SlideShare a Scribd company logo
Reverse- and Forward-
Engineering Specificity of
Carbohydrate Processing
Enzymes
The James Hutton Institute
23rd March 2016
Leighton Pritchard, Sean Chapman, Tracey Gloster, Eirini Xemantilotou
Information and Computational Sciences
The James Hutton Institute
Acceptable Use Policy
Recording of this talk, taking photos, discussing the content using
email, Twitter, blogs, etc. is permitted (and encouraged),
providing distraction to others during the presentation is minimised.
These slides will be made available on SlideShare.
Project Plan
Project Start:
October 2015
Public data:
genomes
(NCBI)
Public data:
sequences
(CAZy)
Public data:
structures
(RCSB)
Identify set of
candidate diverse
enzyme families:
literature
sequence analysis
dN/dS
Determine
additional
structures
Candidate
enzyme set
Determine
assays
Directed
evolution/gene
shuffling
Saturating
single-site
mutagenesis
Screen
specificity/
activity
Library of
diverse
specificity
Sectors/
epistatic
pathways
Novel
synthetic
pathways
New waste
processing
applications
Structure-
function
relationships
Rational
engineering
of specificity
Engineering	of	plant	cell	wall	degrading	enzymes	for	enhanced	biocatalysis	in	biofuel	produc8on
REV	0.1 Project	flowchart 20/3/2016 LP
Table of Contents
Challenge: Food or Fuel, or Both?
Food or Fuel?
Microbial Energy Production
Insight: Dickeya
Why Dickeya?
Action: Compiling a Library
Natural Diversity
Outcome: Exploiting Diversity
Protein Sectors and Epistasis
Project Plan
Acknowledgements
Without Whom. . .
Food or Fuel? a
a
Mohr & Rahman et al. (2013) Energy Policy doi:10.1016/j.enpol.2013.08.033
• Biofuels: ”Riches to Rags”
• 1st generation: fuel from food crops
• 2nd generation: fuel from cellulosic crops, e.g. miscanthus,
willow
• Stealing food, or stealing land/water?
Food and Fuel? a
a
Mohr & Rahman et al. (2013) Energy Policy doi:10.1016/j.enpol.2013.08.033
• Waste material = carbon-neutral feedstock
• Agricultural waste as feedstock?
• 2nd generation fuel from food crops?
• Maize stover, straw, sugarcane bagasse, etc.
What’s in waste? a
a
Miedes et al. (2014) Front. Plant Sci. doi:10.3389/fpls.2014.00358
• Plant primary cell walls: largely carbohydrate
• cellulose, hemicellulose, pectin, O-glycoprotein
• Plant secondary cell walls: lignocellulosic
• cellulose, xylan, lignin
• lignocellulosic biomass: only feasible renewable resource for
fuel/feedstock
Microbial Energy Research a
a
Torto-Alalibo et al. (2014) Front. Microbiol. doi:10.3389/fpls.2014.00358
• Engineered multi-enzyme processes
• Production of advanced biofuels/chemical precursors
• alcohols (butanol, isopropanol, etc.)
• processing of isoprenoids, terpenes, fatty acids, etc.
• Supplements/substitute for gasoline, diesel, jet fuel
• Manufactured/stored/distributed by existing infrastructure
Table of Contents
Challenge: Food or Fuel, or Both?
Food or Fuel?
Microbial Energy Production
Insight: Dickeya
Why Dickeya?
Action: Compiling a Library
Natural Diversity
Outcome: Exploiting Diversity
Protein Sectors and Epistasis
Project Plan
Acknowledgements
Without Whom. . .
Why Dickeya a b
a
Ma et al. (2007) Phytopath. doi:10.1094/PHYTO-97-9-1150
b
Toth et al. (2011) Plant Path. doi:10.1111/j.1365-3059.2011.02427.x
• Dickeya spp.: group of significant Soft Rot Enterobacterial
pathogens
• Attacks ornamental and crop plants
• Blackleg and stem rot
• Diverse genus, wide host range
• Diverse set of Plant Cell Wall Degrading Enzymes (PCWDEs)
Processing Waste a b c
a
Beall & Ingram (1993) J. Indust. Micro. 11:151-155
b
Zhou et al. (1999) Appl. Environ. Microbiol. 65:2439-2445
c
Edwards et al. (2011) Appl. Environ. Microbiol. doi:10.1128/AEM.05700-11
• Soft rot pathogens
• Plant Cell Wall Degrading Enzymes (PCWDEs):
hydrolases and lyases
• Engineer pathogens for ethanol production?
• Beall & Ingram, 1993
• Express PCWDEs in ethanologenic E. coli?
• Zhou et al. 1999, Edwards et al. 2011
• PCWDE libraries for synthetic biology?
• SynBio is a platform technology
• automated platforms for engineered microbial pathways
(e.g. Cellulect, UoEdinburgh)
• understanding enzyme structure-function relationships
Function Space
Functional space
theoretically available to
enzyme family structure/
sequence
Functional
space
explored in
nature
Table of Contents
Challenge: Food or Fuel, or Both?
Food or Fuel?
Microbial Energy Production
Insight: Dickeya
Why Dickeya?
Action: Compiling a Library
Natural Diversity
Outcome: Exploiting Diversity
Protein Sectors and Epistasis
Project Plan
Acknowledgements
Without Whom. . .
CAZy a
a
Lombard et al. (2014) Nucl. Acids Res. doi:10.1093/nar/gkt1178
• CAZy: Carbohydrate-Active Enzymes database (http://www.cazy.org/)
• 5 Dickeya, 14 Erwinia, 9 Pectobacterium genomes
• 63 Dickeya, 66 Erwinia, 74 Pectobacterium families
• Survey/mine natural diversity of CAZymes
Pathogen Diversity a
a
Pritchard et al. (2016) Anal. Methods doi:10.1039/C5AY02550H
• 48 Dickeya, 38 Erwinia, 57 Pectobacteria genomes
• Survey/mine natural diversity of PCWDEs
Pectobacterium_atrosepticum_SCRI1043_uid57957Pectobacterium_atrosepticum_NCPPB8549Pectobacterium_atrosepticum_NCPPB3404Pectobacterium_atrosepticum_21APectobacterium_atrosepticum_JG10-08Pectobacterium_carotovorum_PC1_uid59295Pectobacterium_carotovorum_subsp_carotovorum_NCPPB312Pectobacterium_carotovorum_subsp_oderiferum_NCPPB3841Pectobacterium_carotovorum_subsp_oderiferum_NCPPB3839Pectobacterium_carotovorum_subsp_carotovorum_NCPPB3395Pectobacterium_carotovorum_PCC21_uid174335Pectobacterium_carotovorum_subsp_brasiliensis_B5Pectobacterium_carotovorum_subsp_brasiliensis_B4Pectobacterium_betavasculorum_NCPPB2293Pectobacterium_betavasculorum_NCPPB2795Pectobacterium_wasabiae_NCPPB3702Pectobacterium_wasabiae_NCPPB3701Pectobacterium_wasabiae_WPP163_uid41297Pectobacterium_SCC3193_uid193707Dickeya_solani_AMYI01Dickeya_solani_AMWE01Dickeya_solani_GBBC2040Dickeya_solani_IPO2222Dickeya_solani_MK16Dickeya_solani_MK10Dickeya_dianthicola_NCPPB_3534Dickeya_dianthicola_GBBC2039Dickeya_dianthicola_NCPPB_453Dickeya_dianthicola_IPO980Dickeya_spp_NCPPB_3274Dickeya_spp_MK7Dickeya_dadantii_NCPPB_2976Dickeya_dadantii_NCPPB_898Dickeya_dadantii_NCPPB_3537Dickeya_dadantii_3937_uid52537Pantoea_ananatis_AJ13355_uid162073Pantoea_ananatis_LMG_20103_uid46807Pantoea_ananatis_PA13_uid162181Pantoea_ananatis_uid86861Erwinia_amylovora_CFBP1430_uid46839Erwinia_amylovora_ATCC_49946_uid46943Erwinia_Ejp617_uid159955Erwinia_pyrifoliae_Ep1_96_uid40659Erwinia_pyrifoliae_DSM_12163_uid159693Dickeya_dadantii_Ech703_uid59363Dickeya_paradisiaca_NCPPB_2511Dickeya_aquatica_DW_0440Dickeya_aquatica_CSL_RW240Erwinia_tasmaniensis_Et1_99_uid59029Pantoea_At_9b_uid55845Pantoea_vagans_C9_1_uid49871Erwinia_billingiae_Eb661_uid50547Dickeya_zeae_APMV01Dickeya_zeae_AJVN01Dickeya_zeae_CSL_RW192Dickeya_zeae_NCPPB_3531Dickeya_dadantii_Ech586_uid42519Dickeya_zeae_APWM01Dickeya_zeae_NCPPB_2538Dickeya_zeae_MK19Dickeya_zeae_NCPPB_3532Dickeya_spp_NCPPB_569Dickeya_chrysanthami_NCPPB_402Dickeya_chrysanthami_NCPPB_516Dickeya_zeae_Ech1591_uid59297Dickeya_chrysanthami_NCPPB_3533
Pectobacterium_atrosepticum_SCRI1043_uid57957Pectobacterium_atrosepticum_NCPPB8549Pectobacterium_atrosepticum_NCPPB3404Pectobacterium_atrosepticum_21APectobacterium_atrosepticum_JG10-08Pectobacterium_carotovorum_PC1_uid59295Pectobacterium_carotovorum_subsp_carotovorum_NCPPB312Pectobacterium_carotovorum_subsp_oderiferum_NCPPB3841Pectobacterium_carotovorum_subsp_oderiferum_NCPPB3839Pectobacterium_carotovorum_subsp_carotovorum_NCPPB3395Pectobacterium_carotovorum_PCC21_uid174335Pectobacterium_carotovorum_subsp_brasiliensis_B5Pectobacterium_carotovorum_subsp_brasiliensis_B4Pectobacterium_betavasculorum_NCPPB2293Pectobacterium_betavasculorum_NCPPB2795Pectobacterium_wasabiae_NCPPB3702Pectobacterium_wasabiae_NCPPB3701Pectobacterium_wasabiae_WPP163_uid41297Pectobacterium_SCC3193_uid193707Dickeya_solani_AMYI01Dickeya_solani_AMWE01Dickeya_solani_GBBC2040Dickeya_solani_IPO2222Dickeya_solani_MK16Dickeya_solani_MK10Dickeya_dianthicola_NCPPB_3534Dickeya_dianthicola_GBBC2039Dickeya_dianthicola_NCPPB_453Dickeya_dianthicola_IPO980Dickeya_spp_NCPPB_3274Dickeya_spp_MK7Dickeya_dadantii_NCPPB_2976Dickeya_dadantii_NCPPB_898Dickeya_dadantii_NCPPB_3537Dickeya_dadantii_3937_uid52537Pantoea_ananatis_AJ13355_uid162073Pantoea_ananatis_LMG_20103_uid46807Pantoea_ananatis_PA13_uid162181Pantoea_ananatis_uid86861Erwinia_amylovora_CFBP1430_uid46839Erwinia_amylovora_ATCC_49946_uid46943Erwinia_Ejp617_uid159955Erwinia_pyrifoliae_Ep1_96_uid40659Erwinia_pyrifoliae_DSM_12163_uid159693Dickeya_dadantii_Ech703_uid59363Dickeya_paradisiaca_NCPPB_2511Dickeya_aquatica_DW_0440Dickeya_aquatica_CSL_RW240Erwinia_tasmaniensis_Et1_99_uid59029Pantoea_At_9b_uid55845Pantoea_vagans_C9_1_uid49871Erwinia_billingiae_Eb661_uid50547Dickeya_zeae_APMV01Dickeya_zeae_AJVN01Dickeya_zeae_CSL_RW192Dickeya_zeae_NCPPB_3531Dickeya_dadantii_Ech586_uid42519Dickeya_zeae_APWM01Dickeya_zeae_NCPPB_2538Dickeya_zeae_MK19Dickeya_zeae_NCPPB_3532Dickeya_spp_NCPPB_569Dickeya_chrysanthami_NCPPB_402Dickeya_chrysanthami_NCPPB_516Dickeya_zeae_Ech1591_uid59297Dickeya_chrysanthami_NCPPB_3533
0.00
0.25
0.50
0.75
1.00
ANIm_percentage_identity
Protein Structures a b
a
Chapon et al. (2001) J. Mol. Biol. doi:10.1006/jmbi.2001.4787
b
Larson et al. (2003) Biochem. doi:10.1021/bi034144c
• Several landmark enzyme structures from Dickeya
• First GH5 xylanase structure (1NOF)
• Cel5 (1EGZ)
• Obtain novel structures for Dickeya CAZymes
Project Plan
Project Start:
October 2015
Public data:
genomes
(NCBI)
Public data:
sequences
(CAZy)
Public data:
structures
(RCSB)
Identify set of
candidate diverse
enzyme families:
literature
sequence analysis
dN/dS
Determine
additional
structures
Candidate
enzyme set
Determine
assays
Directed
evolution/gene
shuffling
Saturating
single-site
mutagenesis
Screen
specificity/
activity
Library of
diverse
specificity
Sectors/
epistatic
pathways
Novel
synthetic
pathways
New waste
processing
applications
Structure-
function
relationships
Rational
engineering
of specificity
Engineering	of	plant	cell	wall	degrading	enzymes	for	enhanced	biocatalysis	in	biofuel	produc8on
REV	0.1 Project	flowchart 20/3/2016 LP
Table of Contents
Challenge: Food or Fuel, or Both?
Food or Fuel?
Microbial Energy Production
Insight: Dickeya
Why Dickeya?
Action: Compiling a Library
Natural Diversity
Outcome: Exploiting Diversity
Protein Sectors and Epistasis
Project Plan
Acknowledgements
Without Whom. . .
Generate Diversity
• Gene shuffling/directed evolution
• Saturating site-directed mutagenesis
Functional space
theoretically available to enzyme family
structure/sequence
Functional
space explored
in nature
Gene Shuffling a
a
Crameri et al. (1998) Nature doi:10.1038/34663
• Generate novel diversity and select for substrate specificity
Positional epistasis a
a
McLaughlin et al. (2012) Nature doi:10.1038/nature11500
• Context-dependence of mutation and function: epistasis
• “hotspots”/pathways for control of substrate specificity
• Saturated single substitutions, with substrate assay screens
Protein Sectors a b
a
Pritchard & Dufton (2000) J. Theor. Biol. doi:10.1006/jtbi.1999.1043
b
Halabi et al. (2009) Cell doi:10.1016/j.cell.2009.07.038
• Sequence diversity and protein structure enables:
• Correlated mutation/conservation analysis
• Decomposition of structure into ”sectors”
• Sectors: subdomain structural/functional organisation of
proteins
Project Plan
Project Start:
October 2015
Public data:
genomes
(NCBI)
Public data:
sequences
(CAZy)
Public data:
structures
(RCSB)
Identify set of
candidate diverse
enzyme families:
literature
sequence analysis
dN/dS
Determine
additional
structures
Candidate
enzyme set
Determine
assays
Directed
evolution/gene
shuffling
Saturating
single-site
mutagenesis
Screen
specificity/
activity
Library of
diverse
specificity
Sectors/
epistatic
pathways
Novel
synthetic
pathways
New waste
processing
applications
Structure-
function
relationships
Rational
engineering
of specificity
Engineering	of	plant	cell	wall	degrading	enzymes	for	enhanced	biocatalysis	in	biofuel	produc8on
REV	0.1 Project	flowchart 20/3/2016 LP
Anticipated Outputs
• Libraries of carbohydrate-processing enzymes for SynBio
• Survey of natural PCWDE diversity
• Novel specificity variants from gene shuffling
• Saturated site-specific mutagenesis libraries for screening
against novel substrates
• IP?
• Structure-function insight
• New PCWDE enzyme structures
• Sector and epistasis maps for PCWDEs
• Reverse-engineering of carbohydrate-processing enzymes
• Empirically-improved enzymes
• Gene-shuffling targeted to novel specificity
• Forward-engineering of carbohydrate-processing enzymes
• IP?
Table of Contents
Challenge: Food or Fuel, or Both?
Food or Fuel?
Microbial Energy Production
Insight: Dickeya
Why Dickeya?
Action: Compiling a Library
Natural Diversity
Outcome: Exploiting Diversity
Protein Sectors and Epistasis
Project Plan
Acknowledgements
Without Whom. . .
Acknowledgements
Project
Eirini Xemantilotou (UoStA/JHI)
Sean Chapman (JHI)
Tracey Gloster (UoStA)
Judith Huggan (IBioIC)
JHI
Sonia Humphris
Emma Campbell
Ian Toth

More Related Content

PDF
Comparative Genomics and Visualisation BS32010
PDF
Comparative Genomics and Visualisation - Part 1
PDF
Comparative Genomics and Visualisation - Part 2
PPT
Comparative genomics @ sid 2003 format
PPTX
Genomics,proteomics and comparative genomics
PPTX
Comparative genomics and proteomics
PPTX
Comparative genomics
Comparative Genomics and Visualisation BS32010
Comparative Genomics and Visualisation - Part 1
Comparative Genomics and Visualisation - Part 2
Comparative genomics @ sid 2003 format
Genomics,proteomics and comparative genomics
Comparative genomics and proteomics
Comparative genomics

What's hot (20)

PPTX
Molecular basis of evolution and softwares used in phylogenetic tree contruction
PDF
BITS - Introduction to comparative genomics
PPTX
Comparative genomics 2
PDF
BITS - Comparative genomics on the genome level
PPTX
Comparative genomics in eukaryotes, organelles
PPTX
Comparative genomics
PPTX
Types of genomics ppt
PPTX
Comparative genomics
PPTX
Comparative and functional genomics
PDF
Microbial Phylogenomics (EVE161) Class 17: Genomes from Uncultured
PPT
Comparative genomics
PPTX
What is comparative genomics
PDF
A Systems Biology Approach to Natural Products Research
PPTX
Molecular evolution
PPTX
Bioinformatics, comparative genemics and proteomics
PPTX
DNA Sequencing in Phylogeny
PPTX
Genomics and proteomics ppt
PPTX
[2013.09.27] extracting genomes from metagenomes
PPTX
Personalized Medicine and the Omics Revolution by Professor Mike Snyder
Molecular basis of evolution and softwares used in phylogenetic tree contruction
BITS - Introduction to comparative genomics
Comparative genomics 2
BITS - Comparative genomics on the genome level
Comparative genomics in eukaryotes, organelles
Comparative genomics
Types of genomics ppt
Comparative genomics
Comparative and functional genomics
Microbial Phylogenomics (EVE161) Class 17: Genomes from Uncultured
Comparative genomics
What is comparative genomics
A Systems Biology Approach to Natural Products Research
Molecular evolution
Bioinformatics, comparative genemics and proteomics
DNA Sequencing in Phylogeny
Genomics and proteomics ppt
[2013.09.27] extracting genomes from metagenomes
Personalized Medicine and the Omics Revolution by Professor Mike Snyder
Ad

Viewers also liked (20)

PPT
Software re engineering
PPTX
Reverse engineering
PPT
04 Immobilisation of Enzymes
PPTX
chemistry of enzymes, ES complex theories, co factors and coenzymes
PPT
Enzymes and digestion
PDF
Effect of pH on enzymes
PPTX
A Presentation on Enzymes & Co-Enzymes
PPT
Chap 10 enzyme
PPTX
Presentation on Amylase enzyme
PPTX
Software Reengineering
PPTX
Digestion, Absorption and Enzymes
PPTX
Reengineering including reverse & forward Engineering
PPTX
Biochemical principles of enzyme action
PPT
Software Reengineering
PPT
Chapter 3 immobilized enzymes
PDF
Factors affecting enzymes
PPT
Effect of Temperature and pH on enzyme activity
PPT
Chapter 5 Enzymes Lesson 1 - Introduction to Enzymes
PPT
Reverse engineering
PPTX
Carbohydrate metabolism
Software re engineering
Reverse engineering
04 Immobilisation of Enzymes
chemistry of enzymes, ES complex theories, co factors and coenzymes
Enzymes and digestion
Effect of pH on enzymes
A Presentation on Enzymes & Co-Enzymes
Chap 10 enzyme
Presentation on Amylase enzyme
Software Reengineering
Digestion, Absorption and Enzymes
Reengineering including reverse & forward Engineering
Biochemical principles of enzyme action
Software Reengineering
Chapter 3 immobilized enzymes
Factors affecting enzymes
Effect of Temperature and pH on enzyme activity
Chapter 5 Enzymes Lesson 1 - Introduction to Enzymes
Reverse engineering
Carbohydrate metabolism
Ad

Similar to Reverse-and forward-engineering specificity of carbohydrate-processing enzymes (20)

PPTX
Web Apollo: Lessons learned from community-based biocuration efforts.
PPT
The Emerging Global Community of Microbial Metagenomics Researchers
PDF
JBEI Highlights - August 2014
PPT
J Klein - KUPKB: sharing, connecting and exposing kidney and urinary knowledg...
PPT
JulieKlein_Bosc2012
PDF
57.insilico studies of cellulase from Aspergillus terreus
PDF
JBEI Publications November 2020
PPTX
Collaboratively Creating the Knowledge Graph of Life
PDF
Connecting life sciences data at the European Bioinformatics Institute
PDF
JBEI Research Highlight Slides - April 2023
PDF
eScience-School-Oct2012-Campinas-Brazil
PDF
JBEI Highlights June 2016
PDF
Web Apollo at Genome Informatics 2014
PDF
JBEI Highlights March 2015
PDF
Advanced Bioinformatics for Genomics and BioData Driven Research
PPTX
Supporting researchers in the molecular life sciences Jeff Christiansen
PPTX
Introduction to bioinformatics
PDF
Apollo and i5K: Collaborative Curation and Interactive Analysis of Genomes
PDF
Biodiversity Virtual e-Laboratory (BioVeL)
PPTX
What should Bioinformatics do for EvoDevo?
Web Apollo: Lessons learned from community-based biocuration efforts.
The Emerging Global Community of Microbial Metagenomics Researchers
JBEI Highlights - August 2014
J Klein - KUPKB: sharing, connecting and exposing kidney and urinary knowledg...
JulieKlein_Bosc2012
57.insilico studies of cellulase from Aspergillus terreus
JBEI Publications November 2020
Collaboratively Creating the Knowledge Graph of Life
Connecting life sciences data at the European Bioinformatics Institute
JBEI Research Highlight Slides - April 2023
eScience-School-Oct2012-Campinas-Brazil
JBEI Highlights June 2016
Web Apollo at Genome Informatics 2014
JBEI Highlights March 2015
Advanced Bioinformatics for Genomics and BioData Driven Research
Supporting researchers in the molecular life sciences Jeff Christiansen
Introduction to bioinformatics
Apollo and i5K: Collaborative Curation and Interactive Analysis of Genomes
Biodiversity Virtual e-Laboratory (BioVeL)
What should Bioinformatics do for EvoDevo?

More from Leighton Pritchard (20)

PDF
In a Different Class?
PDF
RDVW Hands-on session: Python
PDF
Little Rotters: Adventures With Plant-Pathogenic Bacteria
PDF
Pathogen Genome Data
PDF
Whole genome taxonomic classi cation for prokaryotic plant pathogens
PDF
Microbial Genomics and Bioinformatics: BM405 (2015)
PDF
Microbial Agrogenomics 4/2/2015, UK-MX Workshop
PDF
BM405 Lecture Slides 21/11/2014 University of Strathclyde
PDF
Sequencing and Beyond?
PDF
Highly Discriminatory Diagnostic Primer Design From Whole Genome Data
PDF
ICSB 2013 - Visits Abroad Report
PDF
Adventures in Bioinformatics (2012)
PDF
Golden Rules of Bioinformatics
PPTX
Plant Pathogen Genome Data: My Life In Sequences
PPTX
Repeatable plant pathology bioinformatic analysis: Not everything is NGS data
PPT
What makes the enterobacterial plant pathogen Pectobacterium atrosepticum dif...
PPTX
Rapid generation of E.coli O104:H4 PCR diagnostics
PDF
Introduction to Bioinformatics
PDF
Mining Plant Pathogen Genomes for Effectors
PDF
A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin
In a Different Class?
RDVW Hands-on session: Python
Little Rotters: Adventures With Plant-Pathogenic Bacteria
Pathogen Genome Data
Whole genome taxonomic classi cation for prokaryotic plant pathogens
Microbial Genomics and Bioinformatics: BM405 (2015)
Microbial Agrogenomics 4/2/2015, UK-MX Workshop
BM405 Lecture Slides 21/11/2014 University of Strathclyde
Sequencing and Beyond?
Highly Discriminatory Diagnostic Primer Design From Whole Genome Data
ICSB 2013 - Visits Abroad Report
Adventures in Bioinformatics (2012)
Golden Rules of Bioinformatics
Plant Pathogen Genome Data: My Life In Sequences
Repeatable plant pathology bioinformatic analysis: Not everything is NGS data
What makes the enterobacterial plant pathogen Pectobacterium atrosepticum dif...
Rapid generation of E.coli O104:H4 PCR diagnostics
Introduction to Bioinformatics
Mining Plant Pathogen Genomes for Effectors
A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Recently uploaded (20)

PDF
Formation of Supersonic Turbulence in the Primordial Star-forming Cloud
PPTX
ECG_Course_Presentation د.محمد صقران ppt
PPT
POSITIONING IN OPERATION THEATRE ROOM.ppt
PPTX
Comparative Structure of Integument in Vertebrates.pptx
PPTX
Microbiology with diagram medical studies .pptx
PDF
. Radiology Case Scenariosssssssssssssss
PPT
protein biochemistry.ppt for university classes
PPTX
ognitive-behavioral therapy, mindfulness-based approaches, coping skills trai...
PPTX
INTRODUCTION TO EVS | Concept of sustainability
PPTX
Protein & Amino Acid Structures Levels of protein structure (primary, seconda...
PPTX
Introduction to Cardiovascular system_structure and functions-1
PDF
Unveiling a 36 billion solar mass black hole at the centre of the Cosmic Hors...
PPTX
famous lake in india and its disturibution and importance
PPTX
Derivatives of integument scales, beaks, horns,.pptx
PPTX
2Systematics of Living Organisms t-.pptx
PDF
ELS_Q1_Module-11_Formation-of-Rock-Layers_v2.pdf
PDF
Phytochemical Investigation of Miliusa longipes.pdf
PPTX
BIOMOLECULES PPT........................
PDF
Biophysics 2.pdffffffffffffffffffffffffff
PDF
Mastering Bioreactors and Media Sterilization: A Complete Guide to Sterile Fe...
Formation of Supersonic Turbulence in the Primordial Star-forming Cloud
ECG_Course_Presentation د.محمد صقران ppt
POSITIONING IN OPERATION THEATRE ROOM.ppt
Comparative Structure of Integument in Vertebrates.pptx
Microbiology with diagram medical studies .pptx
. Radiology Case Scenariosssssssssssssss
protein biochemistry.ppt for university classes
ognitive-behavioral therapy, mindfulness-based approaches, coping skills trai...
INTRODUCTION TO EVS | Concept of sustainability
Protein & Amino Acid Structures Levels of protein structure (primary, seconda...
Introduction to Cardiovascular system_structure and functions-1
Unveiling a 36 billion solar mass black hole at the centre of the Cosmic Hors...
famous lake in india and its disturibution and importance
Derivatives of integument scales, beaks, horns,.pptx
2Systematics of Living Organisms t-.pptx
ELS_Q1_Module-11_Formation-of-Rock-Layers_v2.pdf
Phytochemical Investigation of Miliusa longipes.pdf
BIOMOLECULES PPT........................
Biophysics 2.pdffffffffffffffffffffffffff
Mastering Bioreactors and Media Sterilization: A Complete Guide to Sterile Fe...

Reverse-and forward-engineering specificity of carbohydrate-processing enzymes

  • 1. Reverse- and Forward- Engineering Specificity of Carbohydrate Processing Enzymes The James Hutton Institute 23rd March 2016 Leighton Pritchard, Sean Chapman, Tracey Gloster, Eirini Xemantilotou Information and Computational Sciences The James Hutton Institute
  • 2. Acceptable Use Policy Recording of this talk, taking photos, discussing the content using email, Twitter, blogs, etc. is permitted (and encouraged), providing distraction to others during the presentation is minimised. These slides will be made available on SlideShare.
  • 3. Project Plan Project Start: October 2015 Public data: genomes (NCBI) Public data: sequences (CAZy) Public data: structures (RCSB) Identify set of candidate diverse enzyme families: literature sequence analysis dN/dS Determine additional structures Candidate enzyme set Determine assays Directed evolution/gene shuffling Saturating single-site mutagenesis Screen specificity/ activity Library of diverse specificity Sectors/ epistatic pathways Novel synthetic pathways New waste processing applications Structure- function relationships Rational engineering of specificity Engineering of plant cell wall degrading enzymes for enhanced biocatalysis in biofuel produc8on REV 0.1 Project flowchart 20/3/2016 LP
  • 4. Table of Contents Challenge: Food or Fuel, or Both? Food or Fuel? Microbial Energy Production Insight: Dickeya Why Dickeya? Action: Compiling a Library Natural Diversity Outcome: Exploiting Diversity Protein Sectors and Epistasis Project Plan Acknowledgements Without Whom. . .
  • 5. Food or Fuel? a a Mohr & Rahman et al. (2013) Energy Policy doi:10.1016/j.enpol.2013.08.033 • Biofuels: ”Riches to Rags” • 1st generation: fuel from food crops • 2nd generation: fuel from cellulosic crops, e.g. miscanthus, willow • Stealing food, or stealing land/water?
  • 6. Food and Fuel? a a Mohr & Rahman et al. (2013) Energy Policy doi:10.1016/j.enpol.2013.08.033 • Waste material = carbon-neutral feedstock • Agricultural waste as feedstock? • 2nd generation fuel from food crops? • Maize stover, straw, sugarcane bagasse, etc.
  • 7. What’s in waste? a a Miedes et al. (2014) Front. Plant Sci. doi:10.3389/fpls.2014.00358 • Plant primary cell walls: largely carbohydrate • cellulose, hemicellulose, pectin, O-glycoprotein • Plant secondary cell walls: lignocellulosic • cellulose, xylan, lignin • lignocellulosic biomass: only feasible renewable resource for fuel/feedstock
  • 8. Microbial Energy Research a a Torto-Alalibo et al. (2014) Front. Microbiol. doi:10.3389/fpls.2014.00358 • Engineered multi-enzyme processes • Production of advanced biofuels/chemical precursors • alcohols (butanol, isopropanol, etc.) • processing of isoprenoids, terpenes, fatty acids, etc. • Supplements/substitute for gasoline, diesel, jet fuel • Manufactured/stored/distributed by existing infrastructure
  • 9. Table of Contents Challenge: Food or Fuel, or Both? Food or Fuel? Microbial Energy Production Insight: Dickeya Why Dickeya? Action: Compiling a Library Natural Diversity Outcome: Exploiting Diversity Protein Sectors and Epistasis Project Plan Acknowledgements Without Whom. . .
  • 10. Why Dickeya a b a Ma et al. (2007) Phytopath. doi:10.1094/PHYTO-97-9-1150 b Toth et al. (2011) Plant Path. doi:10.1111/j.1365-3059.2011.02427.x • Dickeya spp.: group of significant Soft Rot Enterobacterial pathogens • Attacks ornamental and crop plants • Blackleg and stem rot • Diverse genus, wide host range • Diverse set of Plant Cell Wall Degrading Enzymes (PCWDEs)
  • 11. Processing Waste a b c a Beall & Ingram (1993) J. Indust. Micro. 11:151-155 b Zhou et al. (1999) Appl. Environ. Microbiol. 65:2439-2445 c Edwards et al. (2011) Appl. Environ. Microbiol. doi:10.1128/AEM.05700-11 • Soft rot pathogens • Plant Cell Wall Degrading Enzymes (PCWDEs): hydrolases and lyases • Engineer pathogens for ethanol production? • Beall & Ingram, 1993 • Express PCWDEs in ethanologenic E. coli? • Zhou et al. 1999, Edwards et al. 2011 • PCWDE libraries for synthetic biology? • SynBio is a platform technology • automated platforms for engineered microbial pathways (e.g. Cellulect, UoEdinburgh) • understanding enzyme structure-function relationships
  • 12. Function Space Functional space theoretically available to enzyme family structure/ sequence Functional space explored in nature
  • 13. Table of Contents Challenge: Food or Fuel, or Both? Food or Fuel? Microbial Energy Production Insight: Dickeya Why Dickeya? Action: Compiling a Library Natural Diversity Outcome: Exploiting Diversity Protein Sectors and Epistasis Project Plan Acknowledgements Without Whom. . .
  • 14. CAZy a a Lombard et al. (2014) Nucl. Acids Res. doi:10.1093/nar/gkt1178 • CAZy: Carbohydrate-Active Enzymes database (http://www.cazy.org/) • 5 Dickeya, 14 Erwinia, 9 Pectobacterium genomes • 63 Dickeya, 66 Erwinia, 74 Pectobacterium families • Survey/mine natural diversity of CAZymes
  • 15. Pathogen Diversity a a Pritchard et al. (2016) Anal. Methods doi:10.1039/C5AY02550H • 48 Dickeya, 38 Erwinia, 57 Pectobacteria genomes • Survey/mine natural diversity of PCWDEs Pectobacterium_atrosepticum_SCRI1043_uid57957Pectobacterium_atrosepticum_NCPPB8549Pectobacterium_atrosepticum_NCPPB3404Pectobacterium_atrosepticum_21APectobacterium_atrosepticum_JG10-08Pectobacterium_carotovorum_PC1_uid59295Pectobacterium_carotovorum_subsp_carotovorum_NCPPB312Pectobacterium_carotovorum_subsp_oderiferum_NCPPB3841Pectobacterium_carotovorum_subsp_oderiferum_NCPPB3839Pectobacterium_carotovorum_subsp_carotovorum_NCPPB3395Pectobacterium_carotovorum_PCC21_uid174335Pectobacterium_carotovorum_subsp_brasiliensis_B5Pectobacterium_carotovorum_subsp_brasiliensis_B4Pectobacterium_betavasculorum_NCPPB2293Pectobacterium_betavasculorum_NCPPB2795Pectobacterium_wasabiae_NCPPB3702Pectobacterium_wasabiae_NCPPB3701Pectobacterium_wasabiae_WPP163_uid41297Pectobacterium_SCC3193_uid193707Dickeya_solani_AMYI01Dickeya_solani_AMWE01Dickeya_solani_GBBC2040Dickeya_solani_IPO2222Dickeya_solani_MK16Dickeya_solani_MK10Dickeya_dianthicola_NCPPB_3534Dickeya_dianthicola_GBBC2039Dickeya_dianthicola_NCPPB_453Dickeya_dianthicola_IPO980Dickeya_spp_NCPPB_3274Dickeya_spp_MK7Dickeya_dadantii_NCPPB_2976Dickeya_dadantii_NCPPB_898Dickeya_dadantii_NCPPB_3537Dickeya_dadantii_3937_uid52537Pantoea_ananatis_AJ13355_uid162073Pantoea_ananatis_LMG_20103_uid46807Pantoea_ananatis_PA13_uid162181Pantoea_ananatis_uid86861Erwinia_amylovora_CFBP1430_uid46839Erwinia_amylovora_ATCC_49946_uid46943Erwinia_Ejp617_uid159955Erwinia_pyrifoliae_Ep1_96_uid40659Erwinia_pyrifoliae_DSM_12163_uid159693Dickeya_dadantii_Ech703_uid59363Dickeya_paradisiaca_NCPPB_2511Dickeya_aquatica_DW_0440Dickeya_aquatica_CSL_RW240Erwinia_tasmaniensis_Et1_99_uid59029Pantoea_At_9b_uid55845Pantoea_vagans_C9_1_uid49871Erwinia_billingiae_Eb661_uid50547Dickeya_zeae_APMV01Dickeya_zeae_AJVN01Dickeya_zeae_CSL_RW192Dickeya_zeae_NCPPB_3531Dickeya_dadantii_Ech586_uid42519Dickeya_zeae_APWM01Dickeya_zeae_NCPPB_2538Dickeya_zeae_MK19Dickeya_zeae_NCPPB_3532Dickeya_spp_NCPPB_569Dickeya_chrysanthami_NCPPB_402Dickeya_chrysanthami_NCPPB_516Dickeya_zeae_Ech1591_uid59297Dickeya_chrysanthami_NCPPB_3533 Pectobacterium_atrosepticum_SCRI1043_uid57957Pectobacterium_atrosepticum_NCPPB8549Pectobacterium_atrosepticum_NCPPB3404Pectobacterium_atrosepticum_21APectobacterium_atrosepticum_JG10-08Pectobacterium_carotovorum_PC1_uid59295Pectobacterium_carotovorum_subsp_carotovorum_NCPPB312Pectobacterium_carotovorum_subsp_oderiferum_NCPPB3841Pectobacterium_carotovorum_subsp_oderiferum_NCPPB3839Pectobacterium_carotovorum_subsp_carotovorum_NCPPB3395Pectobacterium_carotovorum_PCC21_uid174335Pectobacterium_carotovorum_subsp_brasiliensis_B5Pectobacterium_carotovorum_subsp_brasiliensis_B4Pectobacterium_betavasculorum_NCPPB2293Pectobacterium_betavasculorum_NCPPB2795Pectobacterium_wasabiae_NCPPB3702Pectobacterium_wasabiae_NCPPB3701Pectobacterium_wasabiae_WPP163_uid41297Pectobacterium_SCC3193_uid193707Dickeya_solani_AMYI01Dickeya_solani_AMWE01Dickeya_solani_GBBC2040Dickeya_solani_IPO2222Dickeya_solani_MK16Dickeya_solani_MK10Dickeya_dianthicola_NCPPB_3534Dickeya_dianthicola_GBBC2039Dickeya_dianthicola_NCPPB_453Dickeya_dianthicola_IPO980Dickeya_spp_NCPPB_3274Dickeya_spp_MK7Dickeya_dadantii_NCPPB_2976Dickeya_dadantii_NCPPB_898Dickeya_dadantii_NCPPB_3537Dickeya_dadantii_3937_uid52537Pantoea_ananatis_AJ13355_uid162073Pantoea_ananatis_LMG_20103_uid46807Pantoea_ananatis_PA13_uid162181Pantoea_ananatis_uid86861Erwinia_amylovora_CFBP1430_uid46839Erwinia_amylovora_ATCC_49946_uid46943Erwinia_Ejp617_uid159955Erwinia_pyrifoliae_Ep1_96_uid40659Erwinia_pyrifoliae_DSM_12163_uid159693Dickeya_dadantii_Ech703_uid59363Dickeya_paradisiaca_NCPPB_2511Dickeya_aquatica_DW_0440Dickeya_aquatica_CSL_RW240Erwinia_tasmaniensis_Et1_99_uid59029Pantoea_At_9b_uid55845Pantoea_vagans_C9_1_uid49871Erwinia_billingiae_Eb661_uid50547Dickeya_zeae_APMV01Dickeya_zeae_AJVN01Dickeya_zeae_CSL_RW192Dickeya_zeae_NCPPB_3531Dickeya_dadantii_Ech586_uid42519Dickeya_zeae_APWM01Dickeya_zeae_NCPPB_2538Dickeya_zeae_MK19Dickeya_zeae_NCPPB_3532Dickeya_spp_NCPPB_569Dickeya_chrysanthami_NCPPB_402Dickeya_chrysanthami_NCPPB_516Dickeya_zeae_Ech1591_uid59297Dickeya_chrysanthami_NCPPB_3533 0.00 0.25 0.50 0.75 1.00 ANIm_percentage_identity
  • 16. Protein Structures a b a Chapon et al. (2001) J. Mol. Biol. doi:10.1006/jmbi.2001.4787 b Larson et al. (2003) Biochem. doi:10.1021/bi034144c • Several landmark enzyme structures from Dickeya • First GH5 xylanase structure (1NOF) • Cel5 (1EGZ) • Obtain novel structures for Dickeya CAZymes
  • 17. Project Plan Project Start: October 2015 Public data: genomes (NCBI) Public data: sequences (CAZy) Public data: structures (RCSB) Identify set of candidate diverse enzyme families: literature sequence analysis dN/dS Determine additional structures Candidate enzyme set Determine assays Directed evolution/gene shuffling Saturating single-site mutagenesis Screen specificity/ activity Library of diverse specificity Sectors/ epistatic pathways Novel synthetic pathways New waste processing applications Structure- function relationships Rational engineering of specificity Engineering of plant cell wall degrading enzymes for enhanced biocatalysis in biofuel produc8on REV 0.1 Project flowchart 20/3/2016 LP
  • 18. Table of Contents Challenge: Food or Fuel, or Both? Food or Fuel? Microbial Energy Production Insight: Dickeya Why Dickeya? Action: Compiling a Library Natural Diversity Outcome: Exploiting Diversity Protein Sectors and Epistasis Project Plan Acknowledgements Without Whom. . .
  • 19. Generate Diversity • Gene shuffling/directed evolution • Saturating site-directed mutagenesis Functional space theoretically available to enzyme family structure/sequence Functional space explored in nature
  • 20. Gene Shuffling a a Crameri et al. (1998) Nature doi:10.1038/34663 • Generate novel diversity and select for substrate specificity
  • 21. Positional epistasis a a McLaughlin et al. (2012) Nature doi:10.1038/nature11500 • Context-dependence of mutation and function: epistasis • “hotspots”/pathways for control of substrate specificity • Saturated single substitutions, with substrate assay screens
  • 22. Protein Sectors a b a Pritchard & Dufton (2000) J. Theor. Biol. doi:10.1006/jtbi.1999.1043 b Halabi et al. (2009) Cell doi:10.1016/j.cell.2009.07.038 • Sequence diversity and protein structure enables: • Correlated mutation/conservation analysis • Decomposition of structure into ”sectors” • Sectors: subdomain structural/functional organisation of proteins
  • 23. Project Plan Project Start: October 2015 Public data: genomes (NCBI) Public data: sequences (CAZy) Public data: structures (RCSB) Identify set of candidate diverse enzyme families: literature sequence analysis dN/dS Determine additional structures Candidate enzyme set Determine assays Directed evolution/gene shuffling Saturating single-site mutagenesis Screen specificity/ activity Library of diverse specificity Sectors/ epistatic pathways Novel synthetic pathways New waste processing applications Structure- function relationships Rational engineering of specificity Engineering of plant cell wall degrading enzymes for enhanced biocatalysis in biofuel produc8on REV 0.1 Project flowchart 20/3/2016 LP
  • 24. Anticipated Outputs • Libraries of carbohydrate-processing enzymes for SynBio • Survey of natural PCWDE diversity • Novel specificity variants from gene shuffling • Saturated site-specific mutagenesis libraries for screening against novel substrates • IP? • Structure-function insight • New PCWDE enzyme structures • Sector and epistasis maps for PCWDEs • Reverse-engineering of carbohydrate-processing enzymes • Empirically-improved enzymes • Gene-shuffling targeted to novel specificity • Forward-engineering of carbohydrate-processing enzymes • IP?
  • 25. Table of Contents Challenge: Food or Fuel, or Both? Food or Fuel? Microbial Energy Production Insight: Dickeya Why Dickeya? Action: Compiling a Library Natural Diversity Outcome: Exploiting Diversity Protein Sectors and Epistasis Project Plan Acknowledgements Without Whom. . .
  • 26. Acknowledgements Project Eirini Xemantilotou (UoStA/JHI) Sean Chapman (JHI) Tracey Gloster (UoStA) Judith Huggan (IBioIC) JHI Sonia Humphris Emma Campbell Ian Toth