SlideShare a Scribd company logo
Intervene to
visualize
genomic region
sets
D. Denisko
Introduction
Description
Installation and
general usage
Modules
Venn diagram
Upset
Pairwise
heatmap
ShinyApp
Examples
Plots in
publications
Conclusion
Intervene: a tool for intersection and
visualization of multiple gene or genomic
region sets
Danielle Denisko
Tech Talk
June 13, 2018
Template from: www.overleaf.com
Intervene to
visualize
genomic region
sets
D. Denisko
Introduction
Description
Installation and
general usage
Modules
Venn diagram
Upset
Pairwise
heatmap
ShinyApp
Examples
Plots in
publications
Conclusion
Outline
Introduction
Description
Installation and general usage
Modules
Venn diagram
Upset
Pairwise heatmap
ShinyApp
Examples
Plots in publications
Conclusion
Intervene to
visualize
genomic region
sets
D. Denisko
Introduction
Description
Installation and
general usage
Modules
Venn diagram
Upset
Pairwise
heatmap
ShinyApp
Examples
Plots in
publications
Conclusion
Introduction
Summary:
intersect and visualize sets of genes
novel aspect: work specifically with genomic regions
Modules:
venn, upset, and pairwise
Intervene to
visualize
genomic region
sets
D. Denisko
Introduction
Description
Installation and
general usage
Modules
Venn diagram
Upset
Pairwise
heatmap
ShinyApp
Examples
Plots in
publications
Conclusion
Description
Use:
command line and Shiny web interface
Implementation:
Python 2.7 (also works with Python 3.4, 3.5, and 3.6)
R
Built upon:
pybedtools
Seaborn
Matplotlib
UpSetR
Corrplot
Venerable
heatmap.2
Intervene to
visualize
genomic region
sets
D. Denisko
Introduction
Description
Installation and
general usage
Modules
Venn diagram
Upset
Pairwise
heatmap
ShinyApp
Examples
Plots in
publications
Conclusion
Installation and general usage
To install:
pip install intervene
conda install intervene
Bitbucket and Github source code
Input:
genomic regions in BED, GFF, or VCF format
gene/name lists in plain text format
Intervene to
visualize
genomic region
sets
D. Denisko
Introduction
Description
Installation and
general usage
Modules
Venn diagram
Upset
Pairwise
heatmap
ShinyApp
Examples
Plots in
publications
Conclusion
Installation and general usage
Workflow:
Khan A and Mathelier A. 2017. BMC Bioinformatics. 18:287.
Intervene to
visualize
genomic region
sets
D. Denisko
Introduction
Description
Installation and
general usage
Modules
Venn diagram
Upset
Pairwise
heatmap
ShinyApp
Examples
Plots in
publications
Conclusion
Installation and general usage
There are three types of output plots:
Khan A and Mathelier A. 2017. BMC Bioinformatics. 18:287.
Intervene to
visualize
genomic region
sets
D. Denisko
Introduction
Description
Installation and
general usage
Modules
Venn diagram
Upset
Pairwise
heatmap
ShinyApp
Examples
Plots in
publications
Conclusion
Installation and general usage
Users can provide all possible bedtools intersect
options via --bedtools-options.
Figure 1: There are over 15 options for specifying overlaps in
bedtools intersect.
Image source: BEDTools suite web page.
Intervene to
visualize
genomic region
sets
D. Denisko
Introduction
Description
Installation and
general usage
Modules
Venn diagram
Upset
Pairwise
heatmap
ShinyApp
Examples
Plots in
publications
Conclusion
Modules
venn
classical Venn diagram
up to 6 sets
input: gene lists or genomic region sets
Shiny web interface provides some more flexibility:
weighted and unweighted Venn and Euler diagrams
different types of diagrams (up to 9 sets)
Intervene to
visualize
genomic region
sets
D. Denisko
Introduction
Description
Installation and
general usage
Modules
Venn diagram
Upset
Pairwise
heatmap
ShinyApp
Examples
Plots in
publications
Conclusion
Modules
venn
Figure 2: Venn (leftmost column) vs. Euler diagrams.
Venn: show all 2n possible regions
Euler: only show relevant (non-empty) regions
Image source: Wikipedia
Intervene to
visualize
genomic region
sets
D. Denisko
Introduction
Description
Installation and
general usage
Modules
Venn diagram
Upset
Pairwise
heatmap
ShinyApp
Examples
Plots in
publications
Conclusion
Modules
venn
intervene venn -i RC13-KO.narrowPeak RC13-WT.narrowPeak S12-KO.narrowPeak S12-WT.narrowPeak 
--names=KO-rep1,WT-rep1,KO-rep2,WT-rep2 -o ~/intervene_plots/ --save-overlaps 
--title="RNF169 ChIP-seq peaks" --project=RNF169_KO_WT --figtype=png 
--figsize 12 12 --fontsize=24 --dpi=450
Figure 3: Intervene venn diagram.
Intervene to
visualize
genomic region
sets
D. Denisko
Introduction
Description
Installation and
general usage
Modules
Venn diagram
Upset
Pairwise
heatmap
ShinyApp
Examples
Plots in
publications
Conclusion
Modules
venn
Figure 4: Chow-Ruskey
Figure 5: Edwards
Figure 6: Squares
Figure 7: Battle
Intervene to
visualize
genomic region
sets
D. Denisko
Introduction
Description
Installation and
general usage
Modules
Venn diagram
Upset
Pairwise
heatmap
ShinyApp
Examples
Plots in
publications
Conclusion
Modules
venn
Figure 8: Intervene venn diagram with 6 sets.
Intervene to
visualize
genomic region
sets
D. Denisko
Introduction
Description
Installation and
general usage
Modules
Venn diagram
Upset
Pairwise
heatmap
ShinyApp
Examples
Plots in
publications
Conclusion
Modules
upset
easier to interpret when there are more than 4 sets
can be used effectively for 20-30 sets
Intervene to
visualize
genomic region
sets
D. Denisko
Introduction
Description
Installation and
general usage
Modules
Venn diagram
Upset
Pairwise
heatmap
ShinyApp
Examples
Plots in
publications
Conclusion
Modules
upset
Motivation:
Figure 9: Edwards-Venn diagram for banana gene clusters
comparison. D’Hont A et al. 2012. Nature. 488:7410.
Intervene to
visualize
genomic region
sets
D. Denisko
Introduction
Description
Installation and
general usage
Modules
Venn diagram
Upset
Pairwise
heatmap
ShinyApp
Examples
Plots in
publications
Conclusion
Modules
upset
intervene upset -i RC13-KO.narrowPeak RC13-WT.narrowPeak S12-KO.narrowPeak 
S12-WT.narrowPeak --names=KO-rep1,WT-rep1,KO-rep2,WT-rep2 -o ~/intervene_plots/ 
--figtype=png --figsize 12 12 --showshiny
Figure 10: Intervene upset diagram.
Intervene to
visualize
genomic region
sets
D. Denisko
Introduction
Description
Installation and
general usage
Modules
Venn diagram
Upset
Pairwise
heatmap
ShinyApp
Examples
Plots in
publications
Conclusion
Modules
upset
1 #! / usr / bin /env R s c r i p t
2 l i b r a r y ( ”UpSetR” )
3 png ( ” I n t e r v e n e upset . png” , width =7200 , h e i g h t =3600 ,
4 r e s =300)
5 e x p r e s s i o n I n p u t <− c ( ’WT−rep2 ’ =2606 ,
6 ’KO−rep2 ’ =109 ,
7 ’KO−rep2&WT−rep2 ’ =44,
8 ’WT−rep1 ’ =39967 ,
9 ’WT−rep1&WT−rep2 ’ =12136 ,
10 ’WT−rep1&KO−rep2 ’ =39,
11 ’WT−rep1&KO−rep2&WT−rep2 ’ =114 ,
12 ’KO−rep1 ’ =77,
13 ’KO−rep1&WT−rep2 ’ =5,
14 ’KO−rep1&KO−rep2 ’ =21,
15 ’KO−rep1&KO−rep2&WT−rep2 ’ =22,
16 ’KO−rep1&WT−rep1 ’ =112 ,
17 ’KO−rep1&WT−rep1&WT−rep2 ’ =72,
18 ’KO−rep1&WT−rep1&KO−rep2 ’ =92,
19 ’KO−rep1&WT−rep1&KO−rep2&WT−rep2 ’ =290)
20 upset ( fromExpression ( e x p r e s s i o n I n p u t ) , n s e t s =4,
21 n i n t e r s e c t s =30, show . numbers=” yes ” ,
22 main . bar . c o l o r=”#ea5d4e ” ,
23 s e t s . bar . c o l o r=”#317eab ” ,
24 empty . i n t e r s e c t i o n s=NULL,
25 order . by = ” f r e q ” , number . a n g l e s = 0 ,
26 mainbar . y . l a b e l =”No . o f I n t e r s e c t i o n s ” ,
27 s e t s . x . l a b e l =” Set s i z e ” ,
28 t e x t . s c a l e=c ( 2 , 2 , 2 , 2 , 2 , 3 ) ) # added to a d j u s t f o n t s i z e s
29 i n v i s i b l e ( dev . o f f ( ) )
Intervene to
visualize
genomic region
sets
D. Denisko
Introduction
Description
Installation and
general usage
Modules
Venn diagram
Upset
Pairwise
heatmap
ShinyApp
Examples
Plots in
publications
Conclusion
Modules
upset
Figure 11: UpSet diagram from web application.
Intervene to
visualize
genomic region
sets
D. Denisko
Introduction
Description
Installation and
general usage
Modules
Venn diagram
Upset
Pairwise
heatmap
ShinyApp
Examples
Plots in
publications
Conclusion
Modules
pairwise
clustered heat map of pairwise associations
very large sets
metrics: number of overlaps, fraction of overlap,
Jaccard statistics, Fisher’s exact test, and
distribution of relative distances
heat map styles: tribar, dendrogram, pie, circle,
square, ellipse, etc.
clustering methods: various agglomerative options
Intervene to
visualize
genomic region
sets
D. Denisko
Introduction
Description
Installation and
general usage
Modules
Venn diagram
Upset
Pairwise
heatmap
ShinyApp
Examples
Plots in
publications
Conclusion
Modules
pairwise
Figure 12: Intervene pairwise plot.
Intervene to
visualize
genomic region
sets
D. Denisko
Introduction
Description
Installation and
general usage
Modules
Venn diagram
Upset
Pairwise
heatmap
ShinyApp
Examples
Plots in
publications
Conclusion
ShinyApp
Input:
does not accept genomic regions
venn: lists of names/genes/SNPs
upset: lists of names/genes/SNPs, binary data,
Intervene command line output listing all possible
combinations of sets
pairwise: lists of names/genes/SNPs, pairwise
matrix of number/fraction of overlap (can be
generated through Intervene on command line)
Intervene to
visualize
genomic region
sets
D. Denisko
Introduction
Description
Installation and
general usage
Modules
Venn diagram
Upset
Pairwise
heatmap
ShinyApp
Examples
Plots in
publications
Conclusion
ShinyApp
Figure 13: Screenshot from Intervene’s upset module
ShinyApp.
Intervene to
visualize
genomic region
sets
D. Denisko
Introduction
Description
Installation and
general usage
Modules
Venn diagram
Upset
Pairwise
heatmap
ShinyApp
Examples
Plots in
publications
Conclusion
Plots in publications
Figure 14: Coregulated and antiregulated genes (with lncRNA)
in various yeast colonies.
Wilkinson D et al. 2018. Oxid Med Cell Longev.
Intervene to
visualize
genomic region
sets
D. Denisko
Introduction
Description
Installation and
general usage
Modules
Venn diagram
Upset
Pairwise
heatmap
ShinyApp
Examples
Plots in
publications
Conclusion
Plots in publications
Figure 15: Differentially expressed genes over time after influenza
treatment. Black: up- or down-regulated genes, red: upregulated genes,
blue: downregulated genes. Top: PBMCs, bottom: B cells.
Jensen TL et al. 2018. F1000Research. 6:2162.
Intervene to
visualize
genomic region
sets
D. Denisko
Introduction
Description
Installation and
general usage
Modules
Venn diagram
Upset
Pairwise
heatmap
ShinyApp
Examples
Plots in
publications
Conclusion
Conclusion
Pros:
simple command line tool for generating quick plots
convenient for visualizing genomic region sets
some customization (via output scripts and/or
ShinyApp)
Cons:
limited ability to customize, even in ShinyApp
limited plot types in comparison to ShinyApp

More Related Content

PDF
Community Finding with Applications on Phylogenetic Networks [Presentation]
PDF
Thesis
PDF
Evaluation of conditional images synthesis: generating a photorealistic image...
PDF
Analysis of convection diffusion problems at various peclet numbers using fin...
PDF
Co-Learning: Consensus-based Learning for Multi-Agent Systems
PDF
DIGITAL WAVE FORMULATION OF THE PEEC METHOD
PDF
A Fast Near Optimal Vertex Cover Algorithm (NOVCA)
PDF
CFD Cornell Energy Workshop - M.F. Campuzano Ochoa
Community Finding with Applications on Phylogenetic Networks [Presentation]
Thesis
Evaluation of conditional images synthesis: generating a photorealistic image...
Analysis of convection diffusion problems at various peclet numbers using fin...
Co-Learning: Consensus-based Learning for Multi-Agent Systems
DIGITAL WAVE FORMULATION OF THE PEEC METHOD
A Fast Near Optimal Vertex Cover Algorithm (NOVCA)
CFD Cornell Energy Workshop - M.F. Campuzano Ochoa

Similar to Intervene: a tool for intersection and visualization of multiple gene or genomic region sets (20)

PDF
HalifaxNGGs
PDF
Higher-order organization of complex networks
PDF
A Novel Technique in Software Engineering for Building Scalable Large Paralle...
PPTX
Coastal erosion management using image processing and Node Oriented Programming
PDF
Sat4j: from the lab to desktop computers. OW2con'15, November 17, Paris.
 
PPTX
DefenseTalk_Trimmed
PDF
NIPS2017 Few-shot Learning and Graph Convolution
PPT
UMBC Research Day Presentation
PDF
From RNN to neural networks for cyclic undirected graphs
PDF
Deep Learning based Multiple Regression to Predict Total Column Water Vapor (...
PDF
DEEP LEARNING BASED MULTIPLE REGRESSION TO PREDICT TOTAL COLUMN WATER VAPOR (...
PDF
Applied parallel coordinates for logs and network traffic attack analysis
PDF
[Hydro]geological analysis using open source app: case Cikapundung River
PPTX
DDGK: Learning Graph Representations for Deep Divergence Graph Kernels
PDF
Preparation Data Structures 11 graphs
PDF
Graph Neural Network in practice
PDF
RiemannTEX
PDF
Tensor Field Network (and other ConvNet Generalisations)
PDF
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
PDF
Incremental View Maintenance for openCypher Queries
HalifaxNGGs
Higher-order organization of complex networks
A Novel Technique in Software Engineering for Building Scalable Large Paralle...
Coastal erosion management using image processing and Node Oriented Programming
Sat4j: from the lab to desktop computers. OW2con'15, November 17, Paris.
 
DefenseTalk_Trimmed
NIPS2017 Few-shot Learning and Graph Convolution
UMBC Research Day Presentation
From RNN to neural networks for cyclic undirected graphs
Deep Learning based Multiple Regression to Predict Total Column Water Vapor (...
DEEP LEARNING BASED MULTIPLE REGRESSION TO PREDICT TOTAL COLUMN WATER VAPOR (...
Applied parallel coordinates for logs and network traffic attack analysis
[Hydro]geological analysis using open source app: case Cikapundung River
DDGK: Learning Graph Representations for Deep Divergence Graph Kernels
Preparation Data Structures 11 graphs
Graph Neural Network in practice
RiemannTEX
Tensor Field Network (and other ConvNet Generalisations)
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
Incremental View Maintenance for openCypher Queries
Ad

More from Hoffman Lab (20)

PPTX
Miller: A command-line tool for querying, shaping, and reformatting data files
PDF
GNU Parallel: Lab meeting—technical talk
PDF
TCRpower
PPTX
Efficient querying of genomic reference databases with gget
PPTX
WashU Epigenome Browser
PPTX
Wireguard: A Virtual Private Network Tunnel
PPTX
Plotting heatmap with matplotlib/seaborn
PPTX
Go Get Data (GGD)
PPTX
fastp: the FASTQ pre-processor
PPTX
R markdown and Rmdformats
PPTX
File searching tools
PPTX
Better BibTeX (BBT) for Zotero
PPTX
Awk primer and Bioawk
PPTX
Terminals and Shells
PPTX
BioRender & Glossary/Acronym
PPTX
Linters in R
PPTX
BioSyntax: syntax highlighting for computational biology
PPTX
Get Good With Git
PDF
Tech Talk: UCSC Genome Browser
PDF
MultiQC: summarize analysis results for multiple tools and samples in a singl...
Miller: A command-line tool for querying, shaping, and reformatting data files
GNU Parallel: Lab meeting—technical talk
TCRpower
Efficient querying of genomic reference databases with gget
WashU Epigenome Browser
Wireguard: A Virtual Private Network Tunnel
Plotting heatmap with matplotlib/seaborn
Go Get Data (GGD)
fastp: the FASTQ pre-processor
R markdown and Rmdformats
File searching tools
Better BibTeX (BBT) for Zotero
Awk primer and Bioawk
Terminals and Shells
BioRender & Glossary/Acronym
Linters in R
BioSyntax: syntax highlighting for computational biology
Get Good With Git
Tech Talk: UCSC Genome Browser
MultiQC: summarize analysis results for multiple tools and samples in a singl...
Ad

Recently uploaded (20)

PPTX
Digital-Transformation-Roadmap-for-Companies.pptx
PDF
Review of recent advances in non-invasive hemoglobin estimation
PDF
Empathic Computing: Creating Shared Understanding
PDF
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
PDF
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
PPTX
Programs and apps: productivity, graphics, security and other tools
PPT
“AI and Expert System Decision Support & Business Intelligence Systems”
PDF
The Rise and Fall of 3GPP – Time for a Sabbatical?
PDF
Building Integrated photovoltaic BIPV_UPV.pdf
PDF
Encapsulation_ Review paper, used for researhc scholars
PPTX
sap open course for s4hana steps from ECC to s4
PPTX
MYSQL Presentation for SQL database connectivity
PDF
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
PPTX
Big Data Technologies - Introduction.pptx
PDF
Per capita expenditure prediction using model stacking based on satellite ima...
PDF
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
PDF
Advanced methodologies resolving dimensionality complications for autism neur...
PDF
Machine learning based COVID-19 study performance prediction
PDF
Agricultural_Statistics_at_a_Glance_2022_0.pdf
PDF
Spectral efficient network and resource selection model in 5G networks
Digital-Transformation-Roadmap-for-Companies.pptx
Review of recent advances in non-invasive hemoglobin estimation
Empathic Computing: Creating Shared Understanding
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
Programs and apps: productivity, graphics, security and other tools
“AI and Expert System Decision Support & Business Intelligence Systems”
The Rise and Fall of 3GPP – Time for a Sabbatical?
Building Integrated photovoltaic BIPV_UPV.pdf
Encapsulation_ Review paper, used for researhc scholars
sap open course for s4hana steps from ECC to s4
MYSQL Presentation for SQL database connectivity
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
Big Data Technologies - Introduction.pptx
Per capita expenditure prediction using model stacking based on satellite ima...
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
Advanced methodologies resolving dimensionality complications for autism neur...
Machine learning based COVID-19 study performance prediction
Agricultural_Statistics_at_a_Glance_2022_0.pdf
Spectral efficient network and resource selection model in 5G networks

Intervene: a tool for intersection and visualization of multiple gene or genomic region sets

  • 1. Intervene to visualize genomic region sets D. Denisko Introduction Description Installation and general usage Modules Venn diagram Upset Pairwise heatmap ShinyApp Examples Plots in publications Conclusion Intervene: a tool for intersection and visualization of multiple gene or genomic region sets Danielle Denisko Tech Talk June 13, 2018 Template from: www.overleaf.com
  • 2. Intervene to visualize genomic region sets D. Denisko Introduction Description Installation and general usage Modules Venn diagram Upset Pairwise heatmap ShinyApp Examples Plots in publications Conclusion Outline Introduction Description Installation and general usage Modules Venn diagram Upset Pairwise heatmap ShinyApp Examples Plots in publications Conclusion
  • 3. Intervene to visualize genomic region sets D. Denisko Introduction Description Installation and general usage Modules Venn diagram Upset Pairwise heatmap ShinyApp Examples Plots in publications Conclusion Introduction Summary: intersect and visualize sets of genes novel aspect: work specifically with genomic regions Modules: venn, upset, and pairwise
  • 4. Intervene to visualize genomic region sets D. Denisko Introduction Description Installation and general usage Modules Venn diagram Upset Pairwise heatmap ShinyApp Examples Plots in publications Conclusion Description Use: command line and Shiny web interface Implementation: Python 2.7 (also works with Python 3.4, 3.5, and 3.6) R Built upon: pybedtools Seaborn Matplotlib UpSetR Corrplot Venerable heatmap.2
  • 5. Intervene to visualize genomic region sets D. Denisko Introduction Description Installation and general usage Modules Venn diagram Upset Pairwise heatmap ShinyApp Examples Plots in publications Conclusion Installation and general usage To install: pip install intervene conda install intervene Bitbucket and Github source code Input: genomic regions in BED, GFF, or VCF format gene/name lists in plain text format
  • 6. Intervene to visualize genomic region sets D. Denisko Introduction Description Installation and general usage Modules Venn diagram Upset Pairwise heatmap ShinyApp Examples Plots in publications Conclusion Installation and general usage Workflow: Khan A and Mathelier A. 2017. BMC Bioinformatics. 18:287.
  • 7. Intervene to visualize genomic region sets D. Denisko Introduction Description Installation and general usage Modules Venn diagram Upset Pairwise heatmap ShinyApp Examples Plots in publications Conclusion Installation and general usage There are three types of output plots: Khan A and Mathelier A. 2017. BMC Bioinformatics. 18:287.
  • 8. Intervene to visualize genomic region sets D. Denisko Introduction Description Installation and general usage Modules Venn diagram Upset Pairwise heatmap ShinyApp Examples Plots in publications Conclusion Installation and general usage Users can provide all possible bedtools intersect options via --bedtools-options. Figure 1: There are over 15 options for specifying overlaps in bedtools intersect. Image source: BEDTools suite web page.
  • 9. Intervene to visualize genomic region sets D. Denisko Introduction Description Installation and general usage Modules Venn diagram Upset Pairwise heatmap ShinyApp Examples Plots in publications Conclusion Modules venn classical Venn diagram up to 6 sets input: gene lists or genomic region sets Shiny web interface provides some more flexibility: weighted and unweighted Venn and Euler diagrams different types of diagrams (up to 9 sets)
  • 10. Intervene to visualize genomic region sets D. Denisko Introduction Description Installation and general usage Modules Venn diagram Upset Pairwise heatmap ShinyApp Examples Plots in publications Conclusion Modules venn Figure 2: Venn (leftmost column) vs. Euler diagrams. Venn: show all 2n possible regions Euler: only show relevant (non-empty) regions Image source: Wikipedia
  • 11. Intervene to visualize genomic region sets D. Denisko Introduction Description Installation and general usage Modules Venn diagram Upset Pairwise heatmap ShinyApp Examples Plots in publications Conclusion Modules venn intervene venn -i RC13-KO.narrowPeak RC13-WT.narrowPeak S12-KO.narrowPeak S12-WT.narrowPeak --names=KO-rep1,WT-rep1,KO-rep2,WT-rep2 -o ~/intervene_plots/ --save-overlaps --title="RNF169 ChIP-seq peaks" --project=RNF169_KO_WT --figtype=png --figsize 12 12 --fontsize=24 --dpi=450 Figure 3: Intervene venn diagram.
  • 12. Intervene to visualize genomic region sets D. Denisko Introduction Description Installation and general usage Modules Venn diagram Upset Pairwise heatmap ShinyApp Examples Plots in publications Conclusion Modules venn Figure 4: Chow-Ruskey Figure 5: Edwards Figure 6: Squares Figure 7: Battle
  • 13. Intervene to visualize genomic region sets D. Denisko Introduction Description Installation and general usage Modules Venn diagram Upset Pairwise heatmap ShinyApp Examples Plots in publications Conclusion Modules venn Figure 8: Intervene venn diagram with 6 sets.
  • 14. Intervene to visualize genomic region sets D. Denisko Introduction Description Installation and general usage Modules Venn diagram Upset Pairwise heatmap ShinyApp Examples Plots in publications Conclusion Modules upset easier to interpret when there are more than 4 sets can be used effectively for 20-30 sets
  • 15. Intervene to visualize genomic region sets D. Denisko Introduction Description Installation and general usage Modules Venn diagram Upset Pairwise heatmap ShinyApp Examples Plots in publications Conclusion Modules upset Motivation: Figure 9: Edwards-Venn diagram for banana gene clusters comparison. D’Hont A et al. 2012. Nature. 488:7410.
  • 16. Intervene to visualize genomic region sets D. Denisko Introduction Description Installation and general usage Modules Venn diagram Upset Pairwise heatmap ShinyApp Examples Plots in publications Conclusion Modules upset intervene upset -i RC13-KO.narrowPeak RC13-WT.narrowPeak S12-KO.narrowPeak S12-WT.narrowPeak --names=KO-rep1,WT-rep1,KO-rep2,WT-rep2 -o ~/intervene_plots/ --figtype=png --figsize 12 12 --showshiny Figure 10: Intervene upset diagram.
  • 17. Intervene to visualize genomic region sets D. Denisko Introduction Description Installation and general usage Modules Venn diagram Upset Pairwise heatmap ShinyApp Examples Plots in publications Conclusion Modules upset 1 #! / usr / bin /env R s c r i p t 2 l i b r a r y ( ”UpSetR” ) 3 png ( ” I n t e r v e n e upset . png” , width =7200 , h e i g h t =3600 , 4 r e s =300) 5 e x p r e s s i o n I n p u t <− c ( ’WT−rep2 ’ =2606 , 6 ’KO−rep2 ’ =109 , 7 ’KO−rep2&WT−rep2 ’ =44, 8 ’WT−rep1 ’ =39967 , 9 ’WT−rep1&WT−rep2 ’ =12136 , 10 ’WT−rep1&KO−rep2 ’ =39, 11 ’WT−rep1&KO−rep2&WT−rep2 ’ =114 , 12 ’KO−rep1 ’ =77, 13 ’KO−rep1&WT−rep2 ’ =5, 14 ’KO−rep1&KO−rep2 ’ =21, 15 ’KO−rep1&KO−rep2&WT−rep2 ’ =22, 16 ’KO−rep1&WT−rep1 ’ =112 , 17 ’KO−rep1&WT−rep1&WT−rep2 ’ =72, 18 ’KO−rep1&WT−rep1&KO−rep2 ’ =92, 19 ’KO−rep1&WT−rep1&KO−rep2&WT−rep2 ’ =290) 20 upset ( fromExpression ( e x p r e s s i o n I n p u t ) , n s e t s =4, 21 n i n t e r s e c t s =30, show . numbers=” yes ” , 22 main . bar . c o l o r=”#ea5d4e ” , 23 s e t s . bar . c o l o r=”#317eab ” , 24 empty . i n t e r s e c t i o n s=NULL, 25 order . by = ” f r e q ” , number . a n g l e s = 0 , 26 mainbar . y . l a b e l =”No . o f I n t e r s e c t i o n s ” , 27 s e t s . x . l a b e l =” Set s i z e ” , 28 t e x t . s c a l e=c ( 2 , 2 , 2 , 2 , 2 , 3 ) ) # added to a d j u s t f o n t s i z e s 29 i n v i s i b l e ( dev . o f f ( ) )
  • 18. Intervene to visualize genomic region sets D. Denisko Introduction Description Installation and general usage Modules Venn diagram Upset Pairwise heatmap ShinyApp Examples Plots in publications Conclusion Modules upset Figure 11: UpSet diagram from web application.
  • 19. Intervene to visualize genomic region sets D. Denisko Introduction Description Installation and general usage Modules Venn diagram Upset Pairwise heatmap ShinyApp Examples Plots in publications Conclusion Modules pairwise clustered heat map of pairwise associations very large sets metrics: number of overlaps, fraction of overlap, Jaccard statistics, Fisher’s exact test, and distribution of relative distances heat map styles: tribar, dendrogram, pie, circle, square, ellipse, etc. clustering methods: various agglomerative options
  • 20. Intervene to visualize genomic region sets D. Denisko Introduction Description Installation and general usage Modules Venn diagram Upset Pairwise heatmap ShinyApp Examples Plots in publications Conclusion Modules pairwise Figure 12: Intervene pairwise plot.
  • 21. Intervene to visualize genomic region sets D. Denisko Introduction Description Installation and general usage Modules Venn diagram Upset Pairwise heatmap ShinyApp Examples Plots in publications Conclusion ShinyApp Input: does not accept genomic regions venn: lists of names/genes/SNPs upset: lists of names/genes/SNPs, binary data, Intervene command line output listing all possible combinations of sets pairwise: lists of names/genes/SNPs, pairwise matrix of number/fraction of overlap (can be generated through Intervene on command line)
  • 22. Intervene to visualize genomic region sets D. Denisko Introduction Description Installation and general usage Modules Venn diagram Upset Pairwise heatmap ShinyApp Examples Plots in publications Conclusion ShinyApp Figure 13: Screenshot from Intervene’s upset module ShinyApp.
  • 23. Intervene to visualize genomic region sets D. Denisko Introduction Description Installation and general usage Modules Venn diagram Upset Pairwise heatmap ShinyApp Examples Plots in publications Conclusion Plots in publications Figure 14: Coregulated and antiregulated genes (with lncRNA) in various yeast colonies. Wilkinson D et al. 2018. Oxid Med Cell Longev.
  • 24. Intervene to visualize genomic region sets D. Denisko Introduction Description Installation and general usage Modules Venn diagram Upset Pairwise heatmap ShinyApp Examples Plots in publications Conclusion Plots in publications Figure 15: Differentially expressed genes over time after influenza treatment. Black: up- or down-regulated genes, red: upregulated genes, blue: downregulated genes. Top: PBMCs, bottom: B cells. Jensen TL et al. 2018. F1000Research. 6:2162.
  • 25. Intervene to visualize genomic region sets D. Denisko Introduction Description Installation and general usage Modules Venn diagram Upset Pairwise heatmap ShinyApp Examples Plots in publications Conclusion Conclusion Pros: simple command line tool for generating quick plots convenient for visualizing genomic region sets some customization (via output scripts and/or ShinyApp) Cons: limited ability to customize, even in ShinyApp limited plot types in comparison to ShinyApp