SlideShare a Scribd company logo
Starter Show that the equation x e x  – 1 = 0 has a solution between x = 0 and x = 1. Use decimal search to solve x e x  – 1 = 0 as precisely as you can. x = 0.5671432904 (10 d.p.)
Objective: to use iteration to produce a sequence that converges to a root
Iteration The equation x e x  – 1 = 0 can be rearranged as follows:
Iteration The equation x e x  – 1 = 0 can be rearranged as follows: This can be turned into an iterative formula:
Iteration The equation x e x  – 1 = 0 can be rearranged as follows: This can be turned into an iterative formula:
Iteration Assume x  0  = 0. Complete this table: x  21 x  10 x  20 x  9 x  19 x  8 x  18 x  7 x  17 x  6 x  16 x  5 x  15 x  4 x  14 x  3 x  13 x  2 x  12 x  1 x  11 0 x  0
Iteration Assume x  0  = 0. Complete this table: x  21 x  10 x  20 x  9 x  19 x  8 x  18 x  7 x  17 x  6 x  16 x  5 x  15 x  4 x  14 x  3 x  13 x  2 x  12 1 x  1 x  11 0 x  0
Iteration Assume x  0  = 0. Complete this table: x  21 x  10 x  20 x  9 x  19 x  8 x  18 x  7 x  17 x  6 x  16 x  5 x  15 x  4 x  14 x  3 x  13 0.3678794412 x  2 x  12 1 x  1 x  11 0 x  0
Iteration Assume x  0  = 0. Complete this table: x  21 x  10 x  20 x  9 x  19 x  8 x  18 x  7 x  17 x  6 x  16 x  5 x  15 x  4 x  14 0.6922006276 x  3 x  13 0.3678794412 x  2 x  12 1 x  1 x  11 0 x  0
Iteration Assume x  0  = 0. Complete this table: x  21 x  10 x  20 x  9 x  19 x  8 x  18 x  7 x  17 x  6 x  16 x  5 x  15 0.5004735006 x  4 x  14 0.6922006276 x  3 x  13 0.3678794412 x  2 x  12 1 x  1 x  11 0 x  0
Iteration Assume x  0  = 0. Complete this table: x  21 x  10 x  20 x  9 x  19 x  8 x  18 x  7 x  17 x  6 x  16 0.6062435351 x  5 x  15 0.5004735006 x  4 x  14 0.6922006276 x  3 x  13 0.3678794412 x  2 x  12 1 x  1 x  11 0 x  0
Iteration Assume x  0  = 0. Complete this table: x  21 x  10 x  20 x  9 x  19 x  8 x  18 x  7 x  17 0.545395786 x  6 x  16 0.6062435351 x  5 x  15 0.5004735006 x  4 x  14 0.6922006276 x  3 x  13 0.3678794412 x  2 x  12 1 x  1 x  11 0 x  0
Iteration Assume x  0  = 0. Complete this table: 0.5671477143 x  21 0.5648793474 x  10 0.5671354902 x  20 0.5711431151 x  9 0.567157044 x  19 0.5601154614 x  8 0.5671190401 x  18 0.5796123355 x  7 0.5671860501 x  17 0.545395786 x  6 0.5670678984 x  16 0.6062435351 x  5 0.5672762322 x  15 0.5004735006 x  4 0.5669089119 x  14 0.6922006276 x  3 0.5675566373 x  13 0.3678794412 x  2 0.5664147331 x  12 1 x  1 0.568428725 x  11 0 x  0
Question a)  Show that a solution of the equation x 3  – 3x – 5 = 0  lies between 2 and 3. b) Show that the equation can be rearranged into the form  c) Use iteration based on this rearrangement to find the  solution accurate to five decimal places. d) Show the equation can also be rearranged into the form   e) Show that iteration based on this rearrangement fails to  converge to a solution.
Core 3 & 4 Textbook Page 143 Exercise 8B Questions 4, 5, 6 Homework Numerical Methods Worksheet C
Core 3 June 2006 Core 3 January 2007

More Related Content

DOCX
Gyovane
DOC
Proj 8 Tanya Graded
PPT
Multiplicacion. Primaria. IE N° 1198. La Ribera. Aula de Innovaciones Pedagóg...
PDF
สูตรคูณ
DOCX
self work
PPT
Multiplication phone
PDF
Tabla multiplicar
DOC
Tabuada
Gyovane
Proj 8 Tanya Graded
Multiplicacion. Primaria. IE N° 1198. La Ribera. Aula de Innovaciones Pedagóg...
สูตรคูณ
self work
Multiplication phone
Tabla multiplicar
Tabuada

What's hot (19)

PDF
NEG6MathPTPaper.12.06.10.pdf
PDF
Tablas de multiplicar
PPS
The beauty-of-mathematics
DOC
Taules de multiplicar
DOC
Multiply quiz-0-11
PDF
Aprende las tablas de multiplicar
PDF
Tablas multiplicar
PPT
1562 maths-ppt
PPTX
Learn Your Times Tables
PDF
Aprén les taules de multiplicar
PPTX
Mathematical funny equation
PPTX
Solving rational equations
PPTX
MULTIPLICATION
PPT
Tablas de multiplicar
PPT
20 q 3
PDF
Aprendo las tablas de multiplicar
PDF
Tabuada
PPS
Beauty+of+mathematics
PPTX
Maths T5 W5
NEG6MathPTPaper.12.06.10.pdf
Tablas de multiplicar
The beauty-of-mathematics
Taules de multiplicar
Multiply quiz-0-11
Aprende las tablas de multiplicar
Tablas multiplicar
1562 maths-ppt
Learn Your Times Tables
Aprén les taules de multiplicar
Mathematical funny equation
Solving rational equations
MULTIPLICATION
Tablas de multiplicar
20 q 3
Aprendo las tablas de multiplicar
Tabuada
Beauty+of+mathematics
Maths T5 W5
Ad

Similar to Core 3 Numerical Methods 2 (20)

PPT
tables-2to10-160924081712MATH IN MODER.ppt
PDF
2º tablas-multiplicar-mini
PPT
multiplicationtable.ppt
PPTX
01 Linear Equations in One Variable.pptx
PPTX
Maths T6 W1
PDF
College algebra in context 5th edition harshbarger solutions manual
PPTX
Solving quadratic equations
PDF
05. s3 ecuaciones polinómicas
PPTX
Normal probability distribution
DOCX
Question 11. Determine which of the following points lies on .docx
PPT
1.basic of fractions
PPT
Sedkdowdy
PPT
Multiplication
PPT
Linear Equation in one variable - Class 8 th Maths
PDF
Solving Quadratic Equations by Factoring
PPT
Solving Quadratic by Completing the Square.ppt
PDF
06 ch ken black solution
PDF
Intermediate algebra 8th edition tobey solutions manual
PPSX
APRENDIENDO LAS TABLAS DE MULTIPLICAR
PPTX
GCSEYr9-SolvingQuadratics.pptx
tables-2to10-160924081712MATH IN MODER.ppt
2º tablas-multiplicar-mini
multiplicationtable.ppt
01 Linear Equations in One Variable.pptx
Maths T6 W1
College algebra in context 5th edition harshbarger solutions manual
Solving quadratic equations
05. s3 ecuaciones polinómicas
Normal probability distribution
Question 11. Determine which of the following points lies on .docx
1.basic of fractions
Sedkdowdy
Multiplication
Linear Equation in one variable - Class 8 th Maths
Solving Quadratic Equations by Factoring
Solving Quadratic by Completing the Square.ppt
06 ch ken black solution
Intermediate algebra 8th edition tobey solutions manual
APRENDIENDO LAS TABLAS DE MULTIPLICAR
GCSEYr9-SolvingQuadratics.pptx
Ad

More from davidmiles100 (20)

PPT
Core 3 The Quotient Rule
PPT
Core 3 The Product Rule
PPT
Core 3 The Chain Rule
PPT
Core 3 Simpsons Rule
PPT
Core 3 Numerical Methods 1
PPT
Core 3 Modulus 2
PPT
Core 3 Modulus 1
PPT
Core 3 Functions 3
PPT
Core 3 Functions 2
PPT
Core 3 Functions 1
PPT
Core 4 Partial Fractions 4
PPT
Core 4 Partial Fractions 3
PPT
Core 4 Partial Fractions 2
PPT
Core 4 Partial Fractions 1
PPT
Core 4 Parametric Equations 2
PPT
Core 4 Parametric Equations 1
PPT
Core 4 Logarithmic Integration
PPT
Core 4 Integration By Parts 2
PPT
Core 4 Integrating Trigonometric Functions 2
PPT
Core 4 Integrating Trigonometric Functions 1
Core 3 The Quotient Rule
Core 3 The Product Rule
Core 3 The Chain Rule
Core 3 Simpsons Rule
Core 3 Numerical Methods 1
Core 3 Modulus 2
Core 3 Modulus 1
Core 3 Functions 3
Core 3 Functions 2
Core 3 Functions 1
Core 4 Partial Fractions 4
Core 4 Partial Fractions 3
Core 4 Partial Fractions 2
Core 4 Partial Fractions 1
Core 4 Parametric Equations 2
Core 4 Parametric Equations 1
Core 4 Logarithmic Integration
Core 4 Integration By Parts 2
Core 4 Integrating Trigonometric Functions 2
Core 4 Integrating Trigonometric Functions 1

Recently uploaded (20)

PDF
Web App vs Mobile App What Should You Build First.pdf
PDF
Univ-Connecticut-ChatGPT-Presentaion.pdf
PPT
What is a Computer? Input Devices /output devices
PDF
A novel scalable deep ensemble learning framework for big data classification...
PDF
Enhancing emotion recognition model for a student engagement use case through...
PDF
gpt5_lecture_notes_comprehensive_20250812015547.pdf
PPTX
observCloud-Native Containerability and monitoring.pptx
PDF
Microsoft Solutions Partner Drive Digital Transformation with D365.pdf
PDF
ENT215_Completing-a-large-scale-migration-and-modernization-with-AWS.pdf
PDF
Zenith AI: Advanced Artificial Intelligence
PDF
DASA ADMISSION 2024_FirstRound_FirstRank_LastRank.pdf
PPTX
TLE Review Electricity (Electricity).pptx
PDF
August Patch Tuesday
PDF
How ambidextrous entrepreneurial leaders react to the artificial intelligence...
PPTX
The various Industrial Revolutions .pptx
PPT
Module 1.ppt Iot fundamentals and Architecture
PDF
A contest of sentiment analysis: k-nearest neighbor versus neural network
PPTX
Group 1 Presentation -Planning and Decision Making .pptx
PDF
Developing a website for English-speaking practice to English as a foreign la...
PDF
2021 HotChips TSMC Packaging Technologies for Chiplets and 3D_0819 publish_pu...
Web App vs Mobile App What Should You Build First.pdf
Univ-Connecticut-ChatGPT-Presentaion.pdf
What is a Computer? Input Devices /output devices
A novel scalable deep ensemble learning framework for big data classification...
Enhancing emotion recognition model for a student engagement use case through...
gpt5_lecture_notes_comprehensive_20250812015547.pdf
observCloud-Native Containerability and monitoring.pptx
Microsoft Solutions Partner Drive Digital Transformation with D365.pdf
ENT215_Completing-a-large-scale-migration-and-modernization-with-AWS.pdf
Zenith AI: Advanced Artificial Intelligence
DASA ADMISSION 2024_FirstRound_FirstRank_LastRank.pdf
TLE Review Electricity (Electricity).pptx
August Patch Tuesday
How ambidextrous entrepreneurial leaders react to the artificial intelligence...
The various Industrial Revolutions .pptx
Module 1.ppt Iot fundamentals and Architecture
A contest of sentiment analysis: k-nearest neighbor versus neural network
Group 1 Presentation -Planning and Decision Making .pptx
Developing a website for English-speaking practice to English as a foreign la...
2021 HotChips TSMC Packaging Technologies for Chiplets and 3D_0819 publish_pu...

Core 3 Numerical Methods 2

  • 1. Starter Show that the equation x e x – 1 = 0 has a solution between x = 0 and x = 1. Use decimal search to solve x e x – 1 = 0 as precisely as you can. x = 0.5671432904 (10 d.p.)
  • 2. Objective: to use iteration to produce a sequence that converges to a root
  • 3. Iteration The equation x e x – 1 = 0 can be rearranged as follows:
  • 4. Iteration The equation x e x – 1 = 0 can be rearranged as follows: This can be turned into an iterative formula:
  • 5. Iteration The equation x e x – 1 = 0 can be rearranged as follows: This can be turned into an iterative formula:
  • 6. Iteration Assume x 0 = 0. Complete this table: x 21 x 10 x 20 x 9 x 19 x 8 x 18 x 7 x 17 x 6 x 16 x 5 x 15 x 4 x 14 x 3 x 13 x 2 x 12 x 1 x 11 0 x 0
  • 7. Iteration Assume x 0 = 0. Complete this table: x 21 x 10 x 20 x 9 x 19 x 8 x 18 x 7 x 17 x 6 x 16 x 5 x 15 x 4 x 14 x 3 x 13 x 2 x 12 1 x 1 x 11 0 x 0
  • 8. Iteration Assume x 0 = 0. Complete this table: x 21 x 10 x 20 x 9 x 19 x 8 x 18 x 7 x 17 x 6 x 16 x 5 x 15 x 4 x 14 x 3 x 13 0.3678794412 x 2 x 12 1 x 1 x 11 0 x 0
  • 9. Iteration Assume x 0 = 0. Complete this table: x 21 x 10 x 20 x 9 x 19 x 8 x 18 x 7 x 17 x 6 x 16 x 5 x 15 x 4 x 14 0.6922006276 x 3 x 13 0.3678794412 x 2 x 12 1 x 1 x 11 0 x 0
  • 10. Iteration Assume x 0 = 0. Complete this table: x 21 x 10 x 20 x 9 x 19 x 8 x 18 x 7 x 17 x 6 x 16 x 5 x 15 0.5004735006 x 4 x 14 0.6922006276 x 3 x 13 0.3678794412 x 2 x 12 1 x 1 x 11 0 x 0
  • 11. Iteration Assume x 0 = 0. Complete this table: x 21 x 10 x 20 x 9 x 19 x 8 x 18 x 7 x 17 x 6 x 16 0.6062435351 x 5 x 15 0.5004735006 x 4 x 14 0.6922006276 x 3 x 13 0.3678794412 x 2 x 12 1 x 1 x 11 0 x 0
  • 12. Iteration Assume x 0 = 0. Complete this table: x 21 x 10 x 20 x 9 x 19 x 8 x 18 x 7 x 17 0.545395786 x 6 x 16 0.6062435351 x 5 x 15 0.5004735006 x 4 x 14 0.6922006276 x 3 x 13 0.3678794412 x 2 x 12 1 x 1 x 11 0 x 0
  • 13. Iteration Assume x 0 = 0. Complete this table: 0.5671477143 x 21 0.5648793474 x 10 0.5671354902 x 20 0.5711431151 x 9 0.567157044 x 19 0.5601154614 x 8 0.5671190401 x 18 0.5796123355 x 7 0.5671860501 x 17 0.545395786 x 6 0.5670678984 x 16 0.6062435351 x 5 0.5672762322 x 15 0.5004735006 x 4 0.5669089119 x 14 0.6922006276 x 3 0.5675566373 x 13 0.3678794412 x 2 0.5664147331 x 12 1 x 1 0.568428725 x 11 0 x 0
  • 14. Question a) Show that a solution of the equation x 3 – 3x – 5 = 0 lies between 2 and 3. b) Show that the equation can be rearranged into the form c) Use iteration based on this rearrangement to find the solution accurate to five decimal places. d) Show the equation can also be rearranged into the form e) Show that iteration based on this rearrangement fails to converge to a solution.
  • 15. Core 3 & 4 Textbook Page 143 Exercise 8B Questions 4, 5, 6 Homework Numerical Methods Worksheet C
  • 16. Core 3 June 2006 Core 3 January 2007