Time Division Multiplexing
                           Claude Rigault
                               ENST
                       claude.rigault@enst.fr




Claude Rigault, ENST   Communication networks 03   1
04/10/2004
Time division multiplexing




      Claude Rigault, ENST   Communication networks 03   2
      04/10/2004
Time division multiplexing



                 Time Division multiplexing (1)

      • Time Slot 1




        Multiplexer                                      De-multiplexer




      Claude Rigault, ENST   Communication networks 03                3
      04/10/2004
Time division multiplexing



                 Time Division multiplexing (2)

      • Time Slot 2




        Multiplexer                                      De-multiplexer




      Claude Rigault, ENST   Communication networks 03                4
      04/10/2004
Time division multiplexing



                 Time Division multiplexing (3)

      • Time Slot 3




        Multiplexer                                      De-multiplexer




      Claude Rigault, ENST   Communication networks 03                5
      04/10/2004
Time division multiplexing



                 Time Division multiplexing (4)

      • Time Slot 4




        Multiplexer                                      De-multiplexer




      Claude Rigault, ENST   Communication networks 03                6
      04/10/2004
Time division multiplexing



                                 Frames

      • Each rotation corresponds to a frame on the multiplex




        Multiplexer          TS3 TS2 TS1 TS0
                                                         De-multiplexer




      Claude Rigault, ENST   Communication networks 03                7
      04/10/2004
Time division multiplexing



                       Time Division multiplexing

      • Time division multiplexing is based on peak rate
      • TDM is adapted to constant rate sources (like voice)
                                             C
                                 nt =
                                          d max
    Switching                                                           Switching
     network Trunk circuits                               Trunk circuits network
              J                                                      J

              J                                                      J
              J                                                      J
                                       trunks
              J                                                      J




      Claude Rigault, ENST    Communication networks 03                     8
      04/10/2004
Time division multiplexing



                       Sampling an analog signal

      • Time division multiplexing requires that only samples of
        the signal are transmitted. If we have fs rotations /second,
        the sampling frequency is fs




      Claude Rigault, ENST    Communication networks 03                9
      04/10/2004
Time division multiplexing



                             Effect of sampling
        Energy




               Fmax Fs-Fmax     Fs                          2Fs   Frequency

           To recover the original signal, there should be no
           overlapping :
                                fs- fmax> fmax
                                or : fs> 2fmax
      Claude Rigault, ENST      Communication networks 03              10
      04/10/2004
Time division multiplexing



                             PAM modulation

                               Fs

         Fmax


                                Fs > 2 Fmax




      Claude Rigault, ENST     Communication networks 03   11
      04/10/2004
Time division multiplexing



                             Voice spectrum
                                  Energy

                                    filter
                                                4000




                               300 800 3400               Frequency (Hz)


           Cut off frequency of filter is at 4000 Hz
           ⇒ fs = 8000 Hz

      Claude Rigault, ENST    Communication networks 03                    12
      04/10/2004
Time division multiplexing



          PAM and Time division multiplexing

      • 8000 rotations / second
      • Advantage of TDM : the filter is the same everywhere
      • Disadvantage of PAM : analog system ⇒ noise sensitivity




      Claude Rigault, ENST   Communication networks 03        13
      04/10/2004
Time division multiplexing



          PCM and Time division multiplexing

                                           PCM
                                           link




                                   CODER          DECODER
                             PAM                               PAM




      Claude Rigault, ENST         Communication networks 03         14
      04/10/2004
Time division multiplexing



                             Voice signal dynamics

      •   The dynamics of the voice signal is very large ⇒ quantization noise
          gets very large on small signals




      Claude Rigault, ENST        Communication networks 03                15
      04/10/2004
Time division multiplexing



                             Quantization noise

      •   Quantization produces « Quantization noise »
      •   A linear measurement scale would result in a lower SNR for small
          signals than for big signals


      •   What we want is an amplitude independent SNR




      Claude Rigault, ENST      Communication networks 03               16
      04/10/2004
Time division multiplexing



                                  ‘µ’ Law coding


                                                               x= v , y= c
            Code
  63
  60
  50
                                                                 vmax   cmax
                                                                  Log(1+µx)
  40

                                                               y=
                                                                  Log(1+µ )
  30

  20
  10                                            Volts
                                                        1,6

                                                               µ =255
   0
       0                 0,5        1            1,5




           Claude Rigault, ENST    Communication networks 03                  17
           04/10/2004
Time division multiplexing



                                 ‘A’ Law coding

    140



    120
                                       Niveau du signal    Code sur 13 bits Code sur 8 bits
    100                                0 à 25 mV                    0 à 63           0 à 33
     80
                                       25 à 50 mV                   64 à 127         34 à 49
                                       50 à 100 mV                  128 à 255        50 à 65
     60
                                       0,1 à 0,2 V                  256 à 511        66 à 81
     40                                0,2 à 0,4 V                  512 à 1023       82 à 97
     20
                                       0,4 à 0,8 V                  1024 à 2047      98 à 113
                                       0,8 à 1,6 V                  2048 à 4095      114 à 128
      0
          0        0,5       1   1,5         2




          Claude Rigault, ENST           Communication networks 03                      18
          04/10/2004
Time division multiplexing



              Primary multiplex T1 (T1 carrier)
                     v0
                       v1                                        v23
              Flag




                              signalisation                      IT23
                 IT0
                     IT1
                                (24×8)+1=193 bits par trame
                             193×8000 trames/s =1544 Kbit/s


      Claude Rigault, ENST           Communication networks 03          19
      04/10/2004
Time division multiplexing



                             Primary multiplex E1




 IT0                                       IT16
    IT1                                                           IT31



      Claude Rigault, ENST       Communication networks 03   20
      04/10/2004
Time division multiplexing



                             E1 frame organization


    v1      IT0 : x001 1011 ou z1zz zzzz v15 IT16 : supertrame de signalisation
                                                                             v29
         v2                                  v16                               v30




 IT0                                       IT16                            IT30
    IT1                                  IT15 IT17                           IT31



      Claude Rigault, ENST        Communication networks 03                 21
      04/10/2004
Time division multiplexing



                                          In-band
   2
                               16-2
                               16-18
  15                                                                          2
                                                                        15          1
                              500 Hz                                              8000 Hz
                                               signalisation       16                 0
                                   16-15
  16                                                                17              31
                                   16-31                                     30


  31




       Claude Rigault, ENST            Communication networks 03                   22
       04/10/2004
Time division multiplexing



                             PCM E1 : superframe

       v 1-16      v 3-18                                    v 13-28     v 15-30
             v 2-17                                                v 14-29




  IT16-0       IT16-2                                             IT16-14
           IT16-1                                            IT16-13   IT16-15




      Claude Rigault, ENST       Communication networks 03                23
      04/10/2004
Time division multiplexing



                              The HDB 3 line code

      • 1 ⇒ Mark, 0 ⇒ Space
      • Alternate Mark Inversion

             Clock



             Data         1    0   1         0     0        1      1   0




            Line signal




      Claude Rigault, ENST             Communication networks 03           24
      04/10/2004
Time division multiplexing



                             The HDB 3 line code

      •   Coding of sequences of 4 zeros : alternate violations inversion


                1 0 0 0 0 0           0 1 0 0 0 0 0 0 0 0




      Claude Rigault, ENST        Communication networks 03                 25
      04/10/2004
Time division multiplexing



                               Line Termination
        circuit 1                           HDB 3 Line code                   circuit 1

                    MUX          LT                               LT   DE-MUX

       circuit 30                                                             circuit 30
                             Galvanic insulation      Repeater
                             Remote feeding
                             Line code
        circuit 1                                                             circuit 1

                 DE-MUX          LT                               LT    MUX

       circuit 30                                                             circuit 30


      Claude Rigault, ENST            Communication networks 03                       26
      04/10/2004
Time division multiplexing



                    Asynchronous Transmission

      • Slips occur after n bits


                                                       > te/2
                             1        0     1      1            0   1   0   0




                             1        0     0      1            0   1   1   0

                                                          1
                                         te =             fefr
                                 n=                       =
                                      2(te−tr)  1 1  2( fe− fr )
                                               2 − 
                                                 fr fe 
      Claude Rigault, ENST                Communication networks 03             27
      04/10/2004
Time division multiplexing



                    Asynchronous Transmission

      • Start and Stop signals required
      • Caracter Oriented Procedure (COP)




                     Start   Te         Te         Te        Te         Te   Stop


                                  Tr          Tr        Tr         Tr   Tr



      Claude Rigault, ENST             Communication networks 03                    28
      04/10/2004
Time division multiplexing



                      Synchronous Transmission

      • 2 channels required : one for data, one for clock
      • Bit Oriented Procedure (BOP)



             SIGNAL



           HORLOGE


                             0   1      1      1      1      0   0   0



      Claude Rigault, ENST       Communication networks 03               29
      04/10/2004
Time division multiplexing



                             Mixing clock and data

      • Line codes such as the Manchester code give a mean to
        recover the clock, at the expanse of bandwidth



                Data
                                                                      Line code

               Clock


            Line code

                              0   1    1     1    1    0    0     0
      Claude Rigault, ENST            Communication networks 03              30
      04/10/2004
Time division multiplexing



                      Asynchronous multiplexing
                signal 1
               clock 1       elastic store
                                     1
                 f1


                                                                     MUX


                signal 4
                                                                                 fo
               clock 4       elastic store
                                     4
                f4                                                             Clock out
                                                        Control        ./. 4


      Claude Rigault, ENST               Communication networks 03                         31
      04/10/2004
Time division multiplexing



                                     Justification
         signal 1
         clock 1     elastic store
                             1
           f1
                                                                         T j = nTi =     1
                                                                                       fo
                                                                                          − fi
                                                         MUX                           4

         signal 4
                                                                              fo
         clock 4     elastic store
                             4
          f4                                                               Clock out
                                              Control            ./. 4


      Claude Rigault, ENST           Communication networks 03                               32
      04/10/2004
Time division multiplexing



                            European PDH hierarchy
              1


                  E1              1

          30                          E2              1
  64 kbit/s
                              4                           E3           1
                       2 Mbit/s
                                                  4                        E4           1
                                           8 Mbit/s
                                                                   4                        E5
                                                                                                 565 Mbit/s
                                                           34 Mbit/s
                                                                                    4
                                                                           140 Mbit/s
       Claude Rigault, ENST                   Communication networks 03                               33
       04/10/2004
Time division multiplexing



                        American PDH hierarchy

      •   Caution ! One T3 multiplexes 7 T2 !
                              1


                                               1
                                  T1

                             24                                 1
                                                    T2
                     56 kbit/s
                                              4
                                                                     T3
                                                                          44 Mbit/s
                                       1,5 Mbit/s
                                                               7

                                                         6 Mbit/s


      Claude Rigault, ENST               Communication networks 03                    34
      04/10/2004
Time division multiplexing



      Point to point structure of PDH networks

          64 kbit/s                                                                 64 Kbit/s
                             2 Mbit/s                               2 Mbit/s
                      E1                                                       E1

                                                8 Mbit/s
                                        E2                  E2


                   2 Mbit/s                                                2 Mbit/s




      Claude Rigault, ENST              Communication networks 03                           35
      04/10/2004
Time division multiplexing



                    SDH : Adding and Dropping

       order n                                                 order n
       order n               order>n+1                         order n
       order n                           ADM                   order n
       order n                                                 order n

                                                               order n
                              order n                          order n
                              order n                          order n
                              order n                          order n
                              order n

                    The condition : synchronous multiplexing
      Claude Rigault, ENST      Communication networks 03            36
      04/10/2004
Time division multiplexing



                         SDH : the STM-1 frame
                  9 Bytes                            261 Bytes

                Regenerator
                Section
                overhead


                                                       Payload
            Pointers overhead
  9 rows

               Multiplexer
               Section
               overhead



                       STM-1 : Synchronous transfer module
      Claude Rigault, ENST       Communication networks 03       37
      04/10/2004
Time division multiplexing



                Container and Virtual Container


                   P
                              C                         C + POH → VC
                   O
                   H



                             VC

      Claude Rigault, ENST        Communication networks 03            38
      04/10/2004
Time division multiplexing



        Synchronous multiplexing (high order)
      • High Order Path (high order multiplex)




                                              High order VC
                pointer




      Claude Rigault, ENST   Communication networks 03        39
      04/10/2004
Time division multiplexing



         Synchronous multiplexing (low order)
      • Low Order Path (low order multiplex)
                             pointer


                       P                    Low order VC
                       O
                       H




      Claude Rigault, ENST      Communication networks 03   40
      04/10/2004
Time division multiplexing



                             SDH mechanisms
      • C + POH → VC
      • Low order VC + pointer → TU
      • High order VC + pointer → AU




      Claude Rigault, ENST     Communication networks 03   41
      04/10/2004
Time division multiplexing



                              SDH tributaries
                    Container          Europe                   US

                        C11                                 T1 1,5 Mbit/s
                        C12         E1 2Mbit/s                   4
                         C2                                 T2 6 Mbit/s
                                   E3 34Mbit/s                   7
                         C3                                 T3 44 Mbit/s
                         C4       E4 140Mbit/s

      Claude Rigault, ENST      Communication networks 03                   42
      04/10/2004
Time division multiplexing



                                 Multiplexing paths
    STM-1       AUG          AU-4   VC-4                                            C-4
                                              3


                                             TUG-3                  TU-3    VC-3
                             3


                             AU-3   VC-3                                            C-3
                                                  7   7
                                                                1
                                                      TUG-2         TU-2    VC-2    C-2
                                                                3

                                                                    TU-12   VC-12   C-
                                                                4                   12
                                                                    TU-11   VC-11   C-11




      Claude Rigault, ENST          Communication networks 03                       43
      04/10/2004

More Related Content

PPT
PPT
Multiplexing, fdma,tdma,cdma
PPT
Unit-4_Bus_Encoding_Part_1.ppt
PPT
Mini Project Communication Link Simulation Digital Modulation Techniques Lec...
PPTX
Time Division Multiplexing
PPT
Multiplexing and Multiple access
PPTX
Digital t carriers and multiplexing power point (laurens)
Multiplexing, fdma,tdma,cdma
Unit-4_Bus_Encoding_Part_1.ppt
Mini Project Communication Link Simulation Digital Modulation Techniques Lec...
Time Division Multiplexing
Multiplexing and Multiple access
Digital t carriers and multiplexing power point (laurens)

What's hot (20)

PDF
8 VSB_Generation_and_Detection.pdf
PPTX
Path loss model, OKUMURA Model, Hata Model
PPTX
FHSS- Frequency Hop Spread Spectrum
PPT
Time Division Multiplexing
PDF
9. parameters of mobile multipath channels
PPTX
Frequency division multiplexing (FDM).pptx
PPT
GSM channels
PPTX
Huffman Algorithm and its Application by Ekansh Agarwal
PPT
PPTX
Outdoor propagatiom model
PPT
Parameters of multipath channel
PDF
Nec 602 unit ii Random Variables and Random process
PPT
Fading in wireless communication.ppt
PPTX
UNIT-3 ppt.pptx
PPTX
Public Switched Telephone Network
PPTX
Week11 lec1
DOCX
Multiplexing
PPTX
Concept of Diversity & Fading (wireless communication)
PPTX
Radio Signal Classification with Deep Neural Networks
PPT
Combating fading channels (1) (3)
8 VSB_Generation_and_Detection.pdf
Path loss model, OKUMURA Model, Hata Model
FHSS- Frequency Hop Spread Spectrum
Time Division Multiplexing
9. parameters of mobile multipath channels
Frequency division multiplexing (FDM).pptx
GSM channels
Huffman Algorithm and its Application by Ekansh Agarwal
Outdoor propagatiom model
Parameters of multipath channel
Nec 602 unit ii Random Variables and Random process
Fading in wireless communication.ppt
UNIT-3 ppt.pptx
Public Switched Telephone Network
Week11 lec1
Multiplexing
Concept of Diversity & Fading (wireless communication)
Radio Signal Classification with Deep Neural Networks
Combating fading channels (1) (3)
Ad

Viewers also liked (8)

PPT
104623 time division multiplexing (transmitter, receiver,commutator)
PPTX
Design of commutator and brushes
PPT
Multiplexing
PPT
ATM Networking Concept
PPT
Adsl
DOCX
Multiplexing
PPT
Multiplexing
104623 time division multiplexing (transmitter, receiver,commutator)
Design of commutator and brushes
Multiplexing
ATM Networking Concept
Adsl
Multiplexing
Multiplexing
Ad

Similar to 03 time division-multiplexing (20)

PDF
Lte course
PPTX
3GPP lte pptx training a beginers guide.pptx
PPT
Multiple acces techniques
PPT
Sonet
PDF
Spread-Spectrum2.pdf hhjji ffhjifr jjjgff
PDF
1999 si pi_dws_training_course
PDF
Multiband Transceivers - [Chapter 3] Basic Concept of Comm. Systems
PDF
Lecture intro to_wcdma
PPTX
orthogonal frequency division multiplexing(OFDM)
PPTX
9-MC Modulation and OFDM.pptx9-MC Modulation and OFDM.pptx9-MC Modulation and...
PDF
03 6420 e-utra layer 1 key aspects and ofdm(a) principles_e05
PPT
Spread spectrum Frequency-hopping spread spectrum (FHSS)
PPT
Code Division Multiple Access- CDMA
PDF
Synchronous Time / Frequency Domain Measurements Using a Digital Oscilloscope...
PDF
SMPTE_DFW_ATSC_MH_How_it_Works
PPT
Lightwave_systems.ppt
PDF
LTE Basics - II
PDF
153867696 lte-tutorial-femtoforum-part2-130814004042-phpapp01
Lte course
3GPP lte pptx training a beginers guide.pptx
Multiple acces techniques
Sonet
Spread-Spectrum2.pdf hhjji ffhjifr jjjgff
1999 si pi_dws_training_course
Multiband Transceivers - [Chapter 3] Basic Concept of Comm. Systems
Lecture intro to_wcdma
orthogonal frequency division multiplexing(OFDM)
9-MC Modulation and OFDM.pptx9-MC Modulation and OFDM.pptx9-MC Modulation and...
03 6420 e-utra layer 1 key aspects and ofdm(a) principles_e05
Spread spectrum Frequency-hopping spread spectrum (FHSS)
Code Division Multiple Access- CDMA
Synchronous Time / Frequency Domain Measurements Using a Digital Oscilloscope...
SMPTE_DFW_ATSC_MH_How_it_Works
Lightwave_systems.ppt
LTE Basics - II
153867696 lte-tutorial-femtoforum-part2-130814004042-phpapp01

Recently uploaded (20)

PPTX
Modernising the Digital Integration Hub
PPTX
Benefits of Physical activity for teenagers.pptx
PPTX
Final SEM Unit 1 for mit wpu at pune .pptx
PDF
Comparative analysis of machine learning models for fake news detection in so...
PPT
What is a Computer? Input Devices /output devices
PDF
A contest of sentiment analysis: k-nearest neighbor versus neural network
PDF
NewMind AI Weekly Chronicles – August ’25 Week III
PPTX
The various Industrial Revolutions .pptx
PDF
“A New Era of 3D Sensing: Transforming Industries and Creating Opportunities,...
PDF
1 - Historical Antecedents, Social Consideration.pdf
PDF
Five Habits of High-Impact Board Members
PPTX
MicrosoftCybserSecurityReferenceArchitecture-April-2025.pptx
PDF
A review of recent deep learning applications in wood surface defect identifi...
PDF
How ambidextrous entrepreneurial leaders react to the artificial intelligence...
PPTX
Configure Apache Mutual Authentication
PDF
Taming the Chaos: How to Turn Unstructured Data into Decisions
PDF
Convolutional neural network based encoder-decoder for efficient real-time ob...
PDF
sbt 2.0: go big (Scala Days 2025 edition)
PDF
How IoT Sensor Integration in 2025 is Transforming Industries Worldwide
PDF
Flame analysis and combustion estimation using large language and vision assi...
Modernising the Digital Integration Hub
Benefits of Physical activity for teenagers.pptx
Final SEM Unit 1 for mit wpu at pune .pptx
Comparative analysis of machine learning models for fake news detection in so...
What is a Computer? Input Devices /output devices
A contest of sentiment analysis: k-nearest neighbor versus neural network
NewMind AI Weekly Chronicles – August ’25 Week III
The various Industrial Revolutions .pptx
“A New Era of 3D Sensing: Transforming Industries and Creating Opportunities,...
1 - Historical Antecedents, Social Consideration.pdf
Five Habits of High-Impact Board Members
MicrosoftCybserSecurityReferenceArchitecture-April-2025.pptx
A review of recent deep learning applications in wood surface defect identifi...
How ambidextrous entrepreneurial leaders react to the artificial intelligence...
Configure Apache Mutual Authentication
Taming the Chaos: How to Turn Unstructured Data into Decisions
Convolutional neural network based encoder-decoder for efficient real-time ob...
sbt 2.0: go big (Scala Days 2025 edition)
How IoT Sensor Integration in 2025 is Transforming Industries Worldwide
Flame analysis and combustion estimation using large language and vision assi...

03 time division-multiplexing

  • 1. Time Division Multiplexing Claude Rigault ENST claude.rigault@enst.fr Claude Rigault, ENST Communication networks 03 1 04/10/2004
  • 2. Time division multiplexing Claude Rigault, ENST Communication networks 03 2 04/10/2004
  • 3. Time division multiplexing Time Division multiplexing (1) • Time Slot 1 Multiplexer De-multiplexer Claude Rigault, ENST Communication networks 03 3 04/10/2004
  • 4. Time division multiplexing Time Division multiplexing (2) • Time Slot 2 Multiplexer De-multiplexer Claude Rigault, ENST Communication networks 03 4 04/10/2004
  • 5. Time division multiplexing Time Division multiplexing (3) • Time Slot 3 Multiplexer De-multiplexer Claude Rigault, ENST Communication networks 03 5 04/10/2004
  • 6. Time division multiplexing Time Division multiplexing (4) • Time Slot 4 Multiplexer De-multiplexer Claude Rigault, ENST Communication networks 03 6 04/10/2004
  • 7. Time division multiplexing Frames • Each rotation corresponds to a frame on the multiplex Multiplexer TS3 TS2 TS1 TS0 De-multiplexer Claude Rigault, ENST Communication networks 03 7 04/10/2004
  • 8. Time division multiplexing Time Division multiplexing • Time division multiplexing is based on peak rate • TDM is adapted to constant rate sources (like voice) C nt = d max Switching Switching network Trunk circuits Trunk circuits network J J J J J J trunks J J Claude Rigault, ENST Communication networks 03 8 04/10/2004
  • 9. Time division multiplexing Sampling an analog signal • Time division multiplexing requires that only samples of the signal are transmitted. If we have fs rotations /second, the sampling frequency is fs Claude Rigault, ENST Communication networks 03 9 04/10/2004
  • 10. Time division multiplexing Effect of sampling Energy Fmax Fs-Fmax Fs 2Fs Frequency To recover the original signal, there should be no overlapping : fs- fmax> fmax or : fs> 2fmax Claude Rigault, ENST Communication networks 03 10 04/10/2004
  • 11. Time division multiplexing PAM modulation Fs Fmax Fs > 2 Fmax Claude Rigault, ENST Communication networks 03 11 04/10/2004
  • 12. Time division multiplexing Voice spectrum Energy filter 4000 300 800 3400 Frequency (Hz) Cut off frequency of filter is at 4000 Hz ⇒ fs = 8000 Hz Claude Rigault, ENST Communication networks 03 12 04/10/2004
  • 13. Time division multiplexing PAM and Time division multiplexing • 8000 rotations / second • Advantage of TDM : the filter is the same everywhere • Disadvantage of PAM : analog system ⇒ noise sensitivity Claude Rigault, ENST Communication networks 03 13 04/10/2004
  • 14. Time division multiplexing PCM and Time division multiplexing PCM link CODER DECODER PAM PAM Claude Rigault, ENST Communication networks 03 14 04/10/2004
  • 15. Time division multiplexing Voice signal dynamics • The dynamics of the voice signal is very large ⇒ quantization noise gets very large on small signals Claude Rigault, ENST Communication networks 03 15 04/10/2004
  • 16. Time division multiplexing Quantization noise • Quantization produces « Quantization noise » • A linear measurement scale would result in a lower SNR for small signals than for big signals • What we want is an amplitude independent SNR Claude Rigault, ENST Communication networks 03 16 04/10/2004
  • 17. Time division multiplexing ‘µ’ Law coding x= v , y= c Code 63 60 50 vmax cmax Log(1+µx) 40 y= Log(1+µ ) 30 20 10 Volts 1,6 µ =255 0 0 0,5 1 1,5 Claude Rigault, ENST Communication networks 03 17 04/10/2004
  • 18. Time division multiplexing ‘A’ Law coding 140 120 Niveau du signal Code sur 13 bits Code sur 8 bits 100 0 à 25 mV 0 à 63 0 à 33 80 25 à 50 mV 64 à 127 34 à 49 50 à 100 mV 128 à 255 50 à 65 60 0,1 à 0,2 V 256 à 511 66 à 81 40 0,2 à 0,4 V 512 à 1023 82 à 97 20 0,4 à 0,8 V 1024 à 2047 98 à 113 0,8 à 1,6 V 2048 à 4095 114 à 128 0 0 0,5 1 1,5 2 Claude Rigault, ENST Communication networks 03 18 04/10/2004
  • 19. Time division multiplexing Primary multiplex T1 (T1 carrier) v0 v1 v23 Flag signalisation IT23 IT0 IT1 (24×8)+1=193 bits par trame 193×8000 trames/s =1544 Kbit/s Claude Rigault, ENST Communication networks 03 19 04/10/2004
  • 20. Time division multiplexing Primary multiplex E1 IT0 IT16 IT1 IT31 Claude Rigault, ENST Communication networks 03 20 04/10/2004
  • 21. Time division multiplexing E1 frame organization v1 IT0 : x001 1011 ou z1zz zzzz v15 IT16 : supertrame de signalisation v29 v2 v16 v30 IT0 IT16 IT30 IT1 IT15 IT17 IT31 Claude Rigault, ENST Communication networks 03 21 04/10/2004
  • 22. Time division multiplexing In-band 2 16-2 16-18 15 2 15 1 500 Hz 8000 Hz signalisation 16 0 16-15 16 17 31 16-31 30 31 Claude Rigault, ENST Communication networks 03 22 04/10/2004
  • 23. Time division multiplexing PCM E1 : superframe v 1-16 v 3-18 v 13-28 v 15-30 v 2-17 v 14-29 IT16-0 IT16-2 IT16-14 IT16-1 IT16-13 IT16-15 Claude Rigault, ENST Communication networks 03 23 04/10/2004
  • 24. Time division multiplexing The HDB 3 line code • 1 ⇒ Mark, 0 ⇒ Space • Alternate Mark Inversion Clock Data 1 0 1 0 0 1 1 0 Line signal Claude Rigault, ENST Communication networks 03 24 04/10/2004
  • 25. Time division multiplexing The HDB 3 line code • Coding of sequences of 4 zeros : alternate violations inversion 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 Claude Rigault, ENST Communication networks 03 25 04/10/2004
  • 26. Time division multiplexing Line Termination circuit 1 HDB 3 Line code circuit 1 MUX LT LT DE-MUX circuit 30 circuit 30 Galvanic insulation Repeater Remote feeding Line code circuit 1 circuit 1 DE-MUX LT LT MUX circuit 30 circuit 30 Claude Rigault, ENST Communication networks 03 26 04/10/2004
  • 27. Time division multiplexing Asynchronous Transmission • Slips occur after n bits > te/2 1 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 te = fefr n= = 2(te−tr)  1 1  2( fe− fr ) 2 −   fr fe  Claude Rigault, ENST Communication networks 03 27 04/10/2004
  • 28. Time division multiplexing Asynchronous Transmission • Start and Stop signals required • Caracter Oriented Procedure (COP) Start Te Te Te Te Te Stop Tr Tr Tr Tr Tr Claude Rigault, ENST Communication networks 03 28 04/10/2004
  • 29. Time division multiplexing Synchronous Transmission • 2 channels required : one for data, one for clock • Bit Oriented Procedure (BOP) SIGNAL HORLOGE 0 1 1 1 1 0 0 0 Claude Rigault, ENST Communication networks 03 29 04/10/2004
  • 30. Time division multiplexing Mixing clock and data • Line codes such as the Manchester code give a mean to recover the clock, at the expanse of bandwidth Data Line code Clock Line code 0 1 1 1 1 0 0 0 Claude Rigault, ENST Communication networks 03 30 04/10/2004
  • 31. Time division multiplexing Asynchronous multiplexing signal 1 clock 1 elastic store 1 f1 MUX signal 4 fo clock 4 elastic store 4 f4 Clock out Control ./. 4 Claude Rigault, ENST Communication networks 03 31 04/10/2004
  • 32. Time division multiplexing Justification signal 1 clock 1 elastic store 1 f1 T j = nTi = 1 fo − fi MUX 4 signal 4 fo clock 4 elastic store 4 f4 Clock out Control ./. 4 Claude Rigault, ENST Communication networks 03 32 04/10/2004
  • 33. Time division multiplexing European PDH hierarchy 1 E1 1 30 E2 1 64 kbit/s 4 E3 1 2 Mbit/s 4 E4 1 8 Mbit/s 4 E5 565 Mbit/s 34 Mbit/s 4 140 Mbit/s Claude Rigault, ENST Communication networks 03 33 04/10/2004
  • 34. Time division multiplexing American PDH hierarchy • Caution ! One T3 multiplexes 7 T2 ! 1 1 T1 24 1 T2 56 kbit/s 4 T3 44 Mbit/s 1,5 Mbit/s 7 6 Mbit/s Claude Rigault, ENST Communication networks 03 34 04/10/2004
  • 35. Time division multiplexing Point to point structure of PDH networks 64 kbit/s 64 Kbit/s 2 Mbit/s 2 Mbit/s E1 E1 8 Mbit/s E2 E2 2 Mbit/s 2 Mbit/s Claude Rigault, ENST Communication networks 03 35 04/10/2004
  • 36. Time division multiplexing SDH : Adding and Dropping order n order n order n order>n+1 order n order n ADM order n order n order n order n order n order n order n order n order n order n order n The condition : synchronous multiplexing Claude Rigault, ENST Communication networks 03 36 04/10/2004
  • 37. Time division multiplexing SDH : the STM-1 frame 9 Bytes 261 Bytes Regenerator Section overhead Payload Pointers overhead 9 rows Multiplexer Section overhead STM-1 : Synchronous transfer module Claude Rigault, ENST Communication networks 03 37 04/10/2004
  • 38. Time division multiplexing Container and Virtual Container P C C + POH → VC O H VC Claude Rigault, ENST Communication networks 03 38 04/10/2004
  • 39. Time division multiplexing Synchronous multiplexing (high order) • High Order Path (high order multiplex) High order VC pointer Claude Rigault, ENST Communication networks 03 39 04/10/2004
  • 40. Time division multiplexing Synchronous multiplexing (low order) • Low Order Path (low order multiplex) pointer P Low order VC O H Claude Rigault, ENST Communication networks 03 40 04/10/2004
  • 41. Time division multiplexing SDH mechanisms • C + POH → VC • Low order VC + pointer → TU • High order VC + pointer → AU Claude Rigault, ENST Communication networks 03 41 04/10/2004
  • 42. Time division multiplexing SDH tributaries Container Europe US C11 T1 1,5 Mbit/s C12 E1 2Mbit/s 4 C2 T2 6 Mbit/s E3 34Mbit/s 7 C3 T3 44 Mbit/s C4 E4 140Mbit/s Claude Rigault, ENST Communication networks 03 42 04/10/2004
  • 43. Time division multiplexing Multiplexing paths STM-1 AUG AU-4 VC-4 C-4 3 TUG-3 TU-3 VC-3 3 AU-3 VC-3 C-3 7 7 1 TUG-2 TU-2 VC-2 C-2 3 TU-12 VC-12 C- 4 12 TU-11 VC-11 C-11 Claude Rigault, ENST Communication networks 03 43 04/10/2004