SlideShare a Scribd company logo
MULTIPLE INTEGRALS
rahimahj@ump.edu.my
 
xddyyxfdxdyyxf
dydxyxfdxdyyxf
dycbxayxR
x,yf
b
a
d
c
b
a
d
c
d
c
b
a
d
c
b
a
  
  















),(),(
),(),(
then
,:),(
regionrrectangulaaincontinuousis)(If
rahimahj@ump.edu.my
Iterated Integral
 


1
0
2
1
1
1
2
2
30(ii)
)23((i)
x
x
ydydx
dydxxyx
Example1
Evaluate the iterated integrals.
rahimahj@ump.edu.my
 
 
 
14
)1(2)2(226
])1()1(3[])1()1(3[
3)23(
obtainweintegrals,iteratedofdefinitiontheUsing(i)
332
1
3
2
1
2
2
1
2222
2
1
1
1
22
2
1
1
1
2






 



xdxx
dxxxxx
dxxyyxdydxxyx
y
y
rahimahj@ump.edu.my
Solution :
rahimahj@ump.edu.my
 
 
2
3535
)1515(
1530
obtainweintegrals,iteratedofdefinitiontheUsing(ii)
1
0
53
1
0
42
1
0
2
1
0
2
2





 


xx
dxxx
dxyydydx
xy
xy
x
x
rahimahj@ump.edu.my
theorem.sFubini’–integralsiteratedanas
calculatedbecanfunctioncontinuousanyofintegrals
doublethe1943),-(1879FubiniGaudiotoAccording
 dycbxayxR  ,:),(
ifregionrrectangulaaontheoremsFubini’
  
b
a
d
c
d
c
b
a
dydxyxfdxdyyxfdAyxf ),(),(),(
R
then
Fubini’s Theorem
rahimahj@ump.edu.my
  
b
a
y
yR
dydxyxfdAyxf
2
1
),(),(   
d
c
x
xR
dxdyyxfdAyxf
2
1
),(),(
 
(-2,1)and(3,1)(0,0),erticesv
h theregion witrtriangulaclosedtheis;),((iii)
sinand0
,,0boundedregiontheis;),((ii)
20,2:),(;4),((i)
),(Evaluate
2
2
Rxyyxf
xyy
xxRyyxf
yyxyyxRyxyxf
dAyxf
R






rahimahj@ump.edu.my
Example2
rahimahj@ump.edu.my
Solution :
 
5
36
5
2
4
2
)26(
]})(2[]2)2(2{[
2)4()4(
2
0
54
3
2
0
432
2
0
32222
2
0
22
2
0
2
2
2












 






yy
y
dyyyy
dyyyyy
dyxyxdxdyyxdAyx
yx
yx
y
y
yx
yxR
rahimahj@ump.edu.my
rahimahj@ump.edu.my
asdillustrateisRregionThe(ii)
Solution :
rahimahj@ump.edu.my
42
2sin
4
1
)2cos1(
4
1
2
sin
2
0
0
0
2
0
sin
0
2
0
sin
0























 




x
x
dxx
dx
x
dx
y
dydxydAy
xx
x
xy
yR
rahimahj@ump.edu.my
asdillustrateisRregionThe(iii)
Solution :
rahimahj@ump.edu.my
2
1
2
2
5
)49(
2
2
1
0
5
1
0
41
0
22
2
1
0
3
2
221
0
3
2
22
















 






y
dy
y
dyyy
y
dy
yx
dxdyxydAxy
yx
yx
y
y
yx
yxR
asdescribedissolidThe
.0and4,9
byboundedsolidtheofvolumetheFind
22
 zzyyx
922
 yx
yz  4
0z
R
rahimahj@ump.edu.my
Example 3
rahimahj@ump.edu.my
:RregiontheissolidtheofbaseThe
Solution :


 

















3
3
2
3
3
9
9
2
3
3
9
9
98
2
4
)4()4(
bygivenisvolumetheThus,
2
2
2
2
dxx
dx
y
y
dydxydAyV
V
xy
xy
x
x
xy
xyR
rahimahj@ump.edu.my
rahimahj@ump.edu.my










36
22
)sin(
22
sin
36
2
2sin
36
)12(cos36cos72
)cos3()sin1(9898
2/
2/
2/
2/
2/
2/
2
2/
2/
2
3
3
2

































t
t
dtttdt
tdttdxxV
Hence.cos3,sin3letNow tdtdxtx 
rahimahj@ump.edu.my
Example 4
 
2
0
1
20
2
(ii)
sin
(i)
Evaluate
y
x
x
dxdyedydx
y
y
 
asdillustrateis
RregionThe(i)
Solution :
Reversing The Order of
Integration
rahimahj@ump.edu.my
.integratedbecannot
sin
But  y
y
:nintegratiooforderthereverse,So dydx dxdy
:becomeregiontheThen,
 
 
21cos
cossin
)0(
sin
sin
sinsin
(i)
0
0
0
0
0
0 00








  



















 
yydy
dyy
y
y
dyx
y
y
dxdy
y
y
dydx
y
y
y
y
y
y
yx
x
y
y
yx
x
x
x
y
xy
rahimahj@ump.edu.my
rahimahj@ump.edu.my
asdillustrateisRregionThe(ii)
Solution :
rahimahj@ump.edu.my
.integratedbecannotBut
2
 dxex
:nintegratiooforderthereverseSo, dydx dxdy
:becomeregiontheThen,
rahimahj@ump.edu.my
 
  1
2
1
0
1
0
1
0
1
0
2
0
1
0
2
0
2
0
1
2/
2
2
22







  
















eedue
dxxe
dxye
dydxedxdye
u
u
u
u
x
x
x
x
x
xy
y
x
x
x
xy
y
x
y
y
x
yx
x
scoordinatepolarin the
)(ofintegraltheevaluatemaythen we)(
to)(functionaconvertcanthat weSuppose
the
inevaluateeasier toisitshape,circularinvolvingWhen
 r,fr,fz
x,yz

s.coordinatepolar
rahimahj@ump.edu.my
scoordinatePolar
r
θ
x
y
),( rP
cosrx 
sinry 
22
yxr 






 
x
y1
tan
 r0
 20 
rahimahj@ump.edu.my
R
dA
dV
A
V


R
dArfV
dArfdV
),(
),(


)( r,fz 
)( r,fz 
Applied Calculus Chapter  4 multiple integrals

 



1
0 0
22
2
2
0
4
0
22
)((ii)
)cos((i)
scoordinatepolarto
changingbyintegralsfollowingtheEvaluate
2
y
x
dxdy
yx
y
dydxyx
rahimahj@ump.edu.my
Example 5
asdescribedisRnintegratioofregionThe(i)
rahimahj@ump.edu.my
Solution :
0r
2r
0
2/ 
 
4
4sin
4sinsin
)(cos
)(cos
)cos(
Therefore
2/
0
2
1
2/
0
4
02
1
2/
0
4
0
2
1
2/
0
2
0
2
2
0
4
0
22
2













 
 
 

ddu
dudu
rdrdr
dydxyx
x
rahimahj@ump.edu.my
Solution :
asdescribedisRnintegratioofregionThe(ii)
8422
1
2
1
sin
2
csc
sin
2
sin
)sin(
Therefore
2/
4/
2/
4/
2
2
2/
4/
2
csc
0
22/
4/
csc
0
2
2/
4/
csc
0
2
2
1
0 0
22
2















































 
 



dd
d
r
drdr
rdrd
r
r
dxdy
yx
y
r
r
y
rahimahj@ump.edu.my
asdescribedisbaseitsandsolidThe
3.ExamplesolvetoscoordinatepolartheUse
R
3r
R
y
x
3 3
rahimahj@ump.edu.my
Example 6
  








36cos918)sin918(
sin
3
2
)sin4()sin4(
)sin4()4(
bygivenisVvolumetheThus,
2
0
2
0
2
0
3
0
3
2
2
0
3
0
2
2
0
3
0












 







d
d
r
r
drdrrrdrdr
dArdAyV
r
r
r
r
RR
rahimahj@ump.edu.my
rahimahj@ump.edu.my
A lamina is a flat sheet (or plate) that is so thin as to
be considered two-dimensional.
Suppose the lamina occupies a region D of the xy-
plane and its density (in units of mass per area) at a
point (x, y) in D is given by ρ(x, y), where ρ is a
continuous function on D. This means that
A
m
yx


 lim),(
where Δm and ΔA are the mass and area of a small
rectangle that contains (x, y) and the limit is taken as
the dimensions of the rectangle approach 0.
Laminas & Density
Definition mass of a planar lamina
of variable density
rahimahj@ump.edu.my
   
   
 
1 1
0 0
11
2
00
A triangular lamina with vertices 0,0 , 0,1
and 1,0 has density function , .
Find its total mass.
Solution :
,
1 1
...
2 24
x
R
x
x y xy
m x y dA xy dydx
m xy dx unit of mass


 
 

 
 
    
  

Example 7
rahimahj@ump.edu.my
The moment of a point about an axis is the product of
its mass and its distance from the axis.
To find the moments of a lamina about the x- and y-
axes, we partition D into small rectangles and assume
the entire mass of each subrectangle is concentrated
at an interior point. Then the moment of Rij about the
x-axis is given by
and the moment of Rk about the y-axis is given by
  ****
),())(mass( ijijijij yAyxy  
  ****
),())(mass( ijijijij xAyxx  
Moment
rahimahj@ump.edu.my
  


m
i
n
j D
ijijij
nm
x dAyxyAyxyM
1 1
***
,
),(),(lim 
The moment about the x-axis of the entire
lamina is
The moment about the y-axis of the entire
lamina is
  


m
i
n
j D
ijijij
nm
y dAyxxAyxxM
1 1
***
,
),(),(lim 
rahimahj@ump.edu.my
Center of Mass
The center of mass of a lamina is the “balance point.”
That is, the place where you could balance the lamina
on a “pencil point.” The coordinates (x, y) of the center
of mass of a lamina occupying the region D and having
density function ρ(x, y) is
where the mass m is given by
 
D
x
D
y
dAyxy
mm
M
ydAyxx
mm
M
x ),(
1
),(
1


D
dAyxm ),(
Moments and Center of Mass of A
Variable Density Planar Lamina
Applied Calculus Chapter  4 multiple integrals
     2
Find the mass and center of mass of the lamina
that occupies the region and has the given
density of function .
a) , 0 2, 1 1 ; ,
4 4
: , ,0
3 3
) is bounded by , 0, 0, and 1;x
D
D x y x y x y xy
Ans
b D y e y x x
x



      
 
 
 
   
 
 
 
 
 
32
2
2 2
,
4 11 1
: 1 , ,
4 2 1 9 1
y y
ee
Ans e
e e

 
 
   
Example 8
rahimahj@ump.edu.my
Example 9
Find the surface area of the portion of the surface
that lies above the rectangle R in the xy-
plane whose coordinates satisfy
2
4 xz 
40and10  yx
rahimahj@ump.edu.my
Example 10
Find the surface area of the portion of the paraboloid
below the plane
22
yxz  1z
GregionclosedD-3aon
)(variablesthreeoffunctionaofnintegratio
anisscoordinateCartesianinintegralsTriple
x,y,zf
dzdAdzdydxdV 
rahimahj@ump.edu.my
rahimahj@ump.edu.my
Example 11
Gregiontheofvolume(ii)The
6),,(wheredV),,((i)
evaluateplane,-andplane-,1
byboundedoctantfirstin theregiontheisGIf
G
2
zzyxfzyxf
yzxyyz,xy



belowshownas
isplane-xyon theRprojectionitsandGregionThe
rahimahj@ump.edu.my
Solution:
obtainweThus.1and
10byboundedRregionaisplane-
on theGofprojectionThe1)(zand
0)(6z,)(havewecaseIn this
2
2
1




yxy
,, xxxy
– y.x,y
x,yzx,y,zf
 


 















R
R
yz
z
R
yz
zGG
dAy
dAz
dAzdzzdVdVzyxf
2
1
0
2
1
0
)1(3
3
66),,(
rahimahj@ump.edu.my
(i)
 
35
16
75
3
)331()1(
)1(
)1(3
1
0
7
53
1
0
642
1
0
32
1
0
13
1
0
1
2
2
2












 








x
xxx
dxxxxdxx
dxy
dydxy
x
x
y
xy
x
x
y
xy
rahimahj@ump.edu.my
♣
  










 RR
yz
zG
dAydAdzdVV )1(
1
0
15
4
103222
1
2
)1(
1
0
531
0
4
2
1
0
12
1
0
1
2
2























 








xxx
dx
x
x
dx
y
y
dydxy
x
x
y
xy
x
x
y
xy
rahimahj@ump.edu.my
(ii)
)( rdrddzdzdAdV 
x
z
y
dAr
dr
dz
dƟ
rdƟ
rahimahj@ump.edu.my
rahimahj@ump.edu.my
sCoordinatePolarlCylindrica
cosrx 
sinry 
22
yxr 






 
x
y1
tan
 r0
 20 
 z
.
areplane-
on theRprojectionitsandGregiontheofsolidThe
.0and,25,9bybounded
solidtheofvolumethefindtoscoordinatelcylindricaeUs
2222
xy
zyxzyx 
922
 yx
22
25 yxz 
0z
Example 12
 
3
122
3
61
3
)25(
)25(
2
1
25
25
Thus,0.zhavealsoWe.25z
obtainwe,relationUsing
2
0
2
0
9
0
2/3
2
0
9
0
2/1
2
0
3
0
2
2
25
0
22
222
2
1











 















 
 






dd
u
dudurdrdr
dArdAdzdVV
-r
ryx
r
r
RR
rz
zG
rahimahj@ump.edu.my
Solution:
rahimahj@ump.edu.my
Example 13
areplane-xyon theRprojectionitsandGregiontheofsolidThe
9.zplanetheandparaboloidby the
boundedsolidtheofvolumethefindtoscoordinatelcylindricaUse
22
 yxz
2
81
4
81
42
9
)9(
)9(
)9(
isvolumerequiredtheThus
2
0
2
0
3
0
422
0
3
0
3
2
0
3
0
2
2
9
2





























 
 






d
d
rr
drdrr
rdrdr
dArdAdzdVV
r
r
RR
z
rzG
rahimahj@ump.edu.my
Solution:
ρ
dρ
Ɵ
Ɵ
dƟ
ϕ
dϕ
dρ
x
y
z
rahimahj@ump.edu.my
 dsin
d
 dsin
rahimahj@ump.edu.my
sCoordinatePolarSpherical


ddd
ddddV
sin
)sin)()((
2


rahimahj@ump.edu.my
belowdillustrateasGregiontheofsolidThe
.3spheretheinsideand
3
1
conetheaboveliesthatsolidtheofvolumetheFind




Example 14
 














9
2
9
)1cos(9cos9
sin9sin
3
sin
isvolumerequiredtheThus
2
0
2
0
3
2
0
0
2
0 0
2
0 0
3
0
3
2
0 0
3
0
2
3
33
3














d
dd
dddd
ddddVV
G
rahimahj@ump.edu.my
Solution:
rahimahj@ump.edu.my
“In order to succeed, your desire for success
should be greater than your fear of failure. ”
rahimahj@ump.edu.my

More Related Content

PPT
Multiple integrals
PDF
Complex function
PPT
Line integral.ppt
PPT
Application of definite integrals
PPTX
Differential calculus maxima minima
PPTX
Complex analysis
PPTX
MATRICES AND CALCULUS.pptx
PDF
Power series
Multiple integrals
Complex function
Line integral.ppt
Application of definite integrals
Differential calculus maxima minima
Complex analysis
MATRICES AND CALCULUS.pptx
Power series

What's hot (20)

PPT
1574 multiple integral
PPTX
Limit and continuity (2)
PPT
27 triple integrals in spherical and cylindrical coordinates
PDF
Lesson 26: Integration by Substitution (slides)
PDF
Lesson 11: Limits and Continuity
PPTX
Limits, continuity, and derivatives
PDF
Lesson 19: Maximum and Minimum Values
PPTX
Inverse Function.pptx
PPTX
Odepowerpointpresentation1
PPTX
Integral calculus
PPT
Limits And Derivative
PPT
Techniques of Integration ppt.ppt
DOCX
Application of derivatives
PPT
first order ode with its application
PDF
Limits, Continuity & Differentiation (Theory)
PPTX
Deriving the composition of functions
PDF
3.5 Rational Functions
PPTX
SERIES SOLUTION OF ORDINARY DIFFERENTIALL EQUATION
PPTX
Solving quadratic equations
PPTX
Double Integral Powerpoint
1574 multiple integral
Limit and continuity (2)
27 triple integrals in spherical and cylindrical coordinates
Lesson 26: Integration by Substitution (slides)
Lesson 11: Limits and Continuity
Limits, continuity, and derivatives
Lesson 19: Maximum and Minimum Values
Inverse Function.pptx
Odepowerpointpresentation1
Integral calculus
Limits And Derivative
Techniques of Integration ppt.ppt
Application of derivatives
first order ode with its application
Limits, Continuity & Differentiation (Theory)
Deriving the composition of functions
3.5 Rational Functions
SERIES SOLUTION OF ORDINARY DIFFERENTIALL EQUATION
Solving quadratic equations
Double Integral Powerpoint
Ad

Similar to Applied Calculus Chapter 4 multiple integrals (20)

PPTX
Chapter4multipleintegrals 150105021233-conversion-gate02
PDF
doubleintpptfinalllllfinal-100601222513-phpapp02.pdf
PPTX
Double integration final
PDF
Applied Mathematics Multiple Integration by Mrs. Geetanjali P.Kale.pdf
PPTX
doubleintegrals-100914031204-phpapp02.pptx
PDF
Engineering Mathematics Multiple Integral.pdf
PPTX
multiple intrigral lit
PPTX
Double Integrals
PDF
6. Multiple Integrals - RPMjkldajNDvNSDmnvS<MDv
PDF
5_Math-2_2024_center of mass aand MI.pdf
PPTX
Maths-double integrals
PPTX
2-VECTOR INTEGRATION of mathematics subject
PPTX
Multiple ppt
PPTX
Multiple intigration ppt
PPTX
Calculus multiple integral
PPTX
10.1-Double-integrals-definition-2.power point
PPTX
10.1-Double-integrals-definition-2 (1).pptx
PDF
Assignment For Matlab Report Subject Calculus 2
PPT
Finite Element Analysis - UNIT-3
PPTX
Física Integrales_Katherine Jaya
Chapter4multipleintegrals 150105021233-conversion-gate02
doubleintpptfinalllllfinal-100601222513-phpapp02.pdf
Double integration final
Applied Mathematics Multiple Integration by Mrs. Geetanjali P.Kale.pdf
doubleintegrals-100914031204-phpapp02.pptx
Engineering Mathematics Multiple Integral.pdf
multiple intrigral lit
Double Integrals
6. Multiple Integrals - RPMjkldajNDvNSDmnvS<MDv
5_Math-2_2024_center of mass aand MI.pdf
Maths-double integrals
2-VECTOR INTEGRATION of mathematics subject
Multiple ppt
Multiple intigration ppt
Calculus multiple integral
10.1-Double-integrals-definition-2.power point
10.1-Double-integrals-definition-2 (1).pptx
Assignment For Matlab Report Subject Calculus 2
Finite Element Analysis - UNIT-3
Física Integrales_Katherine Jaya
Ad

More from J C (15)

PDF
Testing of hardened concrete
 
PDF
Special concrete not made using portland cement
 
PDF
Shrinkage and creep
 
PDF
Polymer modified concrete 1
 
PDF
No fines concrete
 
PDF
Lightweight aggregate concrete
 
PDF
High workability concrete
 
PDF
Chemical attack
 
PDF
Carbonation
 
PDF
Alkali aggregate reaction
 
PDF
Aerated concrete
 
PPTX
Applied Calculus Chapter 3 partial derivatives
 
PPTX
Applied Calculus Chapter 1 polar coordinates and vector
 
PPTX
Applied Calculus Chapter 2 vector valued function
 
PPTX
Glass( Civil Engineering Material)
 
Testing of hardened concrete
 
Special concrete not made using portland cement
 
Shrinkage and creep
 
Polymer modified concrete 1
 
No fines concrete
 
Lightweight aggregate concrete
 
High workability concrete
 
Chemical attack
 
Carbonation
 
Alkali aggregate reaction
 
Aerated concrete
 
Applied Calculus Chapter 3 partial derivatives
 
Applied Calculus Chapter 1 polar coordinates and vector
 
Applied Calculus Chapter 2 vector valued function
 
Glass( Civil Engineering Material)
 

Recently uploaded (20)

PDF
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
PDF
FourierSeries-QuestionsWithAnswers(Part-A).pdf
PPTX
Pharmacology of Heart Failure /Pharmacotherapy of CHF
PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
PPTX
Introduction to Child Health Nursing – Unit I | Child Health Nursing I | B.Sc...
PDF
Origin of periodic table-Mendeleev’s Periodic-Modern Periodic table
PPTX
BOWEL ELIMINATION FACTORS AFFECTING AND TYPES
PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
PDF
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
PDF
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PPTX
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
PDF
O7-L3 Supply Chain Operations - ICLT Program
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PPTX
The Healthy Child – Unit II | Child Health Nursing I | B.Sc Nursing 5th Semester
PDF
Pre independence Education in Inndia.pdf
PPTX
Cell Structure & Organelles in detailed.
PDF
01-Introduction-to-Information-Management.pdf
PDF
VCE English Exam - Section C Student Revision Booklet
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
FourierSeries-QuestionsWithAnswers(Part-A).pdf
Pharmacology of Heart Failure /Pharmacotherapy of CHF
2.FourierTransform-ShortQuestionswithAnswers.pdf
Introduction to Child Health Nursing – Unit I | Child Health Nursing I | B.Sc...
Origin of periodic table-Mendeleev’s Periodic-Modern Periodic table
BOWEL ELIMINATION FACTORS AFFECTING AND TYPES
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
Supply Chain Operations Speaking Notes -ICLT Program
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
O7-L3 Supply Chain Operations - ICLT Program
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
The Healthy Child – Unit II | Child Health Nursing I | B.Sc Nursing 5th Semester
Pre independence Education in Inndia.pdf
Cell Structure & Organelles in detailed.
01-Introduction-to-Information-Management.pdf
VCE English Exam - Section C Student Revision Booklet

Applied Calculus Chapter 4 multiple integrals