,
  • #8: George M. Siouris, “Aerospace Avionics Systems, A Modern Synthesis”, Academic Press, Inc., 1993
  • #9: George M. Siouris, “Aerospace Avionics Systems, A Modern Synthesis”, Academic Press, Inc., 1993
  • #10: George M. Siouris, “Aerospace Avionics Systems, A Modern Synthesis”, Academic Press, Inc., 1993
  • #11: George M. Siouris, “Aerospace Avionics Systems, A Modern Synthesis”, Academic Press, Inc., 1993
  • #63: “Basic Guide to Advanced Navigation”, NATO Research and Technology Organisation Publication, SET-114/RTG-65,
  • #64: “Basic Guide to Advanced Navigation”, NATO Research and Technology Organisation Publication, SET-114/RTG-65,
  • #65: Ian Moir, Allan Seabridge, “Military Avionics Systems”, John Wiley &amp; Sons, LTD., 2006
  • #94: “Basic Guide to Advanced Navigation”, NATO Research and Technology Organisation Publication, SET-114/RTG-65,
  • #97: M.S. Grewal, L.R. Weill, A.P. Anrews, “Inertial Positioning Systems, Inertial Navigation and Integration”, John Wiley &amp; Sons, 2001
  • #98: M.S. Grewal, L.R. Weill, A.P. Anrews, “Inertial Positioning Systems, Inertial Navigation and Integration”, John Wiley &amp; Sons, 2001
  • #101: “Basic Guide to Advanced Navigation”, NATO Research and Technology Organisation Publication, SET-114/RTG-65,
  • #102: “Basic Guide to Advanced Navigation”, NATO Research and Technology Organisation Publication, SET-114/RTG-65,
  • #103: “Basic Guide to Advanced Navigation”, NATO Research and Technology Organisation Publication, SET-114/RTG-65,
  • #104: M.S. Grewal, L.R. Weill, A.P. Anrews, “Inertial Positioning Systems, Inertial Navigation and Integration”, John Wiley &amp; Sons, 2001
  • #105: “Basic Guide to Advanced Navigation”, NATO Research and Technology Organisation Publication, SET-114/RTG-65,
  • #106: “Basic Guide to Advanced Navigation”, NATO Research and Technology Organisation Publication, SET-114/RTG-65,
  • #107: “GPS Compedium”,
  • #108: “Basic Guide to Advanced Navigation”, NATO Research and Technology Organisation Publication, SET-114/RTG-65,
  • #109: “Basic Guide to Advanced Navigation”, NATO Research and Technology Organisation Publication, SET-114/RTG-65,
  • #110: http://en.wikipedia.org/wiki/Global_Positioning_System
  • #111: http://en.wikipedia.org/wiki/Global_Positioning_System
  • #112: http://en.wikipedia.org/wiki/Global_Positioning_System
  • #113: G. Xu, “GPS, Theory, Algorithms and Applications”, 2nd Edition, Springer, 2003, 2007
  • #120: G. Xu, “GPS, Theory, Algorithms and Applications”, 2nd Edition, Springer, 2003, 2007
  • #121: G. Xu, “GPS, Theory, Algorithms and Applications”, 2nd Edition, Springer, 2003, 2007
  • #122: M. S. Grewal, L. R. Weill, A. P. Andrews, “Global Positioning Systems, Inertial Navigation and Integration”, 2001, John Wiley &amp; Sons
  • #123: M. S. Grewal, L. R. Weill, A. P. Andrews, “Global Positioning Systems, Inertial Navigation and Integration”, 2001, John Wiley &amp; Sons
  • #124: M. S. Grewal, L. R. Weill, A. P. Andrews, “Global Positioning Systems, Inertial Navigation and Integration”, 2001, John Wiley &amp; Sons
  • #125: M. S. Grewal, L. R. Weill, A. P. Andrews, “Global Positioning Systems, Inertial Navigation and Integration”, 2001, John Wiley &amp; Sons
  • #126: M. S. Grewal, L. R. Weill, A. P. Andrews, “Global Positioning Systems, Inertial Navigation and Integration”, 2001, John Wiley &amp; Sons
  • #127: M. S. Grewal, L. R. Weill, A. P. Andrews, “Global Positioning Systems, Inertial Navigation and Integration”, 2001, John Wiley &amp; Sons
  • #128: R. Prasad, M. Ruggieri, “Applied Satellite Navigation Using GPS, Galileo and Augmented Systems”, Artech House, 2005
  • #129: B. Hofmann-Wellenhof, H. Lichtenegger, J. Collins, “GPS Theory and Practice”, 2nd Ed., Springer –Verlag,1993 Guochang Xu, “GPS Theory, Algorithms and Applications”, 2nd Ed., Springer-Verlag, 2003, 2007 R. Prasad, M. Ruggieri, “Applied Satellite Navigation Using GPS, Galileo and Augmented Systems”, Artech House, 2005
  • #130: B. Hofmann-Wellenhof, H. Lichtenegger, J. Collins, “GPS Theory and Practice”, 2nd Ed., Springer –Verlag,1993 Guochang Xu, “GPS Theory, Algorithms and Applications”, 2nd Ed., Springer-Verlag, 2003, 2007 M.S. Grewal, L.R. Weill, A.P. Andrews, “Global Positioning Systems, Inertial Navigation and Integration”, John Wiley &amp; Sons, 2001 R. Prasad, M. Ruggieri, “Applied Satellite Navigation Using GPS, Galileo and Augmented Systems”, Artech House, 2005
  • #131: R. Prasad, M. Ruggieri, “Applied Satellite Navigation Using GPS, Galileo and Augmented Systems”, Artech House, 2005
  • #132: M. S. Grewal, L. R. Weill, A. P. Andrews, “Global Positioning Systems, Inertial Navigation and Integration”, 2001, John Wiley &amp; Sons
  • #133: R. Prasad, M. Ruggieri, “Applied Satellite Navigation Using GPS, Galileo and Augmented Systems”, Artech House, 2005
  • #134: R. Prasad, M. Ruggieri, “Applied Satellite Navigation Using GPS, Galileo and Augmented Systems”, Artech House, 2005
  • #135: R. Prasad, M. Ruggieri, “Applied Satellite Navigation Using GPS, Galileo and Augmented Systems”, Artech House, 2005
  • #136: “GPS Essentials of Satellite Navigation Compedium”,
  • #137: R. Prasad, M. Ruggieri, “Applied Satellite Navigation Using GPS, Galileo and Augmented Systems”, Artech House, 2005
  • #138: R. Prasad, M. Ruggieri, “Applied Satellite Navigation Using GPS, Galileo and Augmented Systems”, Artech House, 2005
  • #139: M. S. Grewal, L. R. Weill, A. P. Andrews, “Global Positioning Systems, Inertial Navigation and Integration”, 2001, John Wiley &amp; Sons
  • #140: “Basic Guide to Advanced Navigation”, NATO Research and Technology Organisation Publication, SET-114/RTG-65,
  • #141: M. S. Grewal, L. R. Weill, A. P. Andrews, “Global Positioning Systems, Inertial Navigation and Integration”, 2001, John Wiley &amp; Sons “Basic Guide to Advanced Navigation”, NATO Research and Technology Organisation Publication, SET-114/RTG-65,
  • #142: Terry More, “GNSS Status and Future Developments”, The University of Nottingham, 1911
  • #143: Terry More, “GNSS Status and Future Developments”, The University of Nottingham, 1911
  • #144: Terry More, “GNSS Status and Future Developments”, The University of Nottingham, 1911
  • #145: Terry More, “GNSS Status and Future Developments”, The University of Nottingham, 1911
  • #146: Terry More, “GNSS Status and Future Developments”, The University of Nottingham, 1911 “GPS Compedium”,
  • #147: Terry More, “GNSS Status and Future Developments”, The University of Nottingham, 1911
  • #148: Terry More, “GNSS Status and Future Developments”, The University of Nottingham, 1911
  • #149: Terry More, “GNSS Status and Future Developments”, The University of Nottingham, 1911
  • #150: Terry More, “GNSS Status and Future Developments”, The University of Nottingham, 1911
  • #151: Terry More, “GNSS Status and Future Developments”, The University of Nottingham, 1911
  • #152: Terry More, “GNSS Status and Future Developments”, The University of Nottingham, 1911
  • #153: M. S. Grewal, L. R. Weill, A. P. Andrews, “Global Positioning Systems, Inertial Navigation and Integration”, 2001, John Wiley &amp; Sons
  • #154: M. S. Grewal, L. R. Weill, A. P. Andrews, “Global Positioning Systems, Inertial Navigation and Integration”, 2001, John Wiley &amp; Sons
  • #155: “Basic Guide to Advanced Navigation”, NATO Research and Technology Organisation Publication, SET-114/RTG-65,
  • #156: “Basic Guide to Advanced Navigation”, NATO Research and Technology Organisation Publication, SET-114/RTG-65,
  • #157: “Basic Guide to Advanced Navigation”, NATO Research and Technology Organisation Publication, SET-114/RTG-65,
  • #158: “Basic Guide to Advanced Navigation”, NATO Research and Technology Organisation Publication, SET-114/RTG-65,
  • #159: “Basic Guide to Advanced Navigation”, NATO Research and Technology Organisation Publication, SET-114/RTG-65,
  • #160: “Basic Guide to Advanced Navigation”, NATO Research and Technology Organisation Publication, SET-114/RTG-65,
  • #161: “Basic Guide to Advanced Navigation”, NATO Research and Technology Organisation Publication, SET-114/RTG-65,
  • #162: “Basic Guide to Advanced Navigation”, NATO Research and Technology Organisation Publication, SET-114/RTG-65,
  • #163: “Basic Guide to Advanced Navigation”, NATO Research and Technology Organisation Publication, SET-114/RTG-65,
  • #164: “Basic Guide to Advanced Navigation”, NATO Research and Technology Organisation Publication, SET-114/RTG-65,
  • #166: Averil B. Chatfield, “Fundamentals of High Accuracy Inertial Navigation”, Progress in Astronautics and Aeronautics 174, 1997 George M. Siouris, “Aerospace Avionics System”, Academic Press, 1993, Appendix B
  • #167: http://en.wikipedia.org/wiki/Clairaut&amp;apos;s_theorem X. Li, H-J. Götze, “Tutorial: Ellipsoid, Geoid, Gravity, Geodesy, and Geophysics”, Geophysics, Vol. 66, No. 6, Nov-Dec. 2001
  • #168: http://en.wikipedia.org/wiki/Carlo_Somigliana X. Li, H-J. Götze, “Tutorial: Ellipsoid, Geoid, Gravity, Geodesy, and Geophysics”, Geophysics, Vol. 66, No. 6, Nov-Dec. 2001
  • #169: http://en.wikipedia.org/wiki/World_Geodetic_System Averil B. Chatfield, “Fundamentals of High Accuracy Inertial Navigation”, Progress in Astronautics and Aeronautics 174, 1997
  • #170: http://en.wikipedia.org/wiki/World_Geodetic_System
  • #171: http://earth-info.nga.mil/GandG/images/ww15mgh2.gif http://earth-info.nga.mil/GandG/publications/tr8350.2/wgs84fin.pdf Department of Defense, World Geodetic System 84, NIMA (National Imagery and Mapping Agency) TR8350.2, Third Edition
  • #172: George M. Siouris, “Aerospace Avionics System”, Academic Press, 1993, Appendix B
  • #173: http://en.wikipedia.org/wiki/Latitude
  • #174: Broxmeyer, C,. “Inertial Navigation Systems”, McGraw-Hill, 1964
  • #175: Broxmeyer, C,. “Inertial Navigation Systems”, McGraw-Hill, 1964
  • #176: Broxmeyer, C,. “Inertial Navigation Systems”, McGraw-Hill, 1964
  • #177: Averil B. Chatfield, “Fundamentals of High Accuracy Inertial Navigation”, Progress in Astronautics and Aeronautics 174, 1997 George M. Siouris, “Aerospace Avionics System”, Academic Press, 1993, Appendix B
  • #178: Broxmeyer, C,. “Inertial Navigation Systems”, McGraw-Hill, 1964
  • #179: Broxmeyer, C,. “Inertial Navigation Systems”, McGraw-Hill, 1964
  • #180: Broxmeyer, C,. “Inertial Navigation Systems”, McGraw-Hill, 1964
  • #181: http://en.wikipedia.org/wiki/Latitude