Outlier analysis is used to identify outliers, which are data objects that are inconsistent with the general behavior or model of the data. There are two main types of outlier detection - statistical distribution-based detection, which identifies outliers based on how far they are from the average statistical distribution, and distance-based detection, which finds outliers based on how far they are from other data objects. Outlier analysis is useful for tasks like fraud detection, where outliers may indicate fraudulent activity that is different from normal patterns in the data.
Related topics: