Âû÷èñëèòåëüíî òðóäíûå çàäà÷è è
         äåðàíäîìèçàöèÿ
Ëåêöèÿ 9: Ýêñïàíäåðû è ïîíèæåíèå
       âåðîÿòíîñòè îøèáêè

         Äìèòðèé Èöûêñîí
            ÏÎÌÈ ÐÀÍ

          26 àïðåëÿ 2009


                                   1 / 11
Ïëàí




1   Ïîëèíîìèàëüíîå ïîíèæåíèå îøèáêè áåç èñïîëüçîâàíèÿ
    äîïîëíèòåëüíûõ ñëó÷àéíûõ áèòîâ
2   Ýêñïîíåíöèàëüíîå ïîíèæåíèå îøèáêè ñ èñïîëüçîâàíèåì
    î÷åíü ìàëåíüêîãî ÷èñëà äîïîëíèòåëüíûõ ñëó÷àéíûõ áèòîâ




                                                            2 / 11
RP: âåðîÿòíîñòíûå àëãîðèòìû ñ
                       îäíîñòîðîííåé îøèáêîé


Îïðåäåëåíèå:

ßçûê L ∈ RP, åñëè ñóùåñòâóåò ïîëèíîìèàëüíûé âåðîÿòíîñòíûé
àëãîðèòì A, òàêîé ÷òî
  • A(x) = 0, ïðè x ∈ L
                     /
  • P{A(x) = 1} ≥ 2 , ïðè x ∈ L
                    1



Öåëü

Óìåíüøèòü âåðîÿòíîñòü îøèáêè, èñïîëüçóÿ êàê ìîæíî ìåíüøå
äîïîëíèòåëüíûõ ñëó÷àéíûõ áèòîâ.

                                                            3 / 11
Êîìáèíàòîðíûå ýêñïàíäåðû


Ãðàô G (V , E ) íàçûâàåòñÿ (n, d, c)-êîìáèíàòîðíûì
ýêñïàíäåðîì, åñëè:
  • Â íåì n âåðøèí
  • Âñå âåðøèíû èìåþò ñòåïåíü d
  • ∀A ⊂ V , |A| ≤ n âûïîëíÿåòñÿ |A ∪ Γ(A)| ≥ (1 + c)|A|.
                    2
  • Γ(A) = {v ∈ V | ∃a ∈ A : (v , a) ∈ E }
Ýêñïàíäåð íàçûâàåòñÿ ÿâíûì, åñëè ñóùåñòâóåò
ïîëèíîìèàëüíûé àëãîðèòì, êîòîðûé ïî íîìåðó âåðøèíû
âûäàåò íîìåðà åãî ñîñåäåé.


                                                            4 / 11
Ïîíèæåíèå âåðîÿòíîñòè îøèáêè
•   Ïóñòü ÿçûê L ðåøàåòñÿ àëãîðèòìîì A ñ îäíîñòîðîííåé
    îøèáêîé.
•   Ïóñòü A èñïîëüçóåò r ñëó÷àéíûõ áèòîâ
•    2r ïëîõèõ ñëó÷àéíûõ ñòðîê (íà êîòîðûõ àëãîðèòì äàåò
    íåïðàâèëüíûé îòâåò)
•   Ðàññìîòðèì ÿâíûé (2r , d, c)-êîìáèíàòîðíûé ýêñïàíäåð. Â
    êàæäîé âåðøèíå ïîñëåäîâàòåëüíîñòü ñëó÷àéíûõ áèòîâ.
•   Âûáåðåì ñëó÷àéíûì îáðàçîì âåðøèíó (ïîòðàòèâ r
    ñëó÷àéíûõ áèòîâ). È çàïóñòèì àëãîðèòì ñî âñåìè
    ïîñëåäîâàòåëüíîñòÿìè ñëó÷àéíûõ áèòîâ, êîòîðûå ëåæàò íà
    ðàññòîÿíèè l îò äàííîé âåðøèíû. Âûäàäèì 1, åñëè ≥ 1 èç
    îòâåòîâ áûë 1.
•   Ïóñòü B  ìíîæåñòâî ïëîõèõ âåðøèí (èç êîòîðûõ ìû íå
    çàïóñòèì àëãîðèòì â õîðîøèõ âåðøèíàõ).
•   |B|(1 + c)l ≤ 2r =⇒ äîëÿ ïëîõèõ âåðøèí (1+c) .
                                                 l

                                                              5 / 11
Ïîíèæåíèå âåðîÿòíîñòè îøèáêè


•   Åñëè l = log n, òî ïîòåðÿ ïî âðåìåíè poly (n), îøèáêà
    óìåíüøàåòñÿ â poly (n) ðàç.
•   À åñëè íàäî óìåíüøèòü îøèáêó â 2n ðàç?
•   Ñëó÷àéíî âûáåðåì âåðøèíó ãðàôà (ïîòðàòèâ r ñëó÷àéíûõ
    áèòîâ).
•   Óñòðîèì ñëó÷àéíîå áëóæäàíèå äëèíû k (ïîòðàòèì O(k)
    áèòîâ).
•   Çàïóñòèì àëãîðèòì íà ñòðî÷êàõ â k âåðøèíàõ áëóæäàíèÿ.
    Âûäàäèì 1, åñëè ≥ 1 èç îòâåòîâ áûë 1.
•   Íàøà öåëü ïîêàçàòü, ÷òî òàê ìîæíî óìåíüøèòü îøèáêó äî
    2Ω(k) .



                                                            6 / 11
Àëãåáðàè÷åñêèé ýêñïàíäåð

Ãðàô G (V , E ) íàçûâàåòñÿ (n, d, α)-àëãåáðàè÷åñêèì
ýêñïàíäåðîì, åñëè:
  • Â íåì n âåðøèí
  • Âñå âåðøèíû èìåþò ñòåïåíü d
  • A  íîðìèðîâàííàÿ ìàòðèöà ñìåæíîñòè Ai,j = d , åñëè
                                                    k

    âåðøèíû i è j ñîåäèíåíû k ðåáðàìè.
  • λ  âòîðîå ïî àáñîëþòíîé âåëè÷èíå ñîáñòâåííîå ÷èñëî
    ìàòðèöû A, |λ| ≤ α  1.
Òåîðåìà. Åñëè G ÿâëÿåòñÿ (n, d, α)-àëãåáðàè÷åñêèì
ýêñïàíäåðîì, òî îí ÿâëÿåòñÿ è (n, d, 1−α )-êîìáèíàòîðíûì
ýêñïàíäåðîì.
                                       2d




                                                           7 / 11
Îïðåäåëåíèå. A = max{ Av 2 : v 2 = 1}
Ëåììà. Ïóñòü A  íîðìàëèçîâàííàÿ ìàòðèöà
(n, d, α)-ýêñïàíäåðà. Òîãäà A = (1 − α)J + αC , ãäå J  ìàòðèöà
n × n, Jij = n , à C ≤ 1.
               1

Äîêàçàòåëüñòâî.
  • C = α (A − (1 − α)J). Íàäî äîêàçàòü: ∀v , Cv 2 ≤ v 2 .
           1

  • v = γ1 + w , ãäå w ⊥ 1.
  • A1 = 1, J1 = 1, Jw = 0.
  • Cv = α (A − (1 − α)J)(γ1 + w ) = γ1 + α Aw .
             1                              1

           2          2       1        2          2         2         2
  •   Cv       = γ1       +   α   Aw       ≤ γ1       + w       = v




                                                                          8 / 11
Ñëó÷àéíîå áëóæäàíèå

•   Åñòü (n = 2r , d, α)  àëãåáðàè÷åñêèé ýêñïàíäåð.
•   Êàæäîé âåðøèíå ñîïîñòàâëåíà ñòðîêà èç r ñëó÷àéíûõ
    áèòîâ.
•   Ïóñòü X  ýòî ìíîæåñòâî ïëîõèõ âåðøèí. |X | = n.
•   Îöåíèì âåðîÿòíîñòü ïðè ñëó÷àéíîì áëóæäàíèè íè ðàçó íå
    âûéòè èç X .
•   Ïóñòü B  ýòî ìàòðèöà ïðîåêöèè íà X . Ò.å., åñëè i ∈ X , òî
    (Bu)i = ui , èíà÷å (Bu)i = 0.
•   p0 = ( n , n , . . . , n )  íà÷àëüíîå ðàñïðåäåëåíèå.
             1 1           1

•   p1 = Bp0  âåêòîð, íåíóëåâûå êîîðäèíàòû ñîîòâåòñòâóþò
    X . i -ÿ êîîðäèíàòà  âåðîÿòíîñòü ñëó÷àéíîãî áëóæäàíèÿ
    äëèíû 1 ïî âåðøèíàì èç X , çàêàí÷èâàþùåãîñÿ â i .

                                                                  9 / 11
Ñëó÷àéíîå áëóæäàíèå
         1 1
                        íà÷àëüíîå ðàñïðåäåëåíèå.
                         1
• p0 = ( n , n , . . . , n )
•   p1 = Bp0  âåêòîð, íåíóëåâûå êîîðäèíàòû ñîîòâåòñòâóþò
    X . i -ÿ êîîðäèíàòà  âåðîÿòíîñòü ñëó÷àéíîãî áëóæäàíèÿ
    äëèíû 1 ïî âåðøèíàì èç X , çàêàí÷èâàþùåãîñÿ â i .
• p2 = BABp0
• pl = (BA)l−1 p0  âåêòîð, íåíóëåâûå êîîðäèíàòû
    ñîîòâåòñòâóþò X . i -ÿ êîîðäèíàòà  âåðîÿòíîñòü
    ñëó÷àéíîãî áëóæäàíèÿ äëèíû l ïî âåðøèíàì èç X ,
    çàêàí÷èâàþùåãîñÿ â i .
•   Íàøà öåëü îöåíèòü pk 1 = (BA)k−1Bp0 1
           √
•  v 1≤ n v 2
• BA = B((1 − α)J + αC )
• BA ≤ (1 − α) BJ + α BC
                            √
•                   n
     Bp0 =         n2
                        =   √
                              n
                                                             10 / 11
Ñëó÷àéíîå áëóæäàíèå

•   Íàøà öåëü îöåíèòü
          √
                                     pk   1   = (BA)k−1 Bp0   1
•    v    1   ≤     n v    2
• BA = B((1 − α)J + αC )
•    BA ≤ (1 − α) BJ + α BC
                               √
•                      n
  Bp0 =               n2
                           =   √
                                 n
       √
• BJ =
•    B ≤1
                 √
•    BA ≤ (1 − α) + α
                                   √          √
•    (BA)k−1 Bp0         ≤ ((1 − α) + α)k−1 √n
                           2
                                            √        √
•    pk       1   = (BA)k−1 Bp0 1 ≤ ((1 − α) + α)k−1


                                                                    11 / 11

More Related Content

PDF
20090215 hardnessvsrandomness itsykson_lecture01
PDF
20091206 mfcs itsykson_lecture09
DOCX
11-ð àíãèéí ãåîìåòð
PDF
Mult An App
PDF
20080309 cryptography hirsch_lecture04
PDF
20080316 cryptography hirsch_lecture05
PPTX
ххтбс 9
PDF
Лекция 10 - Схемы разделения секрета. Жизненный цикл ключей
20090215 hardnessvsrandomness itsykson_lecture01
20091206 mfcs itsykson_lecture09
11-ð àíãèéí ãåîìåòð
Mult An App
20080309 cryptography hirsch_lecture04
20080316 cryptography hirsch_lecture05
ххтбс 9
Лекция 10 - Схемы разделения секрета. Жизненный цикл ключей

What's hot (7)

PPTX
ххтбс 9
PPTX
ххтбс 9
PDF
8 g i 2016
PPT
Presentación1
PDF
Лекция 3 - Блочные шифры, часть I
PPTX
ххтбс 9
PDF
Юрий Владимирович Матиясевич. Десятая проблема Гильберта. Решение и применени...
ххтбс 9
ххтбс 9
8 g i 2016
Presentación1
Лекция 3 - Блочные шифры, часть I
ххтбс 9
Юрий Владимирович Матиясевич. Десятая проблема Гильберта. Решение и применени...
Ad

Viewers also liked (20)

PDF
20081116 auctions nikolenko_lecture09
PPTX
Presentacion grupo 159_ aporte
PDF
San bartolome de tirajana navidad 2012
PDF
Boletin prensa04 12-2012
DOCX
Segunda práctica de creatividad
PDF
Tsez bible luke 2
PDF
20071007 efficientalgorithms kulikov_lecture03
PDF
Parrilla programacion del 03 al 09 de diciembre 2012 mod
DOCX
Catálogo Miniempresa Atena
PDF
Guía didáctica web 2.0
PDF
20091108 mfcs itsykson_lecture06
PDF
20080928 structuralcomplexitytheory lecture01-02
PDF
Attieh Steels Ltd Reference
PDF
20080217 cryptography hirsch_lecture01
PDF
20071021 verification konev_lecture04
PPTX
INFORMATICA JURIDICA
PPT
Твиттер для новичков
PPTX
Bizantinos y carolingios
PDF
20071125 efficientalgorithms kulikov_lecture09
PPTX
20100502 computer vision_lempitsky_lectures01-02
20081116 auctions nikolenko_lecture09
Presentacion grupo 159_ aporte
San bartolome de tirajana navidad 2012
Boletin prensa04 12-2012
Segunda práctica de creatividad
Tsez bible luke 2
20071007 efficientalgorithms kulikov_lecture03
Parrilla programacion del 03 al 09 de diciembre 2012 mod
Catálogo Miniempresa Atena
Guía didáctica web 2.0
20091108 mfcs itsykson_lecture06
20080928 structuralcomplexitytheory lecture01-02
Attieh Steels Ltd Reference
20080217 cryptography hirsch_lecture01
20071021 verification konev_lecture04
INFORMATICA JURIDICA
Твиттер для новичков
Bizantinos y carolingios
20071125 efficientalgorithms kulikov_lecture09
20100502 computer vision_lempitsky_lectures01-02
Ad

More from Computer Science Club (20)

PDF
20141223 kuznetsov distributed
PDF
Computer Vision
PDF
20140531 serebryany lecture01_fantastic_cpp_bugs
PDF
20140531 serebryany lecture02_find_scary_cpp_bugs
PDF
20140531 serebryany lecture01_fantastic_cpp_bugs
PDF
20140511 parallel programming_kalishenko_lecture12
PDF
20140427 parallel programming_zlobin_lecture11
PDF
20140420 parallel programming_kalishenko_lecture10
PDF
20140413 parallel programming_kalishenko_lecture09
PDF
20140329 graph drawing_dainiak_lecture02
PDF
20140329 graph drawing_dainiak_lecture01
PDF
20140310 parallel programming_kalishenko_lecture03-04
PDF
20140223-SuffixTrees-lecture01-03
PDF
20140216 parallel programming_kalishenko_lecture01
PDF
20131106 h10 lecture6_matiyasevich
PDF
20131027 h10 lecture5_matiyasevich
PDF
20131027 h10 lecture5_matiyasevich
PDF
20131013 h10 lecture4_matiyasevich
PDF
20131006 h10 lecture3_matiyasevich
PDF
20131006 h10 lecture3_matiyasevich
20141223 kuznetsov distributed
Computer Vision
20140531 serebryany lecture01_fantastic_cpp_bugs
20140531 serebryany lecture02_find_scary_cpp_bugs
20140531 serebryany lecture01_fantastic_cpp_bugs
20140511 parallel programming_kalishenko_lecture12
20140427 parallel programming_zlobin_lecture11
20140420 parallel programming_kalishenko_lecture10
20140413 parallel programming_kalishenko_lecture09
20140329 graph drawing_dainiak_lecture02
20140329 graph drawing_dainiak_lecture01
20140310 parallel programming_kalishenko_lecture03-04
20140223-SuffixTrees-lecture01-03
20140216 parallel programming_kalishenko_lecture01
20131106 h10 lecture6_matiyasevich
20131027 h10 lecture5_matiyasevich
20131027 h10 lecture5_matiyasevich
20131013 h10 lecture4_matiyasevich
20131006 h10 lecture3_matiyasevich
20131006 h10 lecture3_matiyasevich

20090426 hardnessvsrandomness itsykson_lecture09

  • 1. Âû÷èñëèòåëüíî òðóäíûå çàäà÷è è äåðàíäîìèçàöèÿ Ëåêöèÿ 9: Ýêñïàíäåðû è ïîíèæåíèå âåðîÿòíîñòè îøèáêè Äìèòðèé Èöûêñîí ÏÎÌÈ ÐÀÍ 26 àïðåëÿ 2009 1 / 11
  • 2. Ïëàí 1 Ïîëèíîìèàëüíîå ïîíèæåíèå îøèáêè áåç èñïîëüçîâàíèÿ äîïîëíèòåëüíûõ ñëó÷àéíûõ áèòîâ 2 Ýêñïîíåíöèàëüíîå ïîíèæåíèå îøèáêè ñ èñïîëüçîâàíèåì î÷åíü ìàëåíüêîãî ÷èñëà äîïîëíèòåëüíûõ ñëó÷àéíûõ áèòîâ 2 / 11
  • 3. RP: âåðîÿòíîñòíûå àëãîðèòìû ñ îäíîñòîðîííåé îøèáêîé Îïðåäåëåíèå: ßçûê L ∈ RP, åñëè ñóùåñòâóåò ïîëèíîìèàëüíûé âåðîÿòíîñòíûé àëãîðèòì A, òàêîé ÷òî • A(x) = 0, ïðè x ∈ L / • P{A(x) = 1} ≥ 2 , ïðè x ∈ L 1 Öåëü Óìåíüøèòü âåðîÿòíîñòü îøèáêè, èñïîëüçóÿ êàê ìîæíî ìåíüøå äîïîëíèòåëüíûõ ñëó÷àéíûõ áèòîâ. 3 / 11
  • 4. Êîìáèíàòîðíûå ýêñïàíäåðû Ãðàô G (V , E ) íàçûâàåòñÿ (n, d, c)-êîìáèíàòîðíûì ýêñïàíäåðîì, åñëè: • Â íåì n âåðøèí • Âñå âåðøèíû èìåþò ñòåïåíü d • ∀A ⊂ V , |A| ≤ n âûïîëíÿåòñÿ |A ∪ Γ(A)| ≥ (1 + c)|A|. 2 • Γ(A) = {v ∈ V | ∃a ∈ A : (v , a) ∈ E } Ýêñïàíäåð íàçûâàåòñÿ ÿâíûì, åñëè ñóùåñòâóåò ïîëèíîìèàëüíûé àëãîðèòì, êîòîðûé ïî íîìåðó âåðøèíû âûäàåò íîìåðà åãî ñîñåäåé. 4 / 11
  • 5. Ïîíèæåíèå âåðîÿòíîñòè îøèáêè • Ïóñòü ÿçûê L ðåøàåòñÿ àëãîðèòìîì A ñ îäíîñòîðîííåé îøèáêîé. • Ïóñòü A èñïîëüçóåò r ñëó÷àéíûõ áèòîâ • 2r ïëîõèõ ñëó÷àéíûõ ñòðîê (íà êîòîðûõ àëãîðèòì äàåò íåïðàâèëüíûé îòâåò) • Ðàññìîòðèì ÿâíûé (2r , d, c)-êîìáèíàòîðíûé ýêñïàíäåð.  êàæäîé âåðøèíå ïîñëåäîâàòåëüíîñòü ñëó÷àéíûõ áèòîâ. • Âûáåðåì ñëó÷àéíûì îáðàçîì âåðøèíó (ïîòðàòèâ r ñëó÷àéíûõ áèòîâ). È çàïóñòèì àëãîðèòì ñî âñåìè ïîñëåäîâàòåëüíîñòÿìè ñëó÷àéíûõ áèòîâ, êîòîðûå ëåæàò íà ðàññòîÿíèè l îò äàííîé âåðøèíû. Âûäàäèì 1, åñëè ≥ 1 èç îòâåòîâ áûë 1. • Ïóñòü B ìíîæåñòâî ïëîõèõ âåðøèí (èç êîòîðûõ ìû íå çàïóñòèì àëãîðèòì â õîðîøèõ âåðøèíàõ). • |B|(1 + c)l ≤ 2r =⇒ äîëÿ ïëîõèõ âåðøèí (1+c) . l 5 / 11
  • 6. Ïîíèæåíèå âåðîÿòíîñòè îøèáêè • Åñëè l = log n, òî ïîòåðÿ ïî âðåìåíè poly (n), îøèáêà óìåíüøàåòñÿ â poly (n) ðàç. • À åñëè íàäî óìåíüøèòü îøèáêó â 2n ðàç? • Ñëó÷àéíî âûáåðåì âåðøèíó ãðàôà (ïîòðàòèâ r ñëó÷àéíûõ áèòîâ). • Óñòðîèì ñëó÷àéíîå áëóæäàíèå äëèíû k (ïîòðàòèì O(k) áèòîâ). • Çàïóñòèì àëãîðèòì íà ñòðî÷êàõ â k âåðøèíàõ áëóæäàíèÿ. Âûäàäèì 1, åñëè ≥ 1 èç îòâåòîâ áûë 1. • Íàøà öåëü ïîêàçàòü, ÷òî òàê ìîæíî óìåíüøèòü îøèáêó äî 2Ω(k) . 6 / 11
  • 7. Àëãåáðàè÷åñêèé ýêñïàíäåð Ãðàô G (V , E ) íàçûâàåòñÿ (n, d, α)-àëãåáðàè÷åñêèì ýêñïàíäåðîì, åñëè: •  íåì n âåðøèí • Âñå âåðøèíû èìåþò ñòåïåíü d • A íîðìèðîâàííàÿ ìàòðèöà ñìåæíîñòè Ai,j = d , åñëè k âåðøèíû i è j ñîåäèíåíû k ðåáðàìè. • λ âòîðîå ïî àáñîëþòíîé âåëè÷èíå ñîáñòâåííîå ÷èñëî ìàòðèöû A, |λ| ≤ α 1. Òåîðåìà. Åñëè G ÿâëÿåòñÿ (n, d, α)-àëãåáðàè÷åñêèì ýêñïàíäåðîì, òî îí ÿâëÿåòñÿ è (n, d, 1−α )-êîìáèíàòîðíûì ýêñïàíäåðîì. 2d 7 / 11
  • 8. Îïðåäåëåíèå. A = max{ Av 2 : v 2 = 1} Ëåììà. Ïóñòü A íîðìàëèçîâàííàÿ ìàòðèöà (n, d, α)-ýêñïàíäåðà. Òîãäà A = (1 − α)J + αC , ãäå J ìàòðèöà n × n, Jij = n , à C ≤ 1. 1 Äîêàçàòåëüñòâî. • C = α (A − (1 − α)J). Íàäî äîêàçàòü: ∀v , Cv 2 ≤ v 2 . 1 • v = γ1 + w , ãäå w ⊥ 1. • A1 = 1, J1 = 1, Jw = 0. • Cv = α (A − (1 − α)J)(γ1 + w ) = γ1 + α Aw . 1 1 2 2 1 2 2 2 2 • Cv = γ1 + α Aw ≤ γ1 + w = v 8 / 11
  • 9. Ñëó÷àéíîå áëóæäàíèå • Åñòü (n = 2r , d, α) àëãåáðàè÷åñêèé ýêñïàíäåð. • Êàæäîé âåðøèíå ñîïîñòàâëåíà ñòðîêà èç r ñëó÷àéíûõ áèòîâ. • Ïóñòü X ýòî ìíîæåñòâî ïëîõèõ âåðøèí. |X | = n. • Îöåíèì âåðîÿòíîñòü ïðè ñëó÷àéíîì áëóæäàíèè íè ðàçó íå âûéòè èç X . • Ïóñòü B ýòî ìàòðèöà ïðîåêöèè íà X . Ò.å., åñëè i ∈ X , òî (Bu)i = ui , èíà÷å (Bu)i = 0. • p0 = ( n , n , . . . , n ) íà÷àëüíîå ðàñïðåäåëåíèå. 1 1 1 • p1 = Bp0 âåêòîð, íåíóëåâûå êîîðäèíàòû ñîîòâåòñòâóþò X . i -ÿ êîîðäèíàòà âåðîÿòíîñòü ñëó÷àéíîãî áëóæäàíèÿ äëèíû 1 ïî âåðøèíàì èç X , çàêàí÷èâàþùåãîñÿ â i . 9 / 11
  • 10. Ñëó÷àéíîå áëóæäàíèå 1 1 íà÷àëüíîå ðàñïðåäåëåíèå. 1 • p0 = ( n , n , . . . , n ) • p1 = Bp0 âåêòîð, íåíóëåâûå êîîðäèíàòû ñîîòâåòñòâóþò X . i -ÿ êîîðäèíàòà âåðîÿòíîñòü ñëó÷àéíîãî áëóæäàíèÿ äëèíû 1 ïî âåðøèíàì èç X , çàêàí÷èâàþùåãîñÿ â i . • p2 = BABp0 • pl = (BA)l−1 p0 âåêòîð, íåíóëåâûå êîîðäèíàòû ñîîòâåòñòâóþò X . i -ÿ êîîðäèíàòà âåðîÿòíîñòü ñëó÷àéíîãî áëóæäàíèÿ äëèíû l ïî âåðøèíàì èç X , çàêàí÷èâàþùåãîñÿ â i . • Íàøà öåëü îöåíèòü pk 1 = (BA)k−1Bp0 1 √ • v 1≤ n v 2 • BA = B((1 − α)J + αC ) • BA ≤ (1 − α) BJ + α BC √ • n Bp0 = n2 = √ n 10 / 11
  • 11. Ñëó÷àéíîå áëóæäàíèå • Íàøà öåëü îöåíèòü √ pk 1 = (BA)k−1 Bp0 1 • v 1 ≤ n v 2 • BA = B((1 − α)J + αC ) • BA ≤ (1 − α) BJ + α BC √ • n Bp0 = n2 = √ n √ • BJ = • B ≤1 √ • BA ≤ (1 − α) + α √ √ • (BA)k−1 Bp0 ≤ ((1 − α) + α)k−1 √n 2 √ √ • pk 1 = (BA)k−1 Bp0 1 ≤ ((1 − α) + α)k−1 11 / 11