SlideShare a Scribd company logo
IT for MDs (Part 2)

 Nawanan Theera‐Ampornpunt, MD, PhD
                    Feb. 20, 2013
      Faculty of Medicine Ramathibodi Hospital




                           SlideShare.net/Nawanan
Recap from Part 1



     Information is everywhere in medicine
     Computerizing health care is difficult because of its 
      complexity
     Health IT has a role because “To Err Is Human”
     Health IT is just a tool. Whether it improves patient 
      care and outcomes depends on its design and 
      implementation


2
Health IT: What’s In A Word?




    Health                     Goal

    Information               Value‐Add


    Technology                Tools

3
Fundamental Theorem of Informatics




4
                                     (Friedman, 2009)
                                  (Friedman, 2009)
Health IT 
    Applications 
    in Hospitals


5
Enterprise‐wide Hospital IT



     Master Patient Index (MPI)
     Admission‐Discharge‐Transfer (ADT)
     Electronic Health Records (EHRs)
     Computerized Physician Order Entry (CPOE)
     Clinical Decision Support Systems (CDSSs)
     Picture Archiving and Communication System (PACS)
     Nursing applications
     Enterprise Resource Planning (ERP)

6
Departmental IT



     Pharmacy applications
     Laboratory Information System (LIS)
     Radiology Information System (RIS)
     Specialized applications (ER, OR, LR, 
      Anesthesia, Critical Care, Dietary Services, 
      Blood Bank)
     Incident management & reporting system

7
Hospital Information System
                                                                            Clinical 
                         Medical                     ADT                    Notes
                         Records


                                                 Workflow
                                                              Pharmacy IS
                     Operation                    Master 
                                                  Patient                     LIS
                      Theatre
                                                Index (MPI)

                                                               Order
                         CCIS
                                                                              RIS

                                                 Scheduling
                        Portals                                Billing
                                                                             PACS



8   Modified from Dr. Artit Ungkanont’s slide
EHRs & HIS
    The Challenge ‐ Knowing What It Means
       Electronic Health 
        Records (EHRs)
                                                       Hospital 
                                                  Information System 
       Electronic Medical                               (HIS)
        Records (EMRs)


       Electronic Patient 
        Records (EPRs)
                                                  Clinical Information 
                                                      System (CIS)
                               Personal Health 
       Computer‐Based          Records (PHRs)
       Patient Records 
            (CPRs)

9
EHR Systems


     Just electronic documentation?

               History    Diag‐   Treat‐
                                           ...
                & PE      nosis   ments


     Or do they have other values?


10
Functions that Should Be Part of EHR Systems



      Computerized Medication Order Entry
      Computerized Laboratory Order Entry
      Computerized Laboratory Results
      Physician Notes
      Patient Demographics
      Problem Lists
      Medication Lists
      Discharge Summaries
      Diagnostic Test Results
      Radiologic Reports
11                                       (IOM, 2003; Blumenthal et al, 2006)
Computerized Physician Order Entry (CPOE)




12
Computerized Physician Order Entry (CPOE)



     Values

     No handwriting!!!
      Structured data entry: Completeness, clarity, 
       fewer mistakes (?)
      No transcription errors!
      Entry point for CDSSs
      Streamlines workflow, increases efficiency


13
Clinical Decision Support Systems (CDSSs)


                            The real place where most of the 
                             values of health IT can be achieved

                              Expert systems
                                Based on artificial intelligence, 
                                 machine learning, rules, or 
                                 statistics
                                Examples: differential diagnoses, 
      (Shortliffe, 1976)         treatment options
14
Clinical Decision Support Systems (CDSSs)


      Alerts & reminders
        Based on specified logical conditions
        Examples:
          Drug‐allergy checks
          Drug‐drug interaction checks
          Drug‐disease checks
          Drug‐lab checks
          Drug‐formulary checks
          Reminders for preventive services or certain actions 
           (e.g. smoking cessation)
          Clinical practice guideline integration
15
Example of “Alerts & Reminders”




16
Clinical Decision Support Systems (CDSSs)




      Evidence‐based knowledge sources e.g. drug 
       database, literature
      Simple UI designed to help clinical decision making
        E.g., Abnormal Lab Highlights




17
Clinical Decision Support Systems (CDSSs)
                         PATIENT


                        Perception
     CLINICIAN

                        Attention


     Long Term Memory                             External Memory
                         Working
                         Memory
     Knowledge   Data                            Knowledge            Data


                        Inference


                        DECISION
18                                   From a teaching slide by Don Connelly, 2006
Clinical Decision Support Systems (CDSSs)
                         PATIENT


                        Perception
     CLINICIAN
                                     Abnormal lab 
                        Attention     highlights


     Long Term Memory                   External Memory
                         Working
                         Memory
     Knowledge   Data                   Knowledge    Data


                        Inference


                        DECISION
19
Clinical Decision Support Systems (CDSSs)
                         PATIENT


                        Perception
     CLINICIAN
                                     Drug‐Allergy 
                        Attention      Checks


     Long Term Memory                  External Memory
                         Working
                         Memory
     Knowledge   Data                  Knowledge     Data


                        Inference


                        DECISION
20
Clinical Decision Support Systems (CDSSs)
                         PATIENT


                        Perception   Drug‐Drug 
     CLINICIAN                       Interaction 
                        Attention      Checks



     Long Term Memory                External Memory
                         Working
                         Memory
     Knowledge   Data                Knowledge      Data


                        Inference


                        DECISION
21
Clinical Decision Support Systems (CDSSs)
                         PATIENT


                        Perception   Clinical Practice 
     CLINICIAN                           Guideline 
                                        Reminders
                        Attention


     Long Term Memory                 External Memory
                         Working
                         Memory
     Knowledge   Data                 Knowledge           Data


                        Inference


                        DECISION
22
Clinical Decision Support Systems (CDSSs)
                         PATIENT


                        Perception
     CLINICIAN

                        Attention


     Long Term Memory                External Memory
                         Working
                         Memory
     Knowledge   Data                Knowledge      Data


                        Inference    Diagnostic/Treatment 
                                        Expert Systems

                        DECISION
23
Clinical Decision Support Systems (CDSSs)


      CDSS as a replacement or supplement of 
       clinicians?
       The demise of the “Greek Oracle” model (Miller & Masarie, 1990)
                                               The “Greek Oracle” Model




                                               The “Fundamental Theorem”




24                                                                 (Friedman, 2009)
Health IT for Medication Safety


     Ordering      Transcription   Dispensing    Administration




                                   Automatic       Electronic 
      CPOE
                                   Medication     Medication 
                                   Dispensing    Administration 
                                                    Records 
                                                    (e‐MAR)
                                   Barcoded
                                   Medication      Barcoded
                                   Dispensing     Medication 
                                                 Administration
25
Clinical Decision Support Systems (CDSSs)


     Some risks
      Alert fatigue




26
Workarounds




27
Unintended Consequences of Health IT



      “Unanticipated and unwanted effect of 
       health IT implementation” (ucguide.org)

      Resources
       www.ucguide.org
       Ash et al. (2004)
       Campbell et al. (2006)
       Koppel et al. (2005)

28
Unintended Consequences of Health IT




Ash et al. (2004)
29
Unintended Consequences of Health IT



      Errors in the process of entering and retrieving information
          A human‐computer interface that is not suitable for a highly 
           interruptive use context
          Causing cognitive overload by overemphasizing structured and 
           “complete” information entry or retrieval
               Structure
               Fragmentation
               Overcompleteness




Ash et al. (2004)
30
Unintended Consequences of Health IT



      Errors in the communication and coordination process
          Misrepresenting collective, interactive work as a linear, clearcut, 
           and predictable workflow
                   Inflexibility
                   Urgency
                   Workarounds
                   Transfers of patients
          Misrepresenting communication as information transfer
                   Loss of communication
                   Loss of feedback
                   Decision support overload
                   Catching errors

Ash et al. (2004)
31
Unintended Consequences of Health IT



      Errors in the communication and coordination process
          Misrepresenting collective, interactive work as a linear, clearcut, 
           and predictable workflow
                   Inflexibility
                   Urgency
                   Workarounds
                   Transfers of patients
          Misrepresenting communication as information transfer
                   Loss of communication
                   Loss of feedback
                   Decision support overload
                   Catching errors
Ash et al. (2004)
32
Unintended Consequences of Health IT




Campbell et al. (2006)
33
Unintended Consequences of Health IT




Campbell et al. (2006)
34
Unintended Consequences of Health IT




Koppel et al. (2005)
35
Unintended Consequences of Health IT




Koppel et al. (2005)
36
Critical Success Factors in Health IT Projects




      Communications of plans & progresses
      Physician & non‐physician user involvement
      Attention to workflow changes
      Well‐executed project management
      Adequate user training
      Organizational learning
      Organizational innovativeness
Theera‐Ampornpunt (2011)
37
Health IT Successes & Failures




38                            Kaplan & Harris‐Salamone (2009)
Health IT Successes & Failures


     What success is
      Different ideas and definitions of success
      Need more understanding of different stakeholder 
       views & more longitudinal and qualitative studies of 
       failure

     What makes it so hard
      Communication, Workflow, & Quality
      Difficulties of communicating across different 
       groups makes it harder to identify requirements and 
       understand workflow
39                                            Kaplan & Harris‐Salamone (2009)
Health IT Successes & Failures



     What We Know—Lessons from Experience
      Provide incentives, remove disincentives
      Identify and mitigate risks
      Allow resources and time for training, exposure, and 
       learning to input data
      Learn from the past and from others



40                                           Kaplan & Harris‐Salamone (2009)
Health IT Change Management




41                             Lorenzi & Riley (2000)
Health IT Change Management




42                             Lorenzi & Riley (2000)
Health IT Change Management




43                             Lorenzi & Riley (2000)
Health IT Change Management




44                             Lorenzi & Riley (2000)
Considerations for a successful 
               implementation of CPOE

                           Considerations
     Motivation for implementation
     CPOE vision, leadership, and personnel
     Costs
     Integration: Workflow, health care processes
     Value to users/Decision support systems
     Project management and staging of implementation
     Technology
     Training and Support 24 x 7
     Learning/Evaluation/Improvement

45                                                      Ash et al. (2003)
Minimizing MD’s Change Resistance



      Involve physician champions
      Create a sense of ownership through 
       communications & involvement
      Understand their values
      Be attentive to climate in the organization
      Provide adequate training & support



46                                                   Ash et al. (2003)
Reasons for User Involvement


      Better understanding of needs & requirements
      Leveraging user expertise about their tasks & how 
       organization functions
      Assess importance of specific features for prioritization

      Users better understand project, develop realistic 
       expectations
      Venues for negotiation, conflict resolution
     Sense of ownership
      Pare & Sicotte (2006): Physician ownership 
       important for clinical information systems

47                                                       Ives & Olson (1984)
Gartner Hype Cycle




               Image source: Jeremy Kemp via http://en.wikipedia.org/wiki/Hype_cycle
48         http://www.gartner.com/technology/research/methodologies/hype‐cycle.jsp
Rogers’ Diffusion of Innovations: Adoption Curve




                                              Rogers (2003)
49
Balanced Focus of Informatics



                     People



                              Techno‐
           Process
                                logy




50
A Physician’s Story...


51
Summary



      Health IT applications vary in their “mechanisms of 
       actions” (improvements in outcomes).
      Health IT can lead to “unintended consequences” 
       and bad outcomes if poorly designed, 
       implemented, or managed.
      Realizing benefits of health IT depends on critical 
       success factors, mostly management aspects 
       (including change management, project 
       management)
52
Q & A...

     Download Slides
     SlideShare.net/Nawanan


     Contacts


            nawanan.the@mahidol.ac.th
            www.tc.umn.edu/~theer002
            groups.google.com/group/ThaiHealthIT


53
References


      Ash JS, Berg M, Coiera E. Some unintended consequences of information 
       technology in health care: the nature of patient care information system‐
       related errors. J Am Med Inform Assoc. 2004 Mar‐Apr;11(2):104‐12.
      Ash JS, Stavri PZ, Kuperman GJ. A consensus statement on considerations 
       for a successful CPOE implementation. J Am Med Inform Assoc. 2003 May‐
       Jun;10(3):229‐34.
      Campbell, EM, Sittig DF, Ash JS, et al. Types of Unintended Consequences 
       Related to Computerized Provider Order Entry. J Am Med Inform Assoc. 
       2006 Sep‐Oct; 13(5): 547‐556.
      Friedman CP. A "fundamental theorem" of biomedical informatics. J Am 
       Med Inform Assoc. 2009 Apr;16(2):169‐70.


54
References


      Ives B, Olson MH. User involvement and MIS success: a review of research. 
       Manage Sci. 1984 May;30(5):586‐603.
      Kaplan B, Harris‐Salamone KD. Health IT success and failure: 
       recommendations from the literature and an AMIA workshop. J Am Med 
       Inform Assoc. 2009 May‐Jun;16(3):291‐9.
      Koppel R, Metlay JP, Cohen A, Abaluck B, Localio AR, Kimmel SE, Strom BL. 
       Role of computerized physician order entry systems in facilitating 
       medication errors. JAMA. 2005 Mar 9;293(10):1197‐203.
      Lorenzi NM, Riley RT. Managing change: an overview. J Am Med Inform 
       Assoc. 2000 Mar‐Apr;7(2):116‐24.



55
References


      Miller RA, Masarie FE. The demise of the "Greek Oracle" model for medical 
       diagnostic systems. Methods Inf Med. 1990 Jan;29(1):1‐2. 
      Rogers EM. Diffusion of innovations. 5th ed. New York City (NY): Free 
       Press;2003. 551 p.
      Riley RT, Lorenzi NM. Gaining physician acceptance of information 
       technology systems. Med Interface. 1995 Nov;8(11):78‐80, 82‐3.
      Theera‐Ampornpunt N. Thai hospitals' adoption of information technology: 
       a theory development and nationwide survey [dissertation]. Minneapolis 
       (MN): University of Minnesota; 2011 Dec. 376 p.




56

More Related Content

PDF
Informatics in Emergency Medicine: A Brief Introduction (Presentation)
DOC
Unicare
PPTX
Architectural Design
PDF
Lluch 2013 de la literatura anglesa a la catalana un canvi de circuit lector ...
PDF
Cpu report
PDF
Baip 2.Fim.Fim
PDF
Health Information Privacy and Security
PDF
A Personal Journey Toward Thailand's eHealth: A Presentation in Consideration...
Informatics in Emergency Medicine: A Brief Introduction (Presentation)
Unicare
Architectural Design
Lluch 2013 de la literatura anglesa a la catalana un canvi de circuit lector ...
Cpu report
Baip 2.Fim.Fim
Health Information Privacy and Security
A Personal Journey Toward Thailand's eHealth: A Presentation in Consideration...

Similar to IT for MDs (Part 2) (20)

PDF
Health IT in Hospital Settings
PDF
The Intersection of ICT and Health Informatics Research
PPTX
Clinical information system
PDF
Health IT in Hospital Settings
PDF
Clinical Information Systems, Hospital Information Systems & Electronic Healt...
PPTX
Lifeline
PPTX
Evaluation of a clinical information system (cis)
PDF
Health IT in Clinical Settings (Ramathibodi 7th Healthcare CIO)
PDF
Health IT in Clinical Settings (July 2, 2015)
PDF
Health IT in Clinical Settings (February 16, 2021)
PDF
IT and Data Management in ER
PPTX
Looking Back on Clinical Decision Support and Data Warehousing
PDF
Introduction to Health Informatics and Health IT - Part 3
PDF
Health IT in Clinical Settings (October 11, 2018)
PPTX
Healthcare and BI
PDF
Health Information Technology in Clinical Settings
PDF
Health IT in Clinical Settings (October 12, 2020)
PDF
Clinical Information Systems and Electronic Health Records (October 18, 2021)
PPTX
CIS Project
PPTX
Health Informatics review
Health IT in Hospital Settings
The Intersection of ICT and Health Informatics Research
Clinical information system
Health IT in Hospital Settings
Clinical Information Systems, Hospital Information Systems & Electronic Healt...
Lifeline
Evaluation of a clinical information system (cis)
Health IT in Clinical Settings (Ramathibodi 7th Healthcare CIO)
Health IT in Clinical Settings (July 2, 2015)
Health IT in Clinical Settings (February 16, 2021)
IT and Data Management in ER
Looking Back on Clinical Decision Support and Data Warehousing
Introduction to Health Informatics and Health IT - Part 3
Health IT in Clinical Settings (October 11, 2018)
Healthcare and BI
Health Information Technology in Clinical Settings
Health IT in Clinical Settings (October 12, 2020)
Clinical Information Systems and Electronic Health Records (October 18, 2021)
CIS Project
Health Informatics review
Ad

More from Nawanan Theera-Ampornpunt (20)

PDF
Health Informatics for Health Service Systems (March 11, 2024)
PDF
Personal Data Protection Act and the Four Subordinate Laws (February 29, 2024)
PDF
Privacy & PDPA Awareness Training for Ramathibodi Residents (October 5, 2023)
PDF
Case Study PDPA Workshop (September 15, 2023)
PDF
Case Studies on Overview of PDPA and its Subordinate Laws (September 15, 2023)
PDF
Ramathibodi Security & Privacy Awareness Training (Fiscal Year 2023)
PDF
Relationship Between Thailand's Official Information Act and Personal Data Pr...
PDF
Social Media - PDPA: Is There A Way Out? (October 19, 2022)
PDF
Do's and Don'ts on PDPA for Doctors (May 31, 2022)
PDF
Telemedicine: A Health Informatician's Point of View
PDF
Meeting Management (March 2, 2022)
PDF
การบริหารความเสี่ยงคณะฯ (February 9, 2022)
PDF
จริยธรรมและกฎหมายที่เกี่ยวข้องกับเทคโนโลยีสารสนเทศทางสุขภาพ (February 8, 2022)
PDF
พระราชบัญญัติคุ้มครองข้อมูลส่วนบุคคล พ.ศ. 2562 (PDPA) (January 21, 2022)
PDF
Digital Health Transformation for Health Executives (January 18, 2022)
PDF
Updates on Privacy & Security Laws (November 26, 2021)
PDF
Hospital Informatics (November 26, 2021)
PDF
Health Informatics for Clinical Research (November 25, 2021)
PDF
Research Ethics and Ethics for Health Informaticians (November 15, 2021)
PDF
Consumer Health Informatics, Mobile Health, and Social Media for Health: Part...
Health Informatics for Health Service Systems (March 11, 2024)
Personal Data Protection Act and the Four Subordinate Laws (February 29, 2024)
Privacy & PDPA Awareness Training for Ramathibodi Residents (October 5, 2023)
Case Study PDPA Workshop (September 15, 2023)
Case Studies on Overview of PDPA and its Subordinate Laws (September 15, 2023)
Ramathibodi Security & Privacy Awareness Training (Fiscal Year 2023)
Relationship Between Thailand's Official Information Act and Personal Data Pr...
Social Media - PDPA: Is There A Way Out? (October 19, 2022)
Do's and Don'ts on PDPA for Doctors (May 31, 2022)
Telemedicine: A Health Informatician's Point of View
Meeting Management (March 2, 2022)
การบริหารความเสี่ยงคณะฯ (February 9, 2022)
จริยธรรมและกฎหมายที่เกี่ยวข้องกับเทคโนโลยีสารสนเทศทางสุขภาพ (February 8, 2022)
พระราชบัญญัติคุ้มครองข้อมูลส่วนบุคคล พ.ศ. 2562 (PDPA) (January 21, 2022)
Digital Health Transformation for Health Executives (January 18, 2022)
Updates on Privacy & Security Laws (November 26, 2021)
Hospital Informatics (November 26, 2021)
Health Informatics for Clinical Research (November 25, 2021)
Research Ethics and Ethics for Health Informaticians (November 15, 2021)
Consumer Health Informatics, Mobile Health, and Social Media for Health: Part...
Ad

Recently uploaded (20)

PPTX
MANAGEMENT SNAKE BITE IN THE TROPICALS.pptx
PPT
nephrology MRCP - Member of Royal College of Physicians ppt
PPTX
preoerative assessment in anesthesia and critical care medicine
PPTX
Human Reproduction: Anatomy, Physiology & Clinical Insights.pptx
PDF
Extended-Expanded-role-of-Nurses.pdf is a key for student Nurses
PPT
neurology Member of Royal College of Physicians (MRCP).ppt
PPTX
Neonate anatomy and physiology presentation
PPTX
IMAGING EQUIPMENiiiiìiiiiiTpptxeiuueueur
PPTX
y4d nutrition and diet in pregnancy and postpartum
PPTX
Introduction to Medical Microbiology for 400L Medical Students
PDF
شيت_عطا_0000000000000000000000000000.pdf
PPT
HIV lecture final - student.pptfghjjkkejjhhge
PPT
Rheumatology Member of Royal College of Physicians.ppt
PPTX
Acute Coronary Syndrome for Cardiology Conference
PDF
OSCE SERIES - Set 7 ( Questions & Answers ).pdf
PPTX
1. Basic chemist of Biomolecule (1).pptx
PPTX
Electrolyte Disturbance in Paediatric - Nitthi.pptx
PPTX
09. Diabetes in Pregnancy/ gestational.pptx
PDF
Transcultural that can help you someday.
PPTX
Effects of lipid metabolism 22 asfelagi.pptx
MANAGEMENT SNAKE BITE IN THE TROPICALS.pptx
nephrology MRCP - Member of Royal College of Physicians ppt
preoerative assessment in anesthesia and critical care medicine
Human Reproduction: Anatomy, Physiology & Clinical Insights.pptx
Extended-Expanded-role-of-Nurses.pdf is a key for student Nurses
neurology Member of Royal College of Physicians (MRCP).ppt
Neonate anatomy and physiology presentation
IMAGING EQUIPMENiiiiìiiiiiTpptxeiuueueur
y4d nutrition and diet in pregnancy and postpartum
Introduction to Medical Microbiology for 400L Medical Students
شيت_عطا_0000000000000000000000000000.pdf
HIV lecture final - student.pptfghjjkkejjhhge
Rheumatology Member of Royal College of Physicians.ppt
Acute Coronary Syndrome for Cardiology Conference
OSCE SERIES - Set 7 ( Questions & Answers ).pdf
1. Basic chemist of Biomolecule (1).pptx
Electrolyte Disturbance in Paediatric - Nitthi.pptx
09. Diabetes in Pregnancy/ gestational.pptx
Transcultural that can help you someday.
Effects of lipid metabolism 22 asfelagi.pptx

IT for MDs (Part 2)

  • 1. IT for MDs (Part 2) Nawanan Theera‐Ampornpunt, MD, PhD Feb. 20, 2013 Faculty of Medicine Ramathibodi Hospital SlideShare.net/Nawanan
  • 2. Recap from Part 1  Information is everywhere in medicine  Computerizing health care is difficult because of its  complexity  Health IT has a role because “To Err Is Human”  Health IT is just a tool. Whether it improves patient  care and outcomes depends on its design and  implementation 2
  • 3. Health IT: What’s In A Word? Health Goal Information Value‐Add Technology Tools 3
  • 4. Fundamental Theorem of Informatics 4 (Friedman, 2009) (Friedman, 2009)
  • 5. Health IT  Applications  in Hospitals 5
  • 6. Enterprise‐wide Hospital IT  Master Patient Index (MPI)  Admission‐Discharge‐Transfer (ADT)  Electronic Health Records (EHRs)  Computerized Physician Order Entry (CPOE)  Clinical Decision Support Systems (CDSSs)  Picture Archiving and Communication System (PACS)  Nursing applications  Enterprise Resource Planning (ERP) 6
  • 7. Departmental IT  Pharmacy applications  Laboratory Information System (LIS)  Radiology Information System (RIS)  Specialized applications (ER, OR, LR,  Anesthesia, Critical Care, Dietary Services,  Blood Bank)  Incident management & reporting system 7
  • 8. Hospital Information System Clinical  Medical  ADT Notes Records Workflow Pharmacy IS Operation  Master  Patient  LIS Theatre Index (MPI) Order CCIS RIS Scheduling Portals Billing PACS 8 Modified from Dr. Artit Ungkanont’s slide
  • 9. EHRs & HIS The Challenge ‐ Knowing What It Means Electronic Health  Records (EHRs) Hospital  Information System  Electronic Medical  (HIS) Records (EMRs) Electronic Patient  Records (EPRs) Clinical Information  System (CIS) Personal Health  Computer‐Based  Records (PHRs) Patient Records  (CPRs) 9
  • 10. EHR Systems Just electronic documentation? History  Diag‐ Treat‐ ... & PE nosis ments Or do they have other values? 10
  • 11. Functions that Should Be Part of EHR Systems  Computerized Medication Order Entry  Computerized Laboratory Order Entry  Computerized Laboratory Results  Physician Notes  Patient Demographics  Problem Lists  Medication Lists  Discharge Summaries  Diagnostic Test Results  Radiologic Reports 11 (IOM, 2003; Blumenthal et al, 2006)
  • 13. Computerized Physician Order Entry (CPOE) Values No handwriting!!!  Structured data entry: Completeness, clarity,  fewer mistakes (?)  No transcription errors!  Entry point for CDSSs  Streamlines workflow, increases efficiency 13
  • 14. Clinical Decision Support Systems (CDSSs)  The real place where most of the  values of health IT can be achieved  Expert systems  Based on artificial intelligence,  machine learning, rules, or  statistics  Examples: differential diagnoses,  (Shortliffe, 1976) treatment options 14
  • 15. Clinical Decision Support Systems (CDSSs)  Alerts & reminders  Based on specified logical conditions  Examples:  Drug‐allergy checks  Drug‐drug interaction checks  Drug‐disease checks  Drug‐lab checks  Drug‐formulary checks  Reminders for preventive services or certain actions  (e.g. smoking cessation)  Clinical practice guideline integration 15
  • 17. Clinical Decision Support Systems (CDSSs)  Evidence‐based knowledge sources e.g. drug  database, literature  Simple UI designed to help clinical decision making  E.g., Abnormal Lab Highlights 17
  • 18. Clinical Decision Support Systems (CDSSs) PATIENT Perception CLINICIAN Attention Long Term Memory External Memory Working Memory Knowledge Data Knowledge Data Inference DECISION 18 From a teaching slide by Don Connelly, 2006
  • 19. Clinical Decision Support Systems (CDSSs) PATIENT Perception CLINICIAN Abnormal lab  Attention highlights Long Term Memory External Memory Working Memory Knowledge Data Knowledge Data Inference DECISION 19
  • 20. Clinical Decision Support Systems (CDSSs) PATIENT Perception CLINICIAN Drug‐Allergy  Attention Checks Long Term Memory External Memory Working Memory Knowledge Data Knowledge Data Inference DECISION 20
  • 21. Clinical Decision Support Systems (CDSSs) PATIENT Perception Drug‐Drug  CLINICIAN Interaction  Attention Checks Long Term Memory External Memory Working Memory Knowledge Data Knowledge Data Inference DECISION 21
  • 22. Clinical Decision Support Systems (CDSSs) PATIENT Perception Clinical Practice  CLINICIAN Guideline  Reminders Attention Long Term Memory External Memory Working Memory Knowledge Data Knowledge Data Inference DECISION 22
  • 23. Clinical Decision Support Systems (CDSSs) PATIENT Perception CLINICIAN Attention Long Term Memory External Memory Working Memory Knowledge Data Knowledge Data Inference Diagnostic/Treatment  Expert Systems DECISION 23
  • 24. Clinical Decision Support Systems (CDSSs)  CDSS as a replacement or supplement of  clinicians?  The demise of the “Greek Oracle” model (Miller & Masarie, 1990) The “Greek Oracle” Model The “Fundamental Theorem” 24 (Friedman, 2009)
  • 25. Health IT for Medication Safety Ordering Transcription Dispensing Administration Automatic  Electronic  CPOE Medication  Medication  Dispensing Administration  Records  (e‐MAR) Barcoded Medication  Barcoded Dispensing Medication  Administration 25
  • 26. Clinical Decision Support Systems (CDSSs) Some risks  Alert fatigue 26
  • 28. Unintended Consequences of Health IT  “Unanticipated and unwanted effect of  health IT implementation” (ucguide.org)  Resources  www.ucguide.org  Ash et al. (2004)  Campbell et al. (2006)  Koppel et al. (2005) 28
  • 30. Unintended Consequences of Health IT  Errors in the process of entering and retrieving information  A human‐computer interface that is not suitable for a highly  interruptive use context  Causing cognitive overload by overemphasizing structured and  “complete” information entry or retrieval  Structure  Fragmentation  Overcompleteness Ash et al. (2004) 30
  • 31. Unintended Consequences of Health IT  Errors in the communication and coordination process  Misrepresenting collective, interactive work as a linear, clearcut,  and predictable workflow  Inflexibility  Urgency  Workarounds  Transfers of patients  Misrepresenting communication as information transfer  Loss of communication  Loss of feedback  Decision support overload  Catching errors Ash et al. (2004) 31
  • 32. Unintended Consequences of Health IT  Errors in the communication and coordination process  Misrepresenting collective, interactive work as a linear, clearcut,  and predictable workflow  Inflexibility  Urgency  Workarounds  Transfers of patients  Misrepresenting communication as information transfer  Loss of communication  Loss of feedback  Decision support overload  Catching errors Ash et al. (2004) 32
  • 37. Critical Success Factors in Health IT Projects Communications of plans & progresses Physician & non‐physician user involvement Attention to workflow changes Well‐executed project management Adequate user training Organizational learning Organizational innovativeness Theera‐Ampornpunt (2011) 37
  • 38. Health IT Successes & Failures 38 Kaplan & Harris‐Salamone (2009)
  • 39. Health IT Successes & Failures What success is  Different ideas and definitions of success  Need more understanding of different stakeholder  views & more longitudinal and qualitative studies of  failure What makes it so hard  Communication, Workflow, & Quality  Difficulties of communicating across different  groups makes it harder to identify requirements and  understand workflow 39 Kaplan & Harris‐Salamone (2009)
  • 40. Health IT Successes & Failures What We Know—Lessons from Experience  Provide incentives, remove disincentives  Identify and mitigate risks  Allow resources and time for training, exposure, and  learning to input data  Learn from the past and from others 40 Kaplan & Harris‐Salamone (2009)
  • 41. Health IT Change Management 41 Lorenzi & Riley (2000)
  • 42. Health IT Change Management 42 Lorenzi & Riley (2000)
  • 43. Health IT Change Management 43 Lorenzi & Riley (2000)
  • 44. Health IT Change Management 44 Lorenzi & Riley (2000)
  • 45. Considerations for a successful  implementation of CPOE Considerations Motivation for implementation CPOE vision, leadership, and personnel Costs Integration: Workflow, health care processes Value to users/Decision support systems Project management and staging of implementation Technology Training and Support 24 x 7 Learning/Evaluation/Improvement 45 Ash et al. (2003)
  • 46. Minimizing MD’s Change Resistance  Involve physician champions  Create a sense of ownership through  communications & involvement  Understand their values  Be attentive to climate in the organization  Provide adequate training & support 46 Ash et al. (2003)
  • 47. Reasons for User Involvement  Better understanding of needs & requirements  Leveraging user expertise about their tasks & how  organization functions  Assess importance of specific features for prioritization  Users better understand project, develop realistic  expectations  Venues for negotiation, conflict resolution Sense of ownership  Pare & Sicotte (2006): Physician ownership  important for clinical information systems 47 Ives & Olson (1984)
  • 48. Gartner Hype Cycle Image source: Jeremy Kemp via http://en.wikipedia.org/wiki/Hype_cycle 48 http://www.gartner.com/technology/research/methodologies/hype‐cycle.jsp
  • 50. Balanced Focus of Informatics People Techno‐ Process logy 50
  • 52. Summary  Health IT applications vary in their “mechanisms of  actions” (improvements in outcomes).  Health IT can lead to “unintended consequences”  and bad outcomes if poorly designed,  implemented, or managed.  Realizing benefits of health IT depends on critical  success factors, mostly management aspects  (including change management, project  management) 52
  • 53. Q & A... Download Slides SlideShare.net/Nawanan Contacts nawanan.the@mahidol.ac.th www.tc.umn.edu/~theer002 groups.google.com/group/ThaiHealthIT 53
  • 54. References  Ash JS, Berg M, Coiera E. Some unintended consequences of information  technology in health care: the nature of patient care information system‐ related errors. J Am Med Inform Assoc. 2004 Mar‐Apr;11(2):104‐12.  Ash JS, Stavri PZ, Kuperman GJ. A consensus statement on considerations  for a successful CPOE implementation. J Am Med Inform Assoc. 2003 May‐ Jun;10(3):229‐34.  Campbell, EM, Sittig DF, Ash JS, et al. Types of Unintended Consequences  Related to Computerized Provider Order Entry. J Am Med Inform Assoc.  2006 Sep‐Oct; 13(5): 547‐556.  Friedman CP. A "fundamental theorem" of biomedical informatics. J Am  Med Inform Assoc. 2009 Apr;16(2):169‐70. 54
  • 55. References  Ives B, Olson MH. User involvement and MIS success: a review of research.  Manage Sci. 1984 May;30(5):586‐603.  Kaplan B, Harris‐Salamone KD. Health IT success and failure:  recommendations from the literature and an AMIA workshop. J Am Med  Inform Assoc. 2009 May‐Jun;16(3):291‐9.  Koppel R, Metlay JP, Cohen A, Abaluck B, Localio AR, Kimmel SE, Strom BL.  Role of computerized physician order entry systems in facilitating  medication errors. JAMA. 2005 Mar 9;293(10):1197‐203.  Lorenzi NM, Riley RT. Managing change: an overview. J Am Med Inform  Assoc. 2000 Mar‐Apr;7(2):116‐24. 55
  • 56. References  Miller RA, Masarie FE. The demise of the "Greek Oracle" model for medical  diagnostic systems. Methods Inf Med. 1990 Jan;29(1):1‐2.   Rogers EM. Diffusion of innovations. 5th ed. New York City (NY): Free  Press;2003. 551 p.  Riley RT, Lorenzi NM. Gaining physician acceptance of information  technology systems. Med Interface. 1995 Nov;8(11):78‐80, 82‐3.  Theera‐Ampornpunt N. Thai hospitals' adoption of information technology:  a theory development and nationwide survey [dissertation]. Minneapolis  (MN): University of Minnesota; 2011 Dec. 376 p. 56