SlideShare a Scribd company logo
chapter 2
the computer
The Computer
a computer system is made up of various elements
Each of these elements affects the interaction
– input devices – text entry and pointing
– output devices – screen (small&large), digital paper
– virtual reality – special interaction and display devices
– physical interaction – e.g. sound, haptic, bio-sensing
– paper – as output (print) and input (scan)
– memory – RAM & permanent media, capacity & access
– processing – speed of processing, networks
Interacting with computers
to understand human–computer interaction
… need to understand computers!
what goes in and out
devices, paper,
sensors, etc.
what can it do?
memory, processing,
networks
A ‘typical’ computer system
• screen, or monitor, on which there are windows
• keyboard
• mouse/trackpad
• variations
– desktop
– laptop
– PDA
the devices dictate the styles of interaction that the system
supports
If we use different devices, then the interface will support a
different style of interaction
window 1
window 2
12-37pm
?
How many …
• computers in your house?
– hands up, …
… none, 1, 2 , 3, more!!
• computers in your pockets?
are you thinking …
… PC, laptop, PDA , Smart Phones??
How many computers …
in your house?
– PC, note books,
tabs,kindle
– TV, VCR, DVD, HiFi,
cable/satellite TV
– microwave, cooker,
washing machine
– central heating
– security system
can you think of more?
in your pockets?
– PDA
– phone, camera
– smart card, card with
magnetic strip?
– electronic car key
– USB memory
try your pockets and
bags
Interactivity?
Long ago in a galaxy far away … batch processing
– punched card stacks or large data files prepared
– long wait ….
– line printer output
… and if it is not right …
Now most computing is interactive
– rapid feedback
– the user in control (most of the time)
– doing rather than thinking …
Is faster always better?
Richer interaction
sensors
and devices
everywhere
text entry devices
keyboards (QWERTY et al.)
chord keyboards, phone pads
handwriting, speech
Keyboards
• Most common text input device
• Allows rapid entry of text by experienced users
• Keypress closes connection, causing a
character code to be sent
• Usually connected by cable, but can be
wireless
layout – QWERTY
• Standardised layout
but …
– non-alphanumeric keys are placed differently
– accented symbols needed for different scripts
– minor differences between UK and USA keyboards
• QWERTY arrangement not optimal for typing
– layout to prevent typewriters jamming!
• Alternative designs allow faster typing but large social
base of QWERTY typists produces reluctance to change.
QWERTY (ctd)
2 3 4 5 6 7 8 9 0
Q W E R T Y U I
1
O P
S D F H J L
A G K
Z X C V B N M , .
SPACE
alternative keyboard layouts
Alphabetic
– keys arranged in alphabetic order
– not faster for trained typists
– not faster for beginners either!
Dvorak
– common letters under dominant fingers
– biased towards right hand
– common combinations of letters alternate between hands
– 10-15% improvement in speed and reduction in fatigue
– But - large social base of QWERTY typists produce market
pressures not to change
special keyboards
• designs to reduce fatigue for Repetitive
Strain Injury ( RSI )
• for one handed use
e.g. the Maltron left-handed keyboard
Maltron Dual Hand Flat (2D)
Keyboard
Maltron Mouth / Head Stick
Keyboard
http://www.maltron.com/keyboard-info/94-keyboard-information/keyboard-selector
Chord keyboards
only a few keys - four or 5
letters typed as combination of keypresses
compact size
– ideal for portable applications
short learning time
– keypresses reflect letter shape
fast
– once you have trained
BUT - social resistance, plus fatigue after extended use
NEW – niche market for some wearables
phone pad and T9 entry
• use numeric keys with
multiple presses
2 – a b c 6 - m n o
3 - d e f 7 - p q r s
4 - g h i 8 - t u v
5 - j k l 9 - w x y z
hello = 4433555[pause]555666
surprisingly fast!
• T9 predictive entry
– type as if single key for each letter
– use dictionary to ‘guess’ the right word
– hello = 43556 …
– but 26 -> menu ‘am’ or ‘an’
https://www.timetoast.com/timelines/history-of-computer-input-
devices--2
Handwriting recognition
• Text can be input into the computer, using a pen
and a digesting tablet
– natural interaction
• Technical problems:
– capturing all useful information - stroke path, pressure,
etc. in a natural manner
– segmenting joined up writing into individual letters
– interpreting individual letters
– coping with different styles of handwriting
• Used in PDAs, and tablet computers …
… leave the keyboard on the desk!
Speech recognition
• Improving rapidly
• Most successful when:
– single user – initial training and learns peculiarities
– limited vocabulary systems
• Problems with
– external noise interfering
– imprecision of pronunciation
– large vocabularies
– different speakers
Numeric keypads
• for entering numbers quickly:
– calculator, PC keyboard
• for telephones
not the same!!
ATM like phone
4 5 6
7 8 9
*
0 #
1 2 3
4 5 6
1 2 3
0 . =
7 8 9
telephone calculator
positioning, pointing and drawing
mouse, touchpad
trackballs, joysticks etc.
touch screens, tablets
eyegaze, cursors
the Mouse
• Handheld pointing device
– very common
– easy to use
• Two characteristics
– planar movement
– buttons
(usually from 1 to 3 buttons on top, used for
making a selection, indicating an option, or to
initiate drawing etc.)
the mouse (ctd)
Mouse located on desktop
– requires physical space
– no arm fatigue
Relative movement only is detectable.
Movement of mouse moves screen cursor
Screen cursor oriented in (x, y) plane,
mouse movement in (x, z) plane …
… an indirect manipulation device.
– device itself doesn’t obscure screen, is accurate and fast.
– hand-eye coordination problems for novice users
How does it work?
Two methods for detecting motion
• Mechanical
– Ball on underside of mouse turns as mouse is moved
– Rotates orthogonal potentiometers
– Can be used on almost any flat surface
• Optical
– light emitting diode on underside of mouse
– may use special grid-like pad or just on desk
– less susceptible to dust and dirt
– detects fluctuating alterations in reflected light intensity to
calculate relative motion in (x, z) plane
Even by foot …
• some experiments with the footmouse
– controlling mouse movement with feet …
– not very common :-)
• but foot controls are common elsewhere:
– car pedals
– sewing machine speed control
– organ and piano pedals
Touchpad
• small touch sensitive tablets
• ‘stroke’ to move mouse pointer
• used mainly in laptop computers
• good ‘acceleration’ settings important
– fast stroke
• lots of pixels per inch moved
• initial movement to the target
– slow stroke
• less pixels per inch
• for accurate positioning
Trackball and thumbwheels
Trackball
– ball is rotated inside static housing
• like an upsdie down mouse!
– relative motion moves cursor
– indirect device, fairly accurate
– separate buttons for picking
– very fast for gaming
– used in some portable and notebook computers.
Thumbwheels …
– for accurate CAD – two dials for X-Y cursor position
– for fast scrolling – single dial on mouse
Joystick and keyboard nipple
Joystick
– indirect
pressure of stick = velocity of movement
– buttons for selection
on top or on front like a trigger
– often used for computer games
aircraft controls and 3D navigation
Keyboard nipple
– for laptop computers
– miniature joystick in the middle of the keyboard
Touch-sensitive screen
• Detect the presence of finger or stylus on the screen.
– works by interrupting matrix of light beams, capacitance changes
or ultrasonic reflections
– direct pointing device
• Advantages:
– fast, and requires no specialised pointer
– good for menu selection
– suitable for use in hostile environment: clean and safe from
damage.
• Disadvantages:
– finger can mark screen
– imprecise (finger is a fairly blunt instrument!)
• difficult to select small regions or perform accurate drawing
– lifting arm can be tiring
Stylus and light pen
Stylus
– small pen-like pointer to draw directly on screen
– may use touch sensitive surface or magnetic detection
– used in PDA, tablets PCs and drawing tables
Light Pen
– now rarely used
– uses light from screen to detect location
BOTH …
– very direct and obvious to use
– but can obscure screen
Digitizing tablet
• Mouse like-device with cross hairs
• used on special surface
- rather like stylus
• very accurate
- used for digitizing maps
Eyegaze
• control interface by eye gaze direction
– e.g. look at a menu item to select it
• uses laser beam reflected off retina
– … a very low power laser!
• mainly used for evaluation (ch x)
• potential for hands-free control
• high accuracy requires headset
• cheaper and lower accuracy devices available
sit under the screen like a small webcam
Cursor keys
• Four keys (up, down, left, right) on keyboard.
• Very, very cheap, but slow.
• Useful for not much more than basic motion for text-
editing tasks.
• No standardised layout, but inverted “T”, most common
Discrete positioning controls
• in phones, TV controls etc.
– cursor pads or mini-joysticks
– discrete left-right, up-down
– mainly for menu selection
display devices
bitmap screens (CRT & LCD)
large & situated displays
digital paper
bitmap displays
• screen is vast number of coloured dots
resolution and colour depth
• Resolution … used (inconsistently) for
– number of pixels on screen (width x height)
• e.g. SVGA 1024 x 768, PDA perhaps 240x400
– density of pixels (in pixels or dots per inch - dpi)
• typically between 72 and 96 dpi
• Aspect ratio
– ration between width and height
– 4:3 for most screens, 16:9 for wide-screen TV
• Colour depth:
– how many different colours for each pixel?
– black/white or greys only
– 256 from a pallete
– 8 bits each for red/green/blue = millions of colours
anti-aliasing
Jaggies
– diagonal lines that have discontinuities in due to horizontal
raster scan process.
Anti-aliasing
– softens edges by using shades of line colour
– also used for text
Cathode ray tube
• Stream of electrons emitted from electron gun, focused
and directed by magnetic fields, hit phosphor-coated
screen which glows
• used in TVs and computer monitors
electron gun
focussing and
deflection
electron beam
phosphor-
coated screen
Health hazards of CRT !
• X-rays: largely absorbed by screen (but not at rear!)
• UV- and IR-radiation from phosphors: insignificant
levels
• Radio frequency emissions, plus ultrasound (~16kHz)
• Electrostatic field - leaks out through tube to user.
Intensity dependant on distance and humidity. Can
cause rashes.
• Electromagnetic fields (50Hz-0.5MHz). Create induction
currents in conductive materials, including the human
body. Two types of effects attributed to this: visual
system - high incidence of cataracts in VDU operators,
and concern over reproductive disorders (miscarriages
and birth defects).
Health hints …
• do not sit too close to the screen
• do not use very small fonts
• do not look at the screen for long periods
without a break
• do not place the screen directly in front of a
bright window
• work in well-lit surroundings
 Take extra care of posture, ergonomics, stress
Liquid crystal displays
• Smaller, lighter, and … no radiation problems.
• Found on PDAs, portables and notebooks,
… and increasingly on desktop and even for home TV
• also used in dedicted displays:
digital watches, mobile phones, HiFi controls
• How it works …
– Top plate transparent and polarised, bottom plate reflecting.
– Light passes through top plate and crystal, and reflects back to
eye.
– Voltage applied to crystal changes polarisation and hence colour
– N.B. light reflected not emitted => less eye strain
special displays
Random Scan (Directed-beam refresh, vector display)
– draw the lines to be displayed directly
– no jaggies
– lines need to be constantly redrawn
– rarely used except in special instruments
Direct view storage tube (DVST)
– Similar to random scan but persistent => no flicker
– Can be incrementally updated but not selectively erased
– Used in analogue storage oscilloscopes
large displays
• used for meetings, lectures, etc.
• technology
plasma – usually wide screen
video walls – lots of small screens together
projected – RGB lights or LCD projector
– hand/body obscures screen
– may be solved by 2 projectors + clever software
back-projected
– frosted glass + projector behind
situated displays
• displays in ‘public’ places
– large or small
– very public or for small group
• display only
– for information relevant to location
• or interactive
– use stylus, touch sensitive screem
• in all cases … the location matters
– meaning of information or interaction is related to
the location
• small displays beside office doors
• handwritten notes left using stylus
• office owner reads notes using web interface
Hermes a situated display
small displays
beside
office doors
handwritten
notes left
using stylus
office owner
reads notes
using web interface
Digital paper
• what?
– thin flexible sheets
– updated electronically
– but retain display
• how?
– small spheres turned
– or channels with coloured liquid
and contrasting spheres
– rapidly developing area
appearance
cross
section
virtual reality and 3D interaction
positioning in 3D space
moving and grasping
seeing 3D (helmets and caves)
positioning in 3D space
• cockpit and virtual controls
– steering wheels, knobs and dials … just like real!
• the 3D mouse
– six-degrees of movement: x, y, z + roll, pitch, yaw
– and also its up/down angle (called pitch), its left/right
orientation (called yaw) and the amount it is twisted about
its own axis (called roll)
• data glove
– fibre optics used to detect finger position
• VR helmets
– detect head motion and possibly eye gaze
• whole body tracking
– accelerometers strapped to limbs or reflective dots and
video processing
pitch, yaw and roll
pitch
yaw
roll
3D displays
• desktop VR
– ordinary screen, mouse or keyboard control
– perspective and motion give 3D effect
• seeing in 3D
– use stereoscopic vision
– VR helmets
– screen plus shuttered specs, etc.
also see extra slides on 3D vision
VR headsets
• small TV screen for each eye
• slightly different angles
• 3D effect
VR motion sickness
• time delay
– move head … lag … display moves
– conflict: head movement vs. eyes
• depth perception
– headset gives different stereo distance
– but all focused in same plane
– conflict: eye angle vs. focus
• conflicting cues => sickness
– helps motivate improvements in technology
simulators and VR caves
• scenes projected on walls
• realistic environment
• hydraulic rams!
• real controls
• other people
physical controls, sensors etc.
special displays and gauges
sound, touch, feel, smell
physical controls
environmental and bio-sensing
dedicated displays
• analogue representations:
– dials, gauges, lights, etc.
• digital displays:
– small LCD screens, LED lights, etc.
• head-up displays
– found in aircraft cockpits
– show most important controls
… depending on context
Sounds
• beeps, bongs, clonks, whistles and
whirrs
• used for error indications
• confirmation of actions e.g. keyclick
also see chapter 10
Touch, feel, smell
• touch and feeling important
– in games … vibration, force feedback
– in simulation … feel of surgical instruments
– called haptic devices
• texture, smell, taste
– current technology very limited
BMW iDrive
• for controlling menus
• feel small ‘bumps’ for each item
• makes it easier to select options by feel
• uses haptic technology from Immersion Corp.
physical controls
• specialist controls needed …
– industrial controls, consumer products, etc.
large buttons
clear dials
tiny buttons
multi-function
control
easy-clean
smooth buttons
Environment and bio-sensing
• sensors all around us
– car courtesy light – small switch on door
– ultrasound detectors – security, washbasins
– RFID security tags in shops
– temperature, weight, location
• … and even our own bodies …
– iris scanners, body temperature, heart rate,
galvanic skin response, blink rate
paper: printing and scanning
print technology
fonts, page description, WYSIWYG
scanning, OCR
Printing
• image made from small dots
– allows any character set or graphic to be
printed,
• critical features:
– resolution
• size and spacing of the dots
• measured in dots per inch (dpi)
– speed
• usually measured in pages per minute
– cost!!
Types of dot-based printers
• dot-matrix printers
– use inked ribbon (like a typewriter
– line of pins that can strike the ribbon, dotting the paper.
– typical resolution 80-120 dpi
• ink-jet and bubble-jet printers
– tiny blobs of ink sent from print head to paper
– typically 300 dpi or better .
• laser printer
– like photocopier: dots of electrostatic charge deposited on
drum, which picks up toner (black powder form of ink)
rolled onto paper which is then fixed with heat
– typically 600 dpi or better.
Printing in the workplace
• shop tills
– dot matrix
– same print head used for several paper rolls
– may also print cheques
• thermal printers
– special heat-sensitive paper
– paper heated by pins makes a dot
– poor quality, but simple & low maintenance
– used in some fax machines
Fonts
• Font – the particular style of text
Courier font
Helvetica font
Palatino font
Times Roman font
  (special symbol)
• Size of a font measured in points (1 pt about 1/72”)
(vaguely) related to its height
This is ten point Helvetica
This is twelve point
This is fourteen point
This is eighteen point
and this is twenty-four point
Fonts (ctd)
Pitch
– fixed-pitch – every character has the same width
e.g. Courier
– variable-pitched – some characters wider
e.g. Times Roman – compare the ‘i’ and the “m”
Serif or Sans-serif
– sans-serif – square-ended strokes
e.g. Helvetica
– serif – with splayed ends (such as)
e.g. Times Roman or Palatino
Readability of text
• lowercase
– easy to read shape of words
• UPPERCASE
– better for individual letters and non-words
e.g. flight numbers: BA793 vs. ba793
• serif fonts
– helps your eye on long lines of printed text
– but sans serif often better on screen
Page Description Languages
• Pages very complex
– different fonts, bitmaps, lines, digitised photos, etc.
• Can convert it all into a bitmap and send to the printer
… but often huge !
• Alternatively Use a page description language
– sends a description of the page can be sent,
– instructions for curves, lines, text in different styles, etc.
– like a programming language for printing!
• PostScript is the most common
Screen and page
• WYSIWYG
– what you see is what you get
– aim of word processing, etc.
• but …
– screen: 72 dpi, landscape image
– print: 600+ dpi, portrait
• can try to make them similar
but never quite the same
• so … need different designs, graphics etc, for
screen and print
Scanners
• Take paper and convert it into a bitmap
• Two sorts of scanner
– flat-bed: paper placed on a glass plate, whole page
converted into bitmap
– hand-held: scanner passed over paper, digitising strip
typically 3-4” wide
• Shines light at paper and note intensity of reflection
– colour or greyscale
• Typical resolutions from 600–2400 dpi
Scanners (ctd)
Used in
– desktop publishing for incorporating
photographs and other images
– document storage and retrieval systems,
doing away with paper storage
+ special scanners for slides and
photographic negatives
Optical character recognition
• OCR converts bitmap back into text
• different fonts
– create problems for simple “template
matching” algorithms
– more complex systems segment text,
decompose it into lines and arcs, and
decipher characters that way
• page format
– columns, pictures, headers and footers
Paper-based interaction
• paper usually regarded as output only
• can be input too – OCR, scanning, etc.
• Xerox PaperWorks
– glyphs – small patterns of ///
• used to identify forms etc.
• used with scanner and fax to control applications
• more recently
– papers micro printed - like wattermarks
• identify which sheet and where you are
– special ‘pen’ can read locations
• know where they are writing
memory
short term and long term
speed, capacity, compression
formats, access
Short-term Memory - RAM
• Random access memory (RAM)
– on silicon chips
– 100 nano-second access time
– usually volatile (lose information if power turned off)
– data transferred at around 100 Mbytes/sec
• Some non-volatile RAM used to store basic set-
up information
• Typical desktop computers:
64 to 256 Mbytes RAM
Long-term Memory - disks
• magnetic disks
– floppy disks store around 1.4 Mbytes
– hard disks typically 40 Gbytes to 100s of Gbytes
access time ~10ms, transfer rate 100kbytes/s
• optical disks
– use lasers to read and sometimes write
– more robust that magnetic media
– CD-ROM
- same technology as home audio, ~ 600
Gbytes
– DVD - for AV applications, or very large files
Blurring boundaries
• PDAs
– often use RAM for their main memory
• Flash-Memory
– used in PDAs, cameras etc.
– silicon based but persistent
– plug-in USB devices for data transfer
speed and capacity
• what do the numbers mean?
• some sizes (all uncompressed) …
– this book, text only ~ 320,000 words, 2Mb
– the Bible ~ 4.5 Mbytes
– scanned page ~ 128 Mbytes
• (11x8 inches, 1200 dpi, 8bit greyscale)
– digital photo ~ 10 Mbytes
• (2–4 mega pixels, 24 bit colour)
– video ~ 10 Mbytes per second
• (512x512, 12 bit colour, 25 frames per sec)
virtual memory
• Problem:
– running lots of programs + each program large
– not enough RAM
• Solution - Virtual memory :
– store some programs temporarily on disk
– makes RAM appear bigger
• But … swapping
– program on disk needs to run again
– copied from disk to RAM
– s l o w s t h i n g s d o w n
Compression
• reduce amount of storage required
• lossless
– recover exact text or image – e.g. GIF, ZIP
– look for commonalities:
• text: AAAAAAAAAABBBBBCCCCCCCC 10A5B8C
• video: compare successive frames and store change
• lossy
– recover something like original – e.g. JPEG, MP3
– exploit perception
• JPEG: lose rapid changes and some colour
• MP3: reduce accuracy of drowned out notes
Storage formats - text
• ASCII - 7-bit binary code for to each letter and
character
• UTF-8 - 8-bit encoding of 16 bit character set
• RTF (rich text format)
- text plus formatting and layout information
• SGML (standardized generalised markup language)
- documents regarded as structured objects
• XML (extended markup language)
- simpler version of SGML for web applications
Storage formats - media
• Images:
– many storage formats :
(PostScript, GIFF, JPEG, TIFF, PICT,
etc.)
– plus different compression techniques
(to reduce their storage requirements)
• Audio/Video
– again lots of formats :
(QuickTime, MPEG, WAV, etc.)
– compression even more important
– also ‘streaming’ formats for network delivery
methods of access
• large information store
– long time to search => use index
– what you index -> what you can access
• simple index needs exact match
• forgiving systems:
– Xerox “do what I mean” (DWIM)
– SOUNDEX – McCloud ~ MacCleod
• access without structure …
– free text indexing (all the words in a document)
– needs lots of space!!
processing and networks
finite speed (but also Moore’s law)
limits of interaction
networked computing
Finite processing speed
• Designers tend to assume fast processors, and make
interfaces more and more complicated
• But problems occur, because processing cannot keep up
with all the tasks it needs to do
– cursor overshooting because system has buffered
keypresses
– icon wars - user clicks on icon, nothing happens, clicks on
another, then system responds and windows fly
everywhere
• Also problems if system is too fast - e.g. help screens
may scroll through text much too rapidly to be read
Moore’s law
• computers get faster and faster!
• 1965 …
– Gordon Moore, co-founder of Intel, noticed a pattern
– processor speed doubles every 18 months
– PC … 1987: 1.5 Mhz, 2002: 1.5 GHz
• similar pattern for memory
– but doubles every 12 months!!
– hard disk … 1991: 20Mbyte : 2002: 30 Gbyte
• baby born today
– record all sound and vision
– by 70 all life’s memories stored in a grain of dust!
/e3/online/moores-law/
the myth of the infinitely
fast machine
• implicit assumption … no delays
an infinitely fast machine
• what is good design for real machines?
• good example … the telephone :
– type keys too fast
– hear tones as numbers sent down the line
– actually an accident of implementation
– emulate in deisgn
Limitations on interactive
performance
Computation bound
– Computation takes ages, causing frustration for the user
Storage channel bound
– Bottleneck in transference of data from disk to memory
Graphics bound
– Common bottleneck: updating displays requires a lot of
effort - sometimes helped by adding a graphics co-
processor optimised to take on the burden
Network capacity
– Many computers networked - shared resources and files,
access to printers etc. - but interactive performance can be
reduced by slow network speed
Networked computing
Networks allow access to …
– large memory and processing
– other people (groupware, email)
– shared resources – esp. the web
Issues
– network delays – slow feedback
– conflicts - many people update data
– unpredictability
The internet
• history …
– 1969: DARPANET US DoD, 4 sites
– 1971: 23; 1984: 1000; 1989: 10000
• common language (protocols):
– TCP – Transmission Control protocol
• lower level, packets (like letters) between machines
– IP – Internet Protocol
• reliable channel (like phone call) between programs on
machines
– email, HTTP, all build on top of these

More Related Content

PPTX
Human Computer Interaction HCI
PPT
e3-chap-02.ppt
PPT
e3-chap-02.ppt
PPT
Human computer Interactive in HCI Education
PPT
fundamanetal business fundamental HCI human computer computer.ppt
PPT
e3-chap-02.ppt
PPT
e3-chap-02.ppt Chapter 2_Introduction-the computer basic elements of the HCI ...
PDF
ch2-the computer.pdf
Human Computer Interaction HCI
e3-chap-02.ppt
e3-chap-02.ppt
Human computer Interactive in HCI Education
fundamanetal business fundamental HCI human computer computer.ppt
e3-chap-02.ppt
e3-chap-02.ppt Chapter 2_Introduction-the computer basic elements of the HCI ...
ch2-the computer.pdf

Similar to What is a Computer? Input Devices /output devices (20)

PPT
types of printers and how printers work and their application
PPT
introducftion_to_computers_computers.ppt
PDF
Lect4a_Interaksi manusia komputer_Alan Dix.pdf
PPT
E3 chap-02
PPT
HCI 3e - Ch 2: The computer
PPT
E3 chap-02 mmmm
PPT
HCI - Chapter 2
PPT
E3 chap-02
PPT
Chap2(2)
PPT
Chapter 2 - Lesson 1
PPT
Human Computer Interaction HCI chapter 2.ppt
PPT
Chapter 2 -Lesson 2 - Types of mouse
PPT
Chapter 2 - Lesson 2
PPT
Interaction devices in human Computer Interface(Human Computer interface tut...
PPT
Human computer interaction
PDF
humancomputer interaction lecture number 2.pdf
PDF
CSE868 - Week 07 - Interaction Devices (1).pdf
PPTX
HCL detection in machine learning process .pptx
PPT
The computer HCI
types of printers and how printers work and their application
introducftion_to_computers_computers.ppt
Lect4a_Interaksi manusia komputer_Alan Dix.pdf
E3 chap-02
HCI 3e - Ch 2: The computer
E3 chap-02 mmmm
HCI - Chapter 2
E3 chap-02
Chap2(2)
Chapter 2 - Lesson 1
Human Computer Interaction HCI chapter 2.ppt
Chapter 2 -Lesson 2 - Types of mouse
Chapter 2 - Lesson 2
Interaction devices in human Computer Interface(Human Computer interface tut...
Human computer interaction
humancomputer interaction lecture number 2.pdf
CSE868 - Week 07 - Interaction Devices (1).pdf
HCL detection in machine learning process .pptx
The computer HCI
Ad

Recently uploaded (20)

PDF
Getting started with AI Agents and Multi-Agent Systems
PDF
Microsoft Solutions Partner Drive Digital Transformation with D365.pdf
PPT
Module 1.ppt Iot fundamentals and Architecture
PPTX
OMC Textile Division Presentation 2021.pptx
PPTX
Chapter 5: Probability Theory and Statistics
PDF
Assigned Numbers - 2025 - Bluetooth® Document
PDF
NewMind AI Weekly Chronicles - August'25-Week II
PPTX
TLE Review Electricity (Electricity).pptx
PDF
1 - Historical Antecedents, Social Consideration.pdf
PDF
August Patch Tuesday
PPTX
observCloud-Native Containerability and monitoring.pptx
PDF
DP Operators-handbook-extract for the Mautical Institute
PDF
A contest of sentiment analysis: k-nearest neighbor versus neural network
PPTX
MicrosoftCybserSecurityReferenceArchitecture-April-2025.pptx
PDF
Developing a website for English-speaking practice to English as a foreign la...
PDF
ENT215_Completing-a-large-scale-migration-and-modernization-with-AWS.pdf
PDF
Transform Your ITIL® 4 & ITSM Strategy with AI in 2025.pdf
PDF
2021 HotChips TSMC Packaging Technologies for Chiplets and 3D_0819 publish_pu...
PPTX
O2C Customer Invoices to Receipt V15A.pptx
PPTX
Group 1 Presentation -Planning and Decision Making .pptx
Getting started with AI Agents and Multi-Agent Systems
Microsoft Solutions Partner Drive Digital Transformation with D365.pdf
Module 1.ppt Iot fundamentals and Architecture
OMC Textile Division Presentation 2021.pptx
Chapter 5: Probability Theory and Statistics
Assigned Numbers - 2025 - Bluetooth® Document
NewMind AI Weekly Chronicles - August'25-Week II
TLE Review Electricity (Electricity).pptx
1 - Historical Antecedents, Social Consideration.pdf
August Patch Tuesday
observCloud-Native Containerability and monitoring.pptx
DP Operators-handbook-extract for the Mautical Institute
A contest of sentiment analysis: k-nearest neighbor versus neural network
MicrosoftCybserSecurityReferenceArchitecture-April-2025.pptx
Developing a website for English-speaking practice to English as a foreign la...
ENT215_Completing-a-large-scale-migration-and-modernization-with-AWS.pdf
Transform Your ITIL® 4 & ITSM Strategy with AI in 2025.pdf
2021 HotChips TSMC Packaging Technologies for Chiplets and 3D_0819 publish_pu...
O2C Customer Invoices to Receipt V15A.pptx
Group 1 Presentation -Planning and Decision Making .pptx
Ad

What is a Computer? Input Devices /output devices

  • 2. The Computer a computer system is made up of various elements Each of these elements affects the interaction – input devices – text entry and pointing – output devices – screen (small&large), digital paper – virtual reality – special interaction and display devices – physical interaction – e.g. sound, haptic, bio-sensing – paper – as output (print) and input (scan) – memory – RAM & permanent media, capacity & access – processing – speed of processing, networks
  • 3. Interacting with computers to understand human–computer interaction … need to understand computers! what goes in and out devices, paper, sensors, etc. what can it do? memory, processing, networks
  • 4. A ‘typical’ computer system • screen, or monitor, on which there are windows • keyboard • mouse/trackpad • variations – desktop – laptop – PDA the devices dictate the styles of interaction that the system supports If we use different devices, then the interface will support a different style of interaction window 1 window 2 12-37pm ?
  • 5. How many … • computers in your house? – hands up, … … none, 1, 2 , 3, more!! • computers in your pockets? are you thinking … … PC, laptop, PDA , Smart Phones??
  • 6. How many computers … in your house? – PC, note books, tabs,kindle – TV, VCR, DVD, HiFi, cable/satellite TV – microwave, cooker, washing machine – central heating – security system can you think of more? in your pockets? – PDA – phone, camera – smart card, card with magnetic strip? – electronic car key – USB memory try your pockets and bags
  • 7. Interactivity? Long ago in a galaxy far away … batch processing – punched card stacks or large data files prepared – long wait …. – line printer output … and if it is not right … Now most computing is interactive – rapid feedback – the user in control (most of the time) – doing rather than thinking … Is faster always better?
  • 9. text entry devices keyboards (QWERTY et al.) chord keyboards, phone pads handwriting, speech
  • 10. Keyboards • Most common text input device • Allows rapid entry of text by experienced users • Keypress closes connection, causing a character code to be sent • Usually connected by cable, but can be wireless
  • 11. layout – QWERTY • Standardised layout but … – non-alphanumeric keys are placed differently – accented symbols needed for different scripts – minor differences between UK and USA keyboards • QWERTY arrangement not optimal for typing – layout to prevent typewriters jamming! • Alternative designs allow faster typing but large social base of QWERTY typists produces reluctance to change.
  • 12. QWERTY (ctd) 2 3 4 5 6 7 8 9 0 Q W E R T Y U I 1 O P S D F H J L A G K Z X C V B N M , . SPACE
  • 13. alternative keyboard layouts Alphabetic – keys arranged in alphabetic order – not faster for trained typists – not faster for beginners either! Dvorak – common letters under dominant fingers – biased towards right hand – common combinations of letters alternate between hands – 10-15% improvement in speed and reduction in fatigue – But - large social base of QWERTY typists produce market pressures not to change
  • 14. special keyboards • designs to reduce fatigue for Repetitive Strain Injury ( RSI ) • for one handed use e.g. the Maltron left-handed keyboard
  • 15. Maltron Dual Hand Flat (2D) Keyboard Maltron Mouth / Head Stick Keyboard http://www.maltron.com/keyboard-info/94-keyboard-information/keyboard-selector
  • 16. Chord keyboards only a few keys - four or 5 letters typed as combination of keypresses compact size – ideal for portable applications short learning time – keypresses reflect letter shape fast – once you have trained BUT - social resistance, plus fatigue after extended use NEW – niche market for some wearables
  • 17. phone pad and T9 entry • use numeric keys with multiple presses 2 – a b c 6 - m n o 3 - d e f 7 - p q r s 4 - g h i 8 - t u v 5 - j k l 9 - w x y z hello = 4433555[pause]555666 surprisingly fast! • T9 predictive entry – type as if single key for each letter – use dictionary to ‘guess’ the right word – hello = 43556 … – but 26 -> menu ‘am’ or ‘an’ https://www.timetoast.com/timelines/history-of-computer-input- devices--2
  • 18. Handwriting recognition • Text can be input into the computer, using a pen and a digesting tablet – natural interaction • Technical problems: – capturing all useful information - stroke path, pressure, etc. in a natural manner – segmenting joined up writing into individual letters – interpreting individual letters – coping with different styles of handwriting • Used in PDAs, and tablet computers … … leave the keyboard on the desk!
  • 19. Speech recognition • Improving rapidly • Most successful when: – single user – initial training and learns peculiarities – limited vocabulary systems • Problems with – external noise interfering – imprecision of pronunciation – large vocabularies – different speakers
  • 20. Numeric keypads • for entering numbers quickly: – calculator, PC keyboard • for telephones not the same!! ATM like phone 4 5 6 7 8 9 * 0 # 1 2 3 4 5 6 1 2 3 0 . = 7 8 9 telephone calculator
  • 21. positioning, pointing and drawing mouse, touchpad trackballs, joysticks etc. touch screens, tablets eyegaze, cursors
  • 22. the Mouse • Handheld pointing device – very common – easy to use • Two characteristics – planar movement – buttons (usually from 1 to 3 buttons on top, used for making a selection, indicating an option, or to initiate drawing etc.)
  • 23. the mouse (ctd) Mouse located on desktop – requires physical space – no arm fatigue Relative movement only is detectable. Movement of mouse moves screen cursor Screen cursor oriented in (x, y) plane, mouse movement in (x, z) plane … … an indirect manipulation device. – device itself doesn’t obscure screen, is accurate and fast. – hand-eye coordination problems for novice users
  • 24. How does it work? Two methods for detecting motion • Mechanical – Ball on underside of mouse turns as mouse is moved – Rotates orthogonal potentiometers – Can be used on almost any flat surface • Optical – light emitting diode on underside of mouse – may use special grid-like pad or just on desk – less susceptible to dust and dirt – detects fluctuating alterations in reflected light intensity to calculate relative motion in (x, z) plane
  • 25. Even by foot … • some experiments with the footmouse – controlling mouse movement with feet … – not very common :-) • but foot controls are common elsewhere: – car pedals – sewing machine speed control – organ and piano pedals
  • 26. Touchpad • small touch sensitive tablets • ‘stroke’ to move mouse pointer • used mainly in laptop computers • good ‘acceleration’ settings important – fast stroke • lots of pixels per inch moved • initial movement to the target – slow stroke • less pixels per inch • for accurate positioning
  • 27. Trackball and thumbwheels Trackball – ball is rotated inside static housing • like an upsdie down mouse! – relative motion moves cursor – indirect device, fairly accurate – separate buttons for picking – very fast for gaming – used in some portable and notebook computers. Thumbwheels … – for accurate CAD – two dials for X-Y cursor position – for fast scrolling – single dial on mouse
  • 28. Joystick and keyboard nipple Joystick – indirect pressure of stick = velocity of movement – buttons for selection on top or on front like a trigger – often used for computer games aircraft controls and 3D navigation Keyboard nipple – for laptop computers – miniature joystick in the middle of the keyboard
  • 29. Touch-sensitive screen • Detect the presence of finger or stylus on the screen. – works by interrupting matrix of light beams, capacitance changes or ultrasonic reflections – direct pointing device • Advantages: – fast, and requires no specialised pointer – good for menu selection – suitable for use in hostile environment: clean and safe from damage. • Disadvantages: – finger can mark screen – imprecise (finger is a fairly blunt instrument!) • difficult to select small regions or perform accurate drawing – lifting arm can be tiring
  • 30. Stylus and light pen Stylus – small pen-like pointer to draw directly on screen – may use touch sensitive surface or magnetic detection – used in PDA, tablets PCs and drawing tables Light Pen – now rarely used – uses light from screen to detect location BOTH … – very direct and obvious to use – but can obscure screen
  • 31. Digitizing tablet • Mouse like-device with cross hairs • used on special surface - rather like stylus • very accurate - used for digitizing maps
  • 32. Eyegaze • control interface by eye gaze direction – e.g. look at a menu item to select it • uses laser beam reflected off retina – … a very low power laser! • mainly used for evaluation (ch x) • potential for hands-free control • high accuracy requires headset • cheaper and lower accuracy devices available sit under the screen like a small webcam
  • 33. Cursor keys • Four keys (up, down, left, right) on keyboard. • Very, very cheap, but slow. • Useful for not much more than basic motion for text- editing tasks. • No standardised layout, but inverted “T”, most common
  • 34. Discrete positioning controls • in phones, TV controls etc. – cursor pads or mini-joysticks – discrete left-right, up-down – mainly for menu selection
  • 35. display devices bitmap screens (CRT & LCD) large & situated displays digital paper
  • 36. bitmap displays • screen is vast number of coloured dots
  • 37. resolution and colour depth • Resolution … used (inconsistently) for – number of pixels on screen (width x height) • e.g. SVGA 1024 x 768, PDA perhaps 240x400 – density of pixels (in pixels or dots per inch - dpi) • typically between 72 and 96 dpi • Aspect ratio – ration between width and height – 4:3 for most screens, 16:9 for wide-screen TV • Colour depth: – how many different colours for each pixel? – black/white or greys only – 256 from a pallete – 8 bits each for red/green/blue = millions of colours
  • 38. anti-aliasing Jaggies – diagonal lines that have discontinuities in due to horizontal raster scan process. Anti-aliasing – softens edges by using shades of line colour – also used for text
  • 39. Cathode ray tube • Stream of electrons emitted from electron gun, focused and directed by magnetic fields, hit phosphor-coated screen which glows • used in TVs and computer monitors electron gun focussing and deflection electron beam phosphor- coated screen
  • 40. Health hazards of CRT ! • X-rays: largely absorbed by screen (but not at rear!) • UV- and IR-radiation from phosphors: insignificant levels • Radio frequency emissions, plus ultrasound (~16kHz) • Electrostatic field - leaks out through tube to user. Intensity dependant on distance and humidity. Can cause rashes. • Electromagnetic fields (50Hz-0.5MHz). Create induction currents in conductive materials, including the human body. Two types of effects attributed to this: visual system - high incidence of cataracts in VDU operators, and concern over reproductive disorders (miscarriages and birth defects).
  • 41. Health hints … • do not sit too close to the screen • do not use very small fonts • do not look at the screen for long periods without a break • do not place the screen directly in front of a bright window • work in well-lit surroundings  Take extra care of posture, ergonomics, stress
  • 42. Liquid crystal displays • Smaller, lighter, and … no radiation problems. • Found on PDAs, portables and notebooks, … and increasingly on desktop and even for home TV • also used in dedicted displays: digital watches, mobile phones, HiFi controls • How it works … – Top plate transparent and polarised, bottom plate reflecting. – Light passes through top plate and crystal, and reflects back to eye. – Voltage applied to crystal changes polarisation and hence colour – N.B. light reflected not emitted => less eye strain
  • 43. special displays Random Scan (Directed-beam refresh, vector display) – draw the lines to be displayed directly – no jaggies – lines need to be constantly redrawn – rarely used except in special instruments Direct view storage tube (DVST) – Similar to random scan but persistent => no flicker – Can be incrementally updated but not selectively erased – Used in analogue storage oscilloscopes
  • 44. large displays • used for meetings, lectures, etc. • technology plasma – usually wide screen video walls – lots of small screens together projected – RGB lights or LCD projector – hand/body obscures screen – may be solved by 2 projectors + clever software back-projected – frosted glass + projector behind
  • 45. situated displays • displays in ‘public’ places – large or small – very public or for small group • display only – for information relevant to location • or interactive – use stylus, touch sensitive screem • in all cases … the location matters – meaning of information or interaction is related to the location
  • 46. • small displays beside office doors • handwritten notes left using stylus • office owner reads notes using web interface Hermes a situated display small displays beside office doors handwritten notes left using stylus office owner reads notes using web interface
  • 47. Digital paper • what? – thin flexible sheets – updated electronically – but retain display • how? – small spheres turned – or channels with coloured liquid and contrasting spheres – rapidly developing area appearance cross section
  • 48. virtual reality and 3D interaction positioning in 3D space moving and grasping seeing 3D (helmets and caves)
  • 49. positioning in 3D space • cockpit and virtual controls – steering wheels, knobs and dials … just like real! • the 3D mouse – six-degrees of movement: x, y, z + roll, pitch, yaw – and also its up/down angle (called pitch), its left/right orientation (called yaw) and the amount it is twisted about its own axis (called roll)
  • 50. • data glove – fibre optics used to detect finger position • VR helmets – detect head motion and possibly eye gaze • whole body tracking – accelerometers strapped to limbs or reflective dots and video processing
  • 51. pitch, yaw and roll pitch yaw roll
  • 52. 3D displays • desktop VR – ordinary screen, mouse or keyboard control – perspective and motion give 3D effect • seeing in 3D – use stereoscopic vision – VR helmets – screen plus shuttered specs, etc. also see extra slides on 3D vision
  • 53. VR headsets • small TV screen for each eye • slightly different angles • 3D effect
  • 54. VR motion sickness • time delay – move head … lag … display moves – conflict: head movement vs. eyes • depth perception – headset gives different stereo distance – but all focused in same plane – conflict: eye angle vs. focus • conflicting cues => sickness – helps motivate improvements in technology
  • 55. simulators and VR caves • scenes projected on walls • realistic environment • hydraulic rams! • real controls • other people
  • 56. physical controls, sensors etc. special displays and gauges sound, touch, feel, smell physical controls environmental and bio-sensing
  • 57. dedicated displays • analogue representations: – dials, gauges, lights, etc. • digital displays: – small LCD screens, LED lights, etc. • head-up displays – found in aircraft cockpits – show most important controls … depending on context
  • 58. Sounds • beeps, bongs, clonks, whistles and whirrs • used for error indications • confirmation of actions e.g. keyclick also see chapter 10
  • 59. Touch, feel, smell • touch and feeling important – in games … vibration, force feedback – in simulation … feel of surgical instruments – called haptic devices • texture, smell, taste – current technology very limited
  • 60. BMW iDrive • for controlling menus • feel small ‘bumps’ for each item • makes it easier to select options by feel • uses haptic technology from Immersion Corp.
  • 61. physical controls • specialist controls needed … – industrial controls, consumer products, etc. large buttons clear dials tiny buttons multi-function control easy-clean smooth buttons
  • 62. Environment and bio-sensing • sensors all around us – car courtesy light – small switch on door – ultrasound detectors – security, washbasins – RFID security tags in shops – temperature, weight, location • … and even our own bodies … – iris scanners, body temperature, heart rate, galvanic skin response, blink rate
  • 63. paper: printing and scanning print technology fonts, page description, WYSIWYG scanning, OCR
  • 64. Printing • image made from small dots – allows any character set or graphic to be printed, • critical features: – resolution • size and spacing of the dots • measured in dots per inch (dpi) – speed • usually measured in pages per minute – cost!!
  • 65. Types of dot-based printers • dot-matrix printers – use inked ribbon (like a typewriter – line of pins that can strike the ribbon, dotting the paper. – typical resolution 80-120 dpi • ink-jet and bubble-jet printers – tiny blobs of ink sent from print head to paper – typically 300 dpi or better . • laser printer – like photocopier: dots of electrostatic charge deposited on drum, which picks up toner (black powder form of ink) rolled onto paper which is then fixed with heat – typically 600 dpi or better.
  • 66. Printing in the workplace • shop tills – dot matrix – same print head used for several paper rolls – may also print cheques • thermal printers – special heat-sensitive paper – paper heated by pins makes a dot – poor quality, but simple & low maintenance – used in some fax machines
  • 67. Fonts • Font – the particular style of text Courier font Helvetica font Palatino font Times Roman font   (special symbol) • Size of a font measured in points (1 pt about 1/72”) (vaguely) related to its height This is ten point Helvetica This is twelve point This is fourteen point This is eighteen point and this is twenty-four point
  • 68. Fonts (ctd) Pitch – fixed-pitch – every character has the same width e.g. Courier – variable-pitched – some characters wider e.g. Times Roman – compare the ‘i’ and the “m” Serif or Sans-serif – sans-serif – square-ended strokes e.g. Helvetica – serif – with splayed ends (such as) e.g. Times Roman or Palatino
  • 69. Readability of text • lowercase – easy to read shape of words • UPPERCASE – better for individual letters and non-words e.g. flight numbers: BA793 vs. ba793 • serif fonts – helps your eye on long lines of printed text – but sans serif often better on screen
  • 70. Page Description Languages • Pages very complex – different fonts, bitmaps, lines, digitised photos, etc. • Can convert it all into a bitmap and send to the printer … but often huge ! • Alternatively Use a page description language – sends a description of the page can be sent, – instructions for curves, lines, text in different styles, etc. – like a programming language for printing! • PostScript is the most common
  • 71. Screen and page • WYSIWYG – what you see is what you get – aim of word processing, etc. • but … – screen: 72 dpi, landscape image – print: 600+ dpi, portrait • can try to make them similar but never quite the same • so … need different designs, graphics etc, for screen and print
  • 72. Scanners • Take paper and convert it into a bitmap • Two sorts of scanner – flat-bed: paper placed on a glass plate, whole page converted into bitmap – hand-held: scanner passed over paper, digitising strip typically 3-4” wide • Shines light at paper and note intensity of reflection – colour or greyscale • Typical resolutions from 600–2400 dpi
  • 73. Scanners (ctd) Used in – desktop publishing for incorporating photographs and other images – document storage and retrieval systems, doing away with paper storage + special scanners for slides and photographic negatives
  • 74. Optical character recognition • OCR converts bitmap back into text • different fonts – create problems for simple “template matching” algorithms – more complex systems segment text, decompose it into lines and arcs, and decipher characters that way • page format – columns, pictures, headers and footers
  • 75. Paper-based interaction • paper usually regarded as output only • can be input too – OCR, scanning, etc. • Xerox PaperWorks – glyphs – small patterns of /// • used to identify forms etc. • used with scanner and fax to control applications • more recently – papers micro printed - like wattermarks • identify which sheet and where you are – special ‘pen’ can read locations • know where they are writing
  • 76. memory short term and long term speed, capacity, compression formats, access
  • 77. Short-term Memory - RAM • Random access memory (RAM) – on silicon chips – 100 nano-second access time – usually volatile (lose information if power turned off) – data transferred at around 100 Mbytes/sec • Some non-volatile RAM used to store basic set- up information • Typical desktop computers: 64 to 256 Mbytes RAM
  • 78. Long-term Memory - disks • magnetic disks – floppy disks store around 1.4 Mbytes – hard disks typically 40 Gbytes to 100s of Gbytes access time ~10ms, transfer rate 100kbytes/s • optical disks – use lasers to read and sometimes write – more robust that magnetic media – CD-ROM - same technology as home audio, ~ 600 Gbytes – DVD - for AV applications, or very large files
  • 79. Blurring boundaries • PDAs – often use RAM for their main memory • Flash-Memory – used in PDAs, cameras etc. – silicon based but persistent – plug-in USB devices for data transfer
  • 80. speed and capacity • what do the numbers mean? • some sizes (all uncompressed) … – this book, text only ~ 320,000 words, 2Mb – the Bible ~ 4.5 Mbytes – scanned page ~ 128 Mbytes • (11x8 inches, 1200 dpi, 8bit greyscale) – digital photo ~ 10 Mbytes • (2–4 mega pixels, 24 bit colour) – video ~ 10 Mbytes per second • (512x512, 12 bit colour, 25 frames per sec)
  • 81. virtual memory • Problem: – running lots of programs + each program large – not enough RAM • Solution - Virtual memory : – store some programs temporarily on disk – makes RAM appear bigger • But … swapping – program on disk needs to run again – copied from disk to RAM – s l o w s t h i n g s d o w n
  • 82. Compression • reduce amount of storage required • lossless – recover exact text or image – e.g. GIF, ZIP – look for commonalities: • text: AAAAAAAAAABBBBBCCCCCCCC 10A5B8C • video: compare successive frames and store change • lossy – recover something like original – e.g. JPEG, MP3 – exploit perception • JPEG: lose rapid changes and some colour • MP3: reduce accuracy of drowned out notes
  • 83. Storage formats - text • ASCII - 7-bit binary code for to each letter and character • UTF-8 - 8-bit encoding of 16 bit character set • RTF (rich text format) - text plus formatting and layout information • SGML (standardized generalised markup language) - documents regarded as structured objects • XML (extended markup language) - simpler version of SGML for web applications
  • 84. Storage formats - media • Images: – many storage formats : (PostScript, GIFF, JPEG, TIFF, PICT, etc.) – plus different compression techniques (to reduce their storage requirements) • Audio/Video – again lots of formats : (QuickTime, MPEG, WAV, etc.) – compression even more important – also ‘streaming’ formats for network delivery
  • 85. methods of access • large information store – long time to search => use index – what you index -> what you can access • simple index needs exact match • forgiving systems: – Xerox “do what I mean” (DWIM) – SOUNDEX – McCloud ~ MacCleod • access without structure … – free text indexing (all the words in a document) – needs lots of space!!
  • 86. processing and networks finite speed (but also Moore’s law) limits of interaction networked computing
  • 87. Finite processing speed • Designers tend to assume fast processors, and make interfaces more and more complicated • But problems occur, because processing cannot keep up with all the tasks it needs to do – cursor overshooting because system has buffered keypresses – icon wars - user clicks on icon, nothing happens, clicks on another, then system responds and windows fly everywhere • Also problems if system is too fast - e.g. help screens may scroll through text much too rapidly to be read
  • 88. Moore’s law • computers get faster and faster! • 1965 … – Gordon Moore, co-founder of Intel, noticed a pattern – processor speed doubles every 18 months – PC … 1987: 1.5 Mhz, 2002: 1.5 GHz • similar pattern for memory – but doubles every 12 months!! – hard disk … 1991: 20Mbyte : 2002: 30 Gbyte • baby born today – record all sound and vision – by 70 all life’s memories stored in a grain of dust! /e3/online/moores-law/
  • 89. the myth of the infinitely fast machine • implicit assumption … no delays an infinitely fast machine • what is good design for real machines? • good example … the telephone : – type keys too fast – hear tones as numbers sent down the line – actually an accident of implementation – emulate in deisgn
  • 90. Limitations on interactive performance Computation bound – Computation takes ages, causing frustration for the user Storage channel bound – Bottleneck in transference of data from disk to memory Graphics bound – Common bottleneck: updating displays requires a lot of effort - sometimes helped by adding a graphics co- processor optimised to take on the burden Network capacity – Many computers networked - shared resources and files, access to printers etc. - but interactive performance can be reduced by slow network speed
  • 91. Networked computing Networks allow access to … – large memory and processing – other people (groupware, email) – shared resources – esp. the web Issues – network delays – slow feedback – conflicts - many people update data – unpredictability
  • 92. The internet • history … – 1969: DARPANET US DoD, 4 sites – 1971: 23; 1984: 1000; 1989: 10000 • common language (protocols): – TCP – Transmission Control protocol • lower level, packets (like letters) between machines – IP – Internet Protocol • reliable channel (like phone call) between programs on machines – email, HTTP, all build on top of these