SlideShare a Scribd company logo
Introduction
Team Members- There are two members.
• Krishna Singh
• Akshay Singh
Note:- We are here to present the presentation about our 6th
unit, Which name is Integration or Anti-Differentiation.
Class- BCA(Bachelor Of Computer Application) First
Year
1
Integration or Anti-Differentiation
Definition-Integration is a method of adding or
summing up the parts to find the whole. It is a reverse
process of differentiation, where we reduce the
functions into parts. This method is used to find the
summation under a vast scale.
Integration is the calculation of an integral. Integrals in
Math are used to find many useful quantities such as
areas, volumes, displacement, etc.
2
3
INTEGRATION
or
ANTI-DIFFERENTIATION

Now , consider the question :” Given that y is a function of x
and
Clearly ,
( differentiation process )
1.1.THE CONCEPT OF INTEGRAL
We have learnt that
2
x
y  x
dx
dy
2

x
dx
dy
2
 , what is the function ? ‘
2
x
y  is an answer but is it the only answer ?
4
Familiarity with the differentiation process would
indicate that
and in fact

50
,
3
,
15
,
3 2
2
2
2







 x
y
x
y
x
y
x
y
c
x
y 
 2
Thus x
dx
dy
2
 c
x
y 
 2
This process is the reverse process of differentiation
and is called integration .
, where c is can be
any real number are also possible answer
, where c is called an arbitrary constant
5
SYMBOL OF INTEGRATION
We know that
Hence ,
Symbolically , we write

    x
c
x
dx
d
and
x
x
dx
d
2
2 2
2



x
dx
dy
2
 c
x
y 
 2
x
dx
dy
2
  

 c
x
dx
x
y 2
2

6
In general,
then
The expression
 
  )
(
)
( x
f
x
F
dx
d
and
x
F
y
if 

 



 c
x
F
dx
x
f
y
x
f
dx
dy
)
(
)
(
)
(
 

 c
x
F
dx
x
f
y )
(
)
(
Is called an indefinite integral.
 

 c
x
dx
x
y 2
2 Is an indefinite integral
7
When
In general :
When n = 0 ,
  n
n
n
ax
n
n
n
ax
dx
d
dx
x
f
d
n
n
ax
x
F )
1
(
1
1
1
)
(
,
)
1
(
1
)
(
1
1


















n
ax

 






 
1
,
.
1
1 1
n
where
c
ax
n
dx
ax
y
ax
dx
dy n
n
n
 



 c
ax
dx
a
y
a
dx
dy
8
EXAMPLE:
1.
2.The gradient of a curve , at the point ( x,y ) on the curve is
given by
Solution :
Given
   




 dx
x
dx
x
dx
x
dx
x
x
x 2
3
2
3
)
(
c
x
x
x 


 2
3
4
2
1
3
1
4
1
2
4
3
2 x
x 

Given that the curve passes through the point ( 1, 1) ,
find the equation of the curve.
2
4
3
2 x
x
dx
dy


  


 dx
x
x
y )
4
3
2
( 2
  


 dx
x
dx
x
dx 2
4
3
2
9
Since the curve passes through the point ( 1,1 ) , we can
substitusi x = 1 and y = 1 into ( 1 ) to obtain the constant
term c .
The equation of the curve is
)
1
(
......
3
4
2
3
2 3
2
c
x
x
x
y 



c



 )
1
(
3
4
)
1
(
2
3
)
1
(
2
1
6
5


c
c
x
x
x
y 


 3
2
3
4
2
3
2
10
INTEGRATION OF TRIGONOMETRICAL
FUNCTION
If y = sin x then
If y = cos x then
If y = tan x then
If y = sec x then ;
x
dx
dy
cos

x
dx
dy
sin


x
dx
dy 2
sec

x
x
dx
dy
sec
.
tan

11
If y = cot x then
Hence :
ecx
x
dx
dy
cos
.
cot



















c
x
dx
x
ec
x
c
x
dx
x
x
c
x
dx
c
x
dx
x
c
x
dx
cot
cos
.
cot
sec
sec
.
tan
tan
sec
cos
sin
sin
cos
2
12
In each of the above cases , x is measured in radians and c
denotes an arbitrary constant. as in differentiation ,
integration of trigonometrical function is performed only
when the angles involved are measured in radians
In general :
)
cos(
,
)
sin(
1
b
ax
dx
dy
b
ax
a
y
If 



c
b
ax
a
dx
b
ax 



 )
sin(
1
)
cos(
where a , b and c are constant .
13
)
sin(
,
)
cos(
1
b
ax
dx
dy
b
ax
a
y
If 




c
b
ax
a
dx
b
ax 




 )
cos(
1
)
sin(
)
(
sec
,
)
tan(
1 2
b
ax
dx
dy
b
ax
a
y
If 



 


 c
b
ax
a
dx
b
ax )
tan(
1
)
(
sec2
Where a , b and c are constant
14
)
(
cos
,
)
(
cot
1 2
b
ax
ec
dx
dy
b
ax
a
y
If 




 



 c
b
ax
a
dx
b
ax
ec )
cot(
1
)
(
cos 2
)
tan(
).
sec(
,
)
sec(
1
b
ax
b
ax
dx
dy
b
ax
a
y
If 




 


 )
sec(
1
)
tan(
).
sec( b
ax
a
dx
b
ax
b
ax
)
cot(
).
(
cos
,
)
(
1
b
ax
b
ax
ec
dx
dy
b
ax
coesc
a
y
If 





 




 c
b
ax
ec
a
dx
b
ax
b
ax
ec )
(
cos
1
)
cot(
).
(
cos
Where a,b and c are constants
15
Example:
Find The following integrals:
1.
2.
3.
4.
 
 dx
x )
3
5
cos( c
x 
 )
3
5
sin(
5
1
 
 dx
x)
2
3
(
sec2
c
x 

 )
2
3
tan(
2
1
 

 dx
x
x
ec )
3
4
tan(
).
3
4
(
cos c
x
ec 

 )
3
4
(
cos
4
1
 
dx
2
sin 

dx
x
2
2
cos
1
 
 dx
x)
2
cos
1
(
2
1
c
x
x 







 2
sin
2
1
2
1
c
x
x 

 2
sin
4
1
2
1
16
DEFINITE INTEGRAL
Consider f(x) = 3
The area bounded by y = 3 , the line x = a and x = b and the
axis is A = 3 ( b – a )
= 3b – 3a
= F(b) – F(a)
y
x
a b
y = 3
 
 dx
dx
x
f 3
)
(
c
x 
3
3
)
(
,
)
( 

 x
F
where
c
x
F
17
We can write F(b) – F(a) simply as
Further
   b
a
b
a x
or
x
F 3
)
(
  simply
or
dx
x
f
b
a
 )
(  

b
a
b
a
dx
dx
x
f 3
)
(
 b
a
c
x 
 3
 b
a
c
x
F 
 )
(
   
c
a
F
c
b
F 


 )
(
)
(
)
(
)
( a
F
b
F 

18
Similarly , consider f(x) = x + 1
a b
(a,a+1)
1
(b,b+1)
y = x+1
  
 dx
x
dx
x
f )
1
(
)
(
c
x
x



2
2
where
c
x
F ,
)
( 

x
x
x
F 
 2
2
1
)
(
19
The area bounded by y = x + 1 , the lines x = a and x = b ,
and axis is
A = )
)(
1
1
(
2
1
a
b
b
a 


 )
)(
2
(
2
1
a
b
b
a 



)
2
2
(
2
1 2
2
a
a
b
b 


 


















 a
a
b
b
2
2
2
2
)
(
)
( a
F
b
F 

b
a
b
a
x
x
x
dx
x
 









2
)
1
(
20
In general , if
x = a and x = b is given by
 
 c
x
F
dx
x
f )
(
)
(
then the definite integral of f(x) between the limits
 
 


b
a
b
a a
F
b
F
x
F
dx
x
f )
(
)
(
)
(
)
(
21
Example :
Evaluate
1.
2.
 






4
2
2
3 16
dx
x
x  




4
2
2
3
16 dx
x
x
4
2
4
16
4








x
x
)
8
4
(
)
4
64
( 


 56

 
3
0
)
2
sin
3
(

dx
x  3
0
2
cos
3

x
x 


3
2
2
3 

 )
9
4
(
6
1

 
22
SUBSTITUTION ( ALGEBRAIC)
Consider the integral :
We may find this integral by expanding
Suppose that v = 2x + 5 , then
So that
, or we can use the following way.
  dx
x 7
)
5
2
(
 7
5
2 
x
2
2
dv
dx
dx
dv



 
 dx
x 7
)
5
2
(  
2
7 dv
v  
dv
v7
2
1
c
v 
 8
8
.
2
1
c
v 
 8
16
1
c
x 

 8
)
5
2
(
16
1

More Related Content

PDF
Maths paper class 12 maths paper class 12
PDF
CBSE XII MATHS SAMPLE PAPER BY KENDRIYA VIDYALAYA
PPTX
DIFFERENTIATION Integration and limits (1).pptx
PDF
Form 5 Additional Maths Note
PDF
Solucao_Marion_Thornton_Dinamica_Classic (1).pdf
PPT
10 Coordinate Geometry Math Concepts .ppt
PPT
Integration
PDF
maths 12th.pdf
Maths paper class 12 maths paper class 12
CBSE XII MATHS SAMPLE PAPER BY KENDRIYA VIDYALAYA
DIFFERENTIATION Integration and limits (1).pptx
Form 5 Additional Maths Note
Solucao_Marion_Thornton_Dinamica_Classic (1).pdf
10 Coordinate Geometry Math Concepts .ppt
Integration
maths 12th.pdf

Similar to integeration.ppt (19)

PDF
Form 4 add maths note
PPTX
6.5 determinant x
PPT
Developing Expert Voices
PDF
C1 Integration - Questions.pdf for engineering students
PDF
Evaluating definite integrals
PDF
01. Differentiation-Theory & solved example Module-3.pdf
PPTX
The chain rule
 
PPT
Integration
PDF
Form 4-add-maths-note
PDF
Form 4 Add Maths Note
PDF
PDF
Chain rule
DOC
Mathematics 9 Quadratic Functions (Module 1)
DOCX
Banco de preguntas para el ap
PPTX
persamaan trigonometri A COS X + B SIN X
DOCX
Mathsclass xii (exampler problems)
PPT
Calc 7.1b
PDF
Integral Calculus Anti Derivatives reviewer
Form 4 add maths note
6.5 determinant x
Developing Expert Voices
C1 Integration - Questions.pdf for engineering students
Evaluating definite integrals
01. Differentiation-Theory & solved example Module-3.pdf
The chain rule
 
Integration
Form 4-add-maths-note
Form 4 Add Maths Note
Chain rule
Mathematics 9 Quadratic Functions (Module 1)
Banco de preguntas para el ap
persamaan trigonometri A COS X + B SIN X
Mathsclass xii (exampler problems)
Calc 7.1b
Integral Calculus Anti Derivatives reviewer
Ad

Recently uploaded (20)

PPT
tcp ip networks nd ip layering assotred slides
PPTX
Power Point - Lesson 3_2.pptx grad school presentation
PDF
Testing WebRTC applications at scale.pdf
PDF
Automated vs Manual WooCommerce to Shopify Migration_ Pros & Cons.pdf
PDF
An introduction to the IFRS (ISSB) Stndards.pdf
PPTX
Funds Management Learning Material for Beg
PPTX
Introuction about ICD -10 and ICD-11 PPT.pptx
PPTX
international classification of diseases ICD-10 review PPT.pptx
PPTX
presentation_pfe-universite-molay-seltan.pptx
PDF
Tenda Login Guide: Access Your Router in 5 Easy Steps
PPTX
E -tech empowerment technologies PowerPoint
PDF
Sims 4 Historia para lo sims 4 para jugar
DOCX
Unit-3 cyber security network security of internet system
PPTX
artificial intelligence overview of it and more
PDF
FINAL CALL-6th International Conference on Networks & IOT (NeTIOT 2025)
PDF
Slides PDF The World Game (s) Eco Economic Epochs.pdf
PPTX
Module 1 - Cyber Law and Ethics 101.pptx
PPTX
Introduction about ICD -10 and ICD11 on 5.8.25.pptx
PDF
SASE Traffic Flow - ZTNA Connector-1.pdf
PDF
Unit-1 introduction to cyber security discuss about how to secure a system
tcp ip networks nd ip layering assotred slides
Power Point - Lesson 3_2.pptx grad school presentation
Testing WebRTC applications at scale.pdf
Automated vs Manual WooCommerce to Shopify Migration_ Pros & Cons.pdf
An introduction to the IFRS (ISSB) Stndards.pdf
Funds Management Learning Material for Beg
Introuction about ICD -10 and ICD-11 PPT.pptx
international classification of diseases ICD-10 review PPT.pptx
presentation_pfe-universite-molay-seltan.pptx
Tenda Login Guide: Access Your Router in 5 Easy Steps
E -tech empowerment technologies PowerPoint
Sims 4 Historia para lo sims 4 para jugar
Unit-3 cyber security network security of internet system
artificial intelligence overview of it and more
FINAL CALL-6th International Conference on Networks & IOT (NeTIOT 2025)
Slides PDF The World Game (s) Eco Economic Epochs.pdf
Module 1 - Cyber Law and Ethics 101.pptx
Introduction about ICD -10 and ICD11 on 5.8.25.pptx
SASE Traffic Flow - ZTNA Connector-1.pdf
Unit-1 introduction to cyber security discuss about how to secure a system
Ad

integeration.ppt

  • 1. Introduction Team Members- There are two members. • Krishna Singh • Akshay Singh Note:- We are here to present the presentation about our 6th unit, Which name is Integration or Anti-Differentiation. Class- BCA(Bachelor Of Computer Application) First Year 1
  • 2. Integration or Anti-Differentiation Definition-Integration is a method of adding or summing up the parts to find the whole. It is a reverse process of differentiation, where we reduce the functions into parts. This method is used to find the summation under a vast scale. Integration is the calculation of an integral. Integrals in Math are used to find many useful quantities such as areas, volumes, displacement, etc. 2
  • 3. 3 INTEGRATION or ANTI-DIFFERENTIATION  Now , consider the question :” Given that y is a function of x and Clearly , ( differentiation process ) 1.1.THE CONCEPT OF INTEGRAL We have learnt that 2 x y  x dx dy 2  x dx dy 2  , what is the function ? ‘ 2 x y  is an answer but is it the only answer ?
  • 4. 4 Familiarity with the differentiation process would indicate that and in fact  50 , 3 , 15 , 3 2 2 2 2         x y x y x y x y c x y   2 Thus x dx dy 2  c x y   2 This process is the reverse process of differentiation and is called integration . , where c is can be any real number are also possible answer , where c is called an arbitrary constant
  • 5. 5 SYMBOL OF INTEGRATION We know that Hence , Symbolically , we write      x c x dx d and x x dx d 2 2 2 2    x dx dy 2  c x y   2 x dx dy 2      c x dx x y 2 2 
  • 6. 6 In general, then The expression     ) ( ) ( x f x F dx d and x F y if         c x F dx x f y x f dx dy ) ( ) ( ) (     c x F dx x f y ) ( ) ( Is called an indefinite integral.     c x dx x y 2 2 Is an indefinite integral
  • 7. 7 When In general : When n = 0 ,   n n n ax n n n ax dx d dx x f d n n ax x F ) 1 ( 1 1 1 ) ( , ) 1 ( 1 ) ( 1 1                   n ax            1 , . 1 1 1 n where c ax n dx ax y ax dx dy n n n       c ax dx a y a dx dy
  • 8. 8 EXAMPLE: 1. 2.The gradient of a curve , at the point ( x,y ) on the curve is given by Solution : Given          dx x dx x dx x dx x x x 2 3 2 3 ) ( c x x x     2 3 4 2 1 3 1 4 1 2 4 3 2 x x   Given that the curve passes through the point ( 1, 1) , find the equation of the curve. 2 4 3 2 x x dx dy         dx x x y ) 4 3 2 ( 2       dx x dx x dx 2 4 3 2
  • 9. 9 Since the curve passes through the point ( 1,1 ) , we can substitusi x = 1 and y = 1 into ( 1 ) to obtain the constant term c . The equation of the curve is ) 1 ( ...... 3 4 2 3 2 3 2 c x x x y     c     ) 1 ( 3 4 ) 1 ( 2 3 ) 1 ( 2 1 6 5   c c x x x y     3 2 3 4 2 3 2
  • 10. 10 INTEGRATION OF TRIGONOMETRICAL FUNCTION If y = sin x then If y = cos x then If y = tan x then If y = sec x then ; x dx dy cos  x dx dy sin   x dx dy 2 sec  x x dx dy sec . tan 
  • 11. 11 If y = cot x then Hence : ecx x dx dy cos . cot                    c x dx x ec x c x dx x x c x dx c x dx x c x dx cot cos . cot sec sec . tan tan sec cos sin sin cos 2
  • 12. 12 In each of the above cases , x is measured in radians and c denotes an arbitrary constant. as in differentiation , integration of trigonometrical function is performed only when the angles involved are measured in radians In general : ) cos( , ) sin( 1 b ax dx dy b ax a y If     c b ax a dx b ax      ) sin( 1 ) cos( where a , b and c are constant .
  • 13. 13 ) sin( , ) cos( 1 b ax dx dy b ax a y If      c b ax a dx b ax       ) cos( 1 ) sin( ) ( sec , ) tan( 1 2 b ax dx dy b ax a y If          c b ax a dx b ax ) tan( 1 ) ( sec2 Where a , b and c are constant
  • 14. 14 ) ( cos , ) ( cot 1 2 b ax ec dx dy b ax a y If            c b ax a dx b ax ec ) cot( 1 ) ( cos 2 ) tan( ). sec( , ) sec( 1 b ax b ax dx dy b ax a y If           ) sec( 1 ) tan( ). sec( b ax a dx b ax b ax ) cot( ). ( cos , ) ( 1 b ax b ax ec dx dy b ax coesc a y If              c b ax ec a dx b ax b ax ec ) ( cos 1 ) cot( ). ( cos Where a,b and c are constants
  • 15. 15 Example: Find The following integrals: 1. 2. 3. 4.    dx x ) 3 5 cos( c x   ) 3 5 sin( 5 1    dx x) 2 3 ( sec2 c x    ) 2 3 tan( 2 1     dx x x ec ) 3 4 tan( ). 3 4 ( cos c x ec    ) 3 4 ( cos 4 1   dx 2 sin   dx x 2 2 cos 1    dx x) 2 cos 1 ( 2 1 c x x          2 sin 2 1 2 1 c x x    2 sin 4 1 2 1
  • 16. 16 DEFINITE INTEGRAL Consider f(x) = 3 The area bounded by y = 3 , the line x = a and x = b and the axis is A = 3 ( b – a ) = 3b – 3a = F(b) – F(a) y x a b y = 3    dx dx x f 3 ) ( c x  3 3 ) ( , ) (    x F where c x F
  • 17. 17 We can write F(b) – F(a) simply as Further    b a b a x or x F 3 ) (   simply or dx x f b a  ) (    b a b a dx dx x f 3 ) (  b a c x   3  b a c x F   ) (     c a F c b F     ) ( ) ( ) ( ) ( a F b F  
  • 18. 18 Similarly , consider f(x) = x + 1 a b (a,a+1) 1 (b,b+1) y = x+1     dx x dx x f ) 1 ( ) ( c x x    2 2 where c x F , ) (   x x x F   2 2 1 ) (
  • 19. 19 The area bounded by y = x + 1 , the lines x = a and x = b , and axis is A = ) )( 1 1 ( 2 1 a b b a     ) )( 2 ( 2 1 a b b a     ) 2 2 ( 2 1 2 2 a a b b                         a a b b 2 2 2 2 ) ( ) ( a F b F   b a b a x x x dx x            2 ) 1 (
  • 20. 20 In general , if x = a and x = b is given by    c x F dx x f ) ( ) ( then the definite integral of f(x) between the limits       b a b a a F b F x F dx x f ) ( ) ( ) ( ) (
  • 21. 21 Example : Evaluate 1. 2.         4 2 2 3 16 dx x x       4 2 2 3 16 dx x x 4 2 4 16 4         x x ) 8 4 ( ) 4 64 (     56    3 0 ) 2 sin 3 (  dx x  3 0 2 cos 3  x x    3 2 2 3    ) 9 4 ( 6 1   
  • 22. 22 SUBSTITUTION ( ALGEBRAIC) Consider the integral : We may find this integral by expanding Suppose that v = 2x + 5 , then So that , or we can use the following way.   dx x 7 ) 5 2 (  7 5 2  x 2 2 dv dx dx dv       dx x 7 ) 5 2 (   2 7 dv v   dv v7 2 1 c v   8 8 . 2 1 c v   8 16 1 c x    8 ) 5 2 ( 16 1