SlideShare a Scribd company logo
Ignasi Buch, PhD student
Research Unit on Biomedical Informatics

               U N I V E R S I TAT
               POM P E U FA B R A




                MGMS Young Modellers' Forum
                    London, December 2010
Ignasi Buch, PhD student
Research Unit on Biomedical Informatics

               U N I V E R S I TAT
               POM P E U FA B R A




                MGMS Young Modellers' Forum
                    London, December 2010
Energetics, kinetics and binding pathway
reconstruction for enzyme-inhibitor complex
from high-throughput MD simulations



                                       Ignasi Buch, PhD student
                          Research Unit on Biomedical Informatics

                                         U N I V E R S I TAT
                                         POM P E U FA B R A




                                          MGMS Young Modellers' Forum
                                              London, December 2010
Objective
To provide an extensive computational description of
the complete binding process of Benzamidine to
bovine ß-Trypsin.

                          kon
               E+I                EI
                          kof f
Methodology
Execution of hundreds of all-atom molecular
dynamics (MD) simulations of the free ligand binding.

Analysis by a Markov State Model (MSM), that
describes the system as a network of transitions
between conformational substates.


                             Noé F and Fischer S, Curr Op Struct Biol (2008)
                                     Voelz VA et al. J Am Chem Soc (2010)
B
                             kof f
                        Ki =                     A             C
                             kon


Building the         Quantitative prediction   Qualitative description
Markov State Model   of experimental data      of binding mechanisms
Generating the data
     Free ligand binding simulations




                                       35,000 atoms
                                          500 trajectories
                                           50 µs of data
x
     z
Beta-Trypsin/Benzamidine (3PTB)
ACEMD software
AMBER99SB ff.
Explicit solvent
Generating the data
Evaluating binding - RMSD to crystal structure



           50


           40


                                                        30 % bound*
RMSD [˚]




           30
      A




           20


           10


            0
             0   10   20   30   40      50       60     70      80     90      100
                                     Time [ns]




                                                      * ligand RMSD <2 Å from crystal pose
Generating the data
     Evaluating binding - RMSD to crystal structure



                50


                40


40        10 50            2060        30
                                        70              40
                                                         80            50
                                                                       90      60
                                                                              100
     RMSD [˚]




           30
           A




         Time [ns]
          20
                                                                    Time [ns]
                10


                 0
                  0   10   20     30   40      50       60     70      80     90      100
                                            Time [ns]




                                                             * ligand RMSD <2 Å from crystal pose
Why Markov State Models?
Some considerations




      A MSM is a kinetic multi-state model directly
      from unbiased MD data.

      Provides quantitative and qualitative information
      of the system.

      Definition of states is independent from how the
      simulations are done.
Definition of states
    Microstates - “Raw data”




x
                               C7

    z
Definition of states
    Macrostates - Coarse-grain into 2500 states




x
                                                  C7

    z
B
                             kof f
                        Ki =                     A             C
                             kon


Building the         Quantitative prediction   Qualitative description
Markov State Model   of experimental data      of binding mechanisms
Calculating binding rates and affinity
             From the Transition matrix to FES



                        lagtime τ = 50 ns                                       kcal/mol
        20                                                                               7 kcal/mol




                                                                                 7
                                                                                         6                               T(τ )




                                                                               6.5
        10                                                                           (i, j)
                                                                                                                     T (τ )
                                       4




                             3.5
                                                                                         5
                                           5.5
                                                                 6
                                 5




                                                                                         4          Number of transitions i → j in time τ
         0                                                                                    Tij =
x [˚]
   A




              0.5
                    3




                          5
                                                                                                           Number of starts in i
                                                           5.5




                        4.


                                                                                         3
                                                                                                                                        τ
   −10                                                                                   2
                                           6
                                   5




                             4

                                                                                         1
   −20                                                 7


                                                                                         0                τ >τ
              0                        10         20                 30   40
                                                 z [˚]
                                                    A                                                            τ
                                                                                                τ T(τ )
Calculating binding rates and affinity
             From the mean first passage time to binding affinity



                                                                                kcal/mol                       kon
        20                                                                                    E+I
                                                                                      7 kcal/mol                          EI
                                                                                                               kof f




                                                                                 7
                                                                                      6




                                                                               6.5
        10
                                       ton = 50 ns
                                       4




                             3.5
                                                                                      5

                                                                                                        1                  1
                                           5.5
                                                                 6
                                 5




         0
                                                                                      4
                                                                                            kon =               kof f =
x [˚]
   A




              0.5
                    3




                                                                                                       ton C              tof f
                          5
                                                           5.5




                        4.


                                                                                      3

   −10                  tof f = 2.16 × 106 ns                                                     kof f
                                                                                      2
                                                                                             Ki =
                                                                                                  kon
                                           6
                                   5




                             4

                                                                                      1
   −20                                                 7
                                                                                                                    −1 o
              0                        10         20                 30   40
                                                                                      0    ∆G = −kB T
                                                                                                   o
                                                                                                                ln(Ki C )
                                                 z [˚]
                                                    A

         C = 0.0047 M
         (Ligand concentration)
Standard free energy of binding
       Comparing with experimental results




  ∆Gmsm
    o
               = −9.5 kcal/mol
   ∆Goexp      = −6.3 kcal/mol




Mares-Guia M et al, J Med Chem (1965)
Doudou S et al, J Chem Theory and Comput (2009)
Standard free energy of binding
       Comparing with experimental results



                                                             1D Potential of Mean Force protocol
                                                                   15



  ∆Gmsm        = −9.5 kcal/mol




                                                  PMF [kcal/mol]
    o                                                              10

   ∆Goexp      = −6.3 kcal/mol
                                                                    5
   ∆Go us      = −9.17 ± 0.68 kcal/mol                                      ∆G0 = µs aggregate kcal/mol
                                                                                5 -9.17 ± 0.68 sampling.
                                                                                  Ensemble computation
                                                                                   by Umbrella Sampling.
                                                                    0
                                                                        0    10       20       30      40
                                                                                    z [˚]
                                                                                       A




Mares-Guia M et al, J Med Chem (1965)
Doudou S et al, J Chem Theory and Comput (2009)
Issues with ligand parametrisation
      May explain inaccuracy of results




Conformational Variability of Benzamidinium-Based Inhibitors
Li X et al, J Am Chem Soc (2009)
B
                             kof f
                        Ki =                     A             C
                             kon


Building the         Quantitative prediction   Qualitative description
Markov State Model   of experimental data      of binding mechanisms
Definition of metastable states
    Coarse-grain into 5 states




x
                                     C7

    z
Definition of metastable states
             Coarse-grain into 5 states




                                                kcal/mol   S4                               S3
        20                                           7

                                                     6                                            M180



        10              S3                                      -6.0                             -3.0
                                                     5      kcal/mol                         kcal/mol




                                                     4                                                   S0
x [˚]




         0    S4
   A




                               S1          S0                                                                    0
                                                                                                              kcal/mol

                                                     3

   −10                                                     S2                               S1
                                                     2
                   S2
                                                     1
   −20
                                                     0          -2.5                             -1.0
              0          10    20     30   40               kcal/mol                         kcal/mol

                              z [˚]
                                 A




                                                                       Free energy values are relative to state S0
Characteristic transition modes
    Main transitions between metastable states

                                                           S3




                                S0                                       S0
                       S1                                       S1




                                                      S2


                                 6 ns                                10 ns




                  S3                                       S3




                                                 S4




             S2

                                20 ns                                58 ns
x
    z
Characteristic transition modes
Rate-limiting step to binding




                                  S3


 S4
Conclusions
  MSMs proven useful in exploiting high-throughput
  MD data to study protein-ligand binding.

  Binding affinity obtained is consistent with other
  methods suggesting inaccurate ligand
  parametrisation.

  MSMs can provide new insights on the
  mechanisms of ligand binding.
Acknowledgements

            Research team              The GPUGRID volunteers
            Gianni De Fabritiis (PI)
            S. Kashif Sadiq
            Toni Giorgino
            Ignasi Buch


            Funding



                                                       Contact details
                                                  ignasi.buch@upf.edu
                                                http://multiscalelab.org
Photo by Julien Lagarde
High-throughput all-atom MD simulations


          ACEMD


                     NVIDIA GTX480 GPU


                                                   30 days



http://multiscalelab.org/acemd
Harvey MJ et al, J Chem Theory and Comput (2009)
Buch I et al, J Chem Inf Model (2010)
System setup




                                                          30 Å
                                                             Beta-Trypsin/Benzamidine
              40




                                                                                  PDB 3PTB
                                             0Å
                Å




                                           3                                AMBER99SB ff.
                                                                      Explicit solvent TIP3P
                                                                       35,000 atoms (9 Cl-)
           Harmonic restraint box scheme                                        69x63x80 Å
   Flat-bottom potential k=0.1 kcal/mol/Å2    Temp 298K, 1 atm, ts 4fs, PME, NB 9 Å cutoff
Lagtime & Implied timescales


                                2500-state MSM                                                     5-state MSM

                       250                                                              60

                                                                                        50




                                                               Implied timescale [ns]
                       200
Relaxation time [ns]




                                                                                        40
                       150
                                                                                        30
                       100
                                                                                        20

                        50                                                              10

                         0                                                               0
                          0        20          40   60                                    0   10   20   30     40   50   60
                                    Lagtime [ns]                                                    Lagtime [ns]

                                  τ
              τi∗            =−
                                ln λi
                τi∗ is implied timescale (relaxation time) for state i at lagtime τ
                λi is eigenvalue for state i at lagtime τ
Sensitivity analysis for ton and toff
0.4

                          0.1
                                                        <0.1




                                                                                  0.
                                                                                  3
                                        S3                             0.4



                          0.1
                0.4




                                                        0.
                                                        3
                                            .1




                                               0.
                                       <0




                                                    1
                                              0.4                          0.1
                                                                                              0.1
        0.8
                                        <0.1                         0.1
                      S4                                                               S0
                                                         S1
             <0.1




                                              1
                                                               0.1
                                             0.
                    0.4




        0.




                                                                              1
                                                                            0.
          3                                     1
                                              0.



                                 S2           <0.1

                                0.2
x
    z                                                                      Transition probabilities
                                                                                            5-state MSM
S4          S3



                  M180




     -6.0        -3.0
 kcal/mol    kcal/mol



                            S0
                                    0
                                 kcal/mol




S2          S1




     -2.5        -1.0
 kcal/mol    kcal/mol

                    Free energy values are relative to state S0

More Related Content

PDF
Distilling Free-Form Natural Laws from Experimental Data
PDF
R05010401 N E T W O R K A N A L Y S I S
PPT
Patenting Issues For Biomedical Start Ups
PPT
Parks committee presentation 1 12-11 - final
PPT
Новая продукция Winalite
PDF
A Very Special Loaf Of Bread
PPTX
Media Evaluation Question 4
PPTX
Alanah1
Distilling Free-Form Natural Laws from Experimental Data
R05010401 N E T W O R K A N A L Y S I S
Patenting Issues For Biomedical Start Ups
Parks committee presentation 1 12-11 - final
Новая продукция Winalite
A Very Special Loaf Of Bread
Media Evaluation Question 4
Alanah1

Viewers also liked (20)

PPT
Media Evaluation 1-4 by Amy Sparks
PPT
Media Evaluation Question 2
PPTX
Ahlt
PPTX
Saladin full
PPT
Media Evaluation Question 2
PPSX
Presentation coresalestablet
PPTX
Dying Is No Excuse
PPT
Wednesday
PPSX
Virgin cream georgia
PPT
Historia del arte
KEY
HOUSE OF FREAKS PITCH (01.11.11)
PPTX
Propaganda 2
PPTX
The Death Of Ivan Ilyich
PPTX
Shurley English EDU653 Moeggenberg
PPTX
Ενότητα 25 Ιστορίας Γ Γυμνασίου: H ζωγραφική και η γλυπτική τον 19ο αιώνα στη...
PPTX
Athanasius
PPTX
Iωάννης Καποδίστριας
PPTX
Καποδίστριας-Όθωνας
PPTX
Kώστας Kαρυωτάκης
Media Evaluation 1-4 by Amy Sparks
Media Evaluation Question 2
Ahlt
Saladin full
Media Evaluation Question 2
Presentation coresalestablet
Dying Is No Excuse
Wednesday
Virgin cream georgia
Historia del arte
HOUSE OF FREAKS PITCH (01.11.11)
Propaganda 2
The Death Of Ivan Ilyich
Shurley English EDU653 Moeggenberg
Ενότητα 25 Ιστορίας Γ Γυμνασίου: H ζωγραφική και η γλυπτική τον 19ο αιώνα στη...
Athanasius
Iωάννης Καποδίστριας
Καποδίστριας-Όθωνας
Kώστας Kαρυωτάκης
Ad

Similar to YMF2010 (20)

PDF
Sommari.docx
PPT
Monte Carlo Simulation
PDF
MIP Response Test Trichloroethene
PDF
Mip Response Test Trichloroethene
PPT
Slurry conveying
PDF
Jag Trasgo Helsinki091002
PDF
Evidence Of Bimodal Crystallite Size Distribution In Microcrystalline Silico...
PDF
Chib paper approval
PDF
Quantum Matrices Using Quantum Gates
PDF
Crimson Publishers-Quantum Matrices Using Quantum Gates
PDF
Molecular Activity Prediction Using Graph Convolutional Deep Neural Network C...
PDF
MSEASUSlides: Muddiest Point- Phase Diagrams II: Eutectic Microstructures Sl...
PDF
Discussion of Matti Vihola's talk
PDF
Multiuser Pre-equalization for Pre-Rake DS-UWB Systems
PDF
Modelling and finite element analysis: Question Papers
PDF
SPICE MODEL of 2SK3797 (Professional+BDP Model) in SPICE PARK
PDF
Two efficient algorithms for drawing accurate and beautiful phonon dispersion
PDF
Memristor-Capacitor Based Startup Circuit for Voltage Reference Generators
PDF
SPICE MODEL of 2SK3444 (Standard+BDS Model) in SPICE PARK
PPT
Minimum Cost Fault Tolerant Adder Circuits in Reversible Logic Synthesis
Sommari.docx
Monte Carlo Simulation
MIP Response Test Trichloroethene
Mip Response Test Trichloroethene
Slurry conveying
Jag Trasgo Helsinki091002
Evidence Of Bimodal Crystallite Size Distribution In Microcrystalline Silico...
Chib paper approval
Quantum Matrices Using Quantum Gates
Crimson Publishers-Quantum Matrices Using Quantum Gates
Molecular Activity Prediction Using Graph Convolutional Deep Neural Network C...
MSEASUSlides: Muddiest Point- Phase Diagrams II: Eutectic Microstructures Sl...
Discussion of Matti Vihola's talk
Multiuser Pre-equalization for Pre-Rake DS-UWB Systems
Modelling and finite element analysis: Question Papers
SPICE MODEL of 2SK3797 (Professional+BDP Model) in SPICE PARK
Two efficient algorithms for drawing accurate and beautiful phonon dispersion
Memristor-Capacitor Based Startup Circuit for Voltage Reference Generators
SPICE MODEL of 2SK3444 (Standard+BDS Model) in SPICE PARK
Minimum Cost Fault Tolerant Adder Circuits in Reversible Logic Synthesis
Ad

Recently uploaded (20)

PDF
Web App vs Mobile App What Should You Build First.pdf
PPTX
TLE Review Electricity (Electricity).pptx
PPTX
Modernising the Digital Integration Hub
PDF
Univ-Connecticut-ChatGPT-Presentaion.pdf
PDF
Getting Started with Data Integration: FME Form 101
PDF
ENT215_Completing-a-large-scale-migration-and-modernization-with-AWS.pdf
PPTX
MicrosoftCybserSecurityReferenceArchitecture-April-2025.pptx
PDF
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
PDF
Enhancing emotion recognition model for a student engagement use case through...
PPTX
OMC Textile Division Presentation 2021.pptx
PDF
Hindi spoken digit analysis for native and non-native speakers
PDF
Microsoft Solutions Partner Drive Digital Transformation with D365.pdf
PDF
August Patch Tuesday
PDF
How ambidextrous entrepreneurial leaders react to the artificial intelligence...
PPT
Module 1.ppt Iot fundamentals and Architecture
PDF
2021 HotChips TSMC Packaging Technologies for Chiplets and 3D_0819 publish_pu...
PPTX
observCloud-Native Containerability and monitoring.pptx
PDF
NewMind AI Weekly Chronicles - August'25-Week II
PDF
Getting started with AI Agents and Multi-Agent Systems
PPTX
The various Industrial Revolutions .pptx
Web App vs Mobile App What Should You Build First.pdf
TLE Review Electricity (Electricity).pptx
Modernising the Digital Integration Hub
Univ-Connecticut-ChatGPT-Presentaion.pdf
Getting Started with Data Integration: FME Form 101
ENT215_Completing-a-large-scale-migration-and-modernization-with-AWS.pdf
MicrosoftCybserSecurityReferenceArchitecture-April-2025.pptx
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
Enhancing emotion recognition model for a student engagement use case through...
OMC Textile Division Presentation 2021.pptx
Hindi spoken digit analysis for native and non-native speakers
Microsoft Solutions Partner Drive Digital Transformation with D365.pdf
August Patch Tuesday
How ambidextrous entrepreneurial leaders react to the artificial intelligence...
Module 1.ppt Iot fundamentals and Architecture
2021 HotChips TSMC Packaging Technologies for Chiplets and 3D_0819 publish_pu...
observCloud-Native Containerability and monitoring.pptx
NewMind AI Weekly Chronicles - August'25-Week II
Getting started with AI Agents and Multi-Agent Systems
The various Industrial Revolutions .pptx

YMF2010

  • 1. Ignasi Buch, PhD student Research Unit on Biomedical Informatics U N I V E R S I TAT POM P E U FA B R A MGMS Young Modellers' Forum London, December 2010
  • 2. Ignasi Buch, PhD student Research Unit on Biomedical Informatics U N I V E R S I TAT POM P E U FA B R A MGMS Young Modellers' Forum London, December 2010
  • 3. Energetics, kinetics and binding pathway reconstruction for enzyme-inhibitor complex from high-throughput MD simulations Ignasi Buch, PhD student Research Unit on Biomedical Informatics U N I V E R S I TAT POM P E U FA B R A MGMS Young Modellers' Forum London, December 2010
  • 4. Objective To provide an extensive computational description of the complete binding process of Benzamidine to bovine ß-Trypsin. kon E+I EI kof f
  • 5. Methodology Execution of hundreds of all-atom molecular dynamics (MD) simulations of the free ligand binding. Analysis by a Markov State Model (MSM), that describes the system as a network of transitions between conformational substates. Noé F and Fischer S, Curr Op Struct Biol (2008) Voelz VA et al. J Am Chem Soc (2010)
  • 6. B kof f Ki = A C kon Building the Quantitative prediction Qualitative description Markov State Model of experimental data of binding mechanisms
  • 7. Generating the data Free ligand binding simulations 35,000 atoms 500 trajectories 50 µs of data x z Beta-Trypsin/Benzamidine (3PTB) ACEMD software AMBER99SB ff. Explicit solvent
  • 8. Generating the data Evaluating binding - RMSD to crystal structure 50 40 30 % bound* RMSD [˚] 30 A 20 10 0 0 10 20 30 40 50 60 70 80 90 100 Time [ns] * ligand RMSD <2 Å from crystal pose
  • 9. Generating the data Evaluating binding - RMSD to crystal structure 50 40 40 10 50 2060 30 70 40 80 50 90 60 100 RMSD [˚] 30 A Time [ns] 20 Time [ns] 10 0 0 10 20 30 40 50 60 70 80 90 100 Time [ns] * ligand RMSD <2 Å from crystal pose
  • 10. Why Markov State Models? Some considerations A MSM is a kinetic multi-state model directly from unbiased MD data. Provides quantitative and qualitative information of the system. Definition of states is independent from how the simulations are done.
  • 11. Definition of states Microstates - “Raw data” x C7 z
  • 12. Definition of states Macrostates - Coarse-grain into 2500 states x C7 z
  • 13. B kof f Ki = A C kon Building the Quantitative prediction Qualitative description Markov State Model of experimental data of binding mechanisms
  • 14. Calculating binding rates and affinity From the Transition matrix to FES lagtime τ = 50 ns kcal/mol 20 7 kcal/mol 7 6 T(τ ) 6.5 10 (i, j) T (τ ) 4 3.5 5 5.5 6 5 4 Number of transitions i → j in time τ 0 Tij = x [˚] A 0.5 3 5 Number of starts in i 5.5 4. 3 τ −10 2 6 5 4 1 −20 7 0 τ >τ 0 10 20 30 40 z [˚] A τ τ T(τ )
  • 15. Calculating binding rates and affinity From the mean first passage time to binding affinity kcal/mol kon 20 E+I 7 kcal/mol EI kof f 7 6 6.5 10 ton = 50 ns 4 3.5 5 1 1 5.5 6 5 0 4 kon = kof f = x [˚] A 0.5 3 ton C tof f 5 5.5 4. 3 −10 tof f = 2.16 × 106 ns kof f 2 Ki = kon 6 5 4 1 −20 7 −1 o 0 10 20 30 40 0 ∆G = −kB T o ln(Ki C ) z [˚] A C = 0.0047 M (Ligand concentration)
  • 16. Standard free energy of binding Comparing with experimental results ∆Gmsm o = −9.5 kcal/mol ∆Goexp = −6.3 kcal/mol Mares-Guia M et al, J Med Chem (1965) Doudou S et al, J Chem Theory and Comput (2009)
  • 17. Standard free energy of binding Comparing with experimental results 1D Potential of Mean Force protocol 15 ∆Gmsm = −9.5 kcal/mol PMF [kcal/mol] o 10 ∆Goexp = −6.3 kcal/mol 5 ∆Go us = −9.17 ± 0.68 kcal/mol ∆G0 = µs aggregate kcal/mol 5 -9.17 ± 0.68 sampling. Ensemble computation by Umbrella Sampling. 0 0 10 20 30 40 z [˚] A Mares-Guia M et al, J Med Chem (1965) Doudou S et al, J Chem Theory and Comput (2009)
  • 18. Issues with ligand parametrisation May explain inaccuracy of results Conformational Variability of Benzamidinium-Based Inhibitors Li X et al, J Am Chem Soc (2009)
  • 19. B kof f Ki = A C kon Building the Quantitative prediction Qualitative description Markov State Model of experimental data of binding mechanisms
  • 20. Definition of metastable states Coarse-grain into 5 states x C7 z
  • 21. Definition of metastable states Coarse-grain into 5 states kcal/mol S4 S3 20 7 6 M180 10 S3 -6.0 -3.0 5 kcal/mol kcal/mol 4 S0 x [˚] 0 S4 A S1 S0 0 kcal/mol 3 −10 S2 S1 2 S2 1 −20 0 -2.5 -1.0 0 10 20 30 40 kcal/mol kcal/mol z [˚] A Free energy values are relative to state S0
  • 22. Characteristic transition modes Main transitions between metastable states S3 S0 S0 S1 S1 S2 6 ns 10 ns S3 S3 S4 S2 20 ns 58 ns x z
  • 24. Conclusions MSMs proven useful in exploiting high-throughput MD data to study protein-ligand binding. Binding affinity obtained is consistent with other methods suggesting inaccurate ligand parametrisation. MSMs can provide new insights on the mechanisms of ligand binding.
  • 25. Acknowledgements Research team The GPUGRID volunteers Gianni De Fabritiis (PI) S. Kashif Sadiq Toni Giorgino Ignasi Buch Funding Contact details ignasi.buch@upf.edu http://multiscalelab.org Photo by Julien Lagarde
  • 26. High-throughput all-atom MD simulations ACEMD NVIDIA GTX480 GPU 30 days http://multiscalelab.org/acemd Harvey MJ et al, J Chem Theory and Comput (2009) Buch I et al, J Chem Inf Model (2010)
  • 27. System setup 30 Å Beta-Trypsin/Benzamidine 40 PDB 3PTB 0Å Å 3 AMBER99SB ff. Explicit solvent TIP3P 35,000 atoms (9 Cl-) Harmonic restraint box scheme 69x63x80 Å Flat-bottom potential k=0.1 kcal/mol/Å2 Temp 298K, 1 atm, ts 4fs, PME, NB 9 Å cutoff
  • 28. Lagtime & Implied timescales 2500-state MSM 5-state MSM 250 60 50 Implied timescale [ns] 200 Relaxation time [ns] 40 150 30 100 20 50 10 0 0 0 20 40 60 0 10 20 30 40 50 60 Lagtime [ns] Lagtime [ns] τ τi∗ =− ln λi τi∗ is implied timescale (relaxation time) for state i at lagtime τ λi is eigenvalue for state i at lagtime τ
  • 29. Sensitivity analysis for ton and toff
  • 30. 0.4 0.1 <0.1 0. 3 S3 0.4 0.1 0.4 0. 3 .1 0. <0 1 0.4 0.1 0.1 0.8 <0.1 0.1 S4 S0 S1 <0.1 1 0.1 0. 0.4 0. 1 0. 3 1 0. S2 <0.1 0.2 x z Transition probabilities 5-state MSM
  • 31. S4 S3 M180 -6.0 -3.0 kcal/mol kcal/mol S0 0 kcal/mol S2 S1 -2.5 -1.0 kcal/mol kcal/mol Free energy values are relative to state S0