SlideShare a Scribd company logo
Surface Plasmons Part 1
Surface plasmons: outline
1. Time-line of major discoveries
2. Surface plasmons - surface mode of
electromagnetic waves on a metal
surface
3. Spectroscopy of SPs in nanostructures:
(a) Nanoparticles
(b) Gratings, nanostructures
4. Applications: sensors, nanophotonics,
surface enhanced Raman spectroscopy
(SERS)
Surface plasmons, A. Kolomenski, S. Peng, 9/24/2012
Time line
Excitation of SPs with a
prism: Raether, Kretschmann
1941
1907
Rayleigh’s explanation (angle-
diffraction orders)
1993-
Fano: role of surface
waves, surface plasmons
1968
1991
1902 Wood anomalies: reflection
on gratings (two types)
Nanoplasmonics, extraordinary
transmission, etc.
First biosensor on SPs
SPs allow to localize and guide
EM waves!!!
1974 Surface Enhaced Raman Spectroscopy
Surface plasmons, A. Kolomenski, S. Peng, 9/24/2012
Maxwell’s equations (SI units) in a material,
differential form
density of charges
density of current
f

f
J
Surface plasmons, A. Kolomenski, S. Peng, 9/24/2012
Wave equation
2 2
( ) ( )
B B B B
   
          
2
2 2 2
1 1
( ) ( ) ( )
B
E E B
t t t t
c c t

  
    
        
    

2
2
2 2
1
0
B
B
c t

 
  

2
2
2 2
1
0
E
E
c t

 
  

0
Double vector product rule is used
a x b x c = (ac) b - (ab) c
Surface plasmons, A. Kolomenski, S. Peng, 9/24/2012
Plane waves
0 [ ( )]
B B Exp i k r t

   
  
)]
(
[
0 t
r
k
i
Exp
E
E 







B i k B
  
  
E i k E
  
  
is parallel to
is parallel to B
E

Thus, we seek the
solutions of the form:
From Maxwell’s equations
one can see that k

B

E

Surface plasmons, A. Kolomenski, S. Peng, 9/24/2012
Incident light
Simple system of a metal bordering a
dielectric with incident plane wave
Dielectric, refractive index
is dielectric permittivity
Metal (gold)
2
n 

2

1 r im
i
  
 
Reflected light
Transmitted light
Surface plasmons, A. Kolomenski, S. Peng,
9/24/2012
Waves at the interface
Assume that incident light is p-polarized, which means that the E-vector is
parallel to the incidence plane
)]
(
[
)
,
0
,
( 1
1
1
1
1 t
z
k
x
k
i
Exp
E
E
E z
x
z
x 




1 1 1 1
(0, ,0) [ ( )]
y x z
B B Exp i k x k z t


  
Then the vector of the magnetic field is perpendicular to the incidence plane and
has the form
In medium 1, z<0,
2
1
2
2
1
2
1
c
k
k z
x



In medium 2, z>0, 2
2
2
2
2
2
2
c
k
k z
x



2 2 2 2
(0, ,0) [ ( )]
y x z
B B Exp i k x k z t


  
)]
(
[
)
,
0
,
( 2
2
2
2
2 t
z
k
x
k
i
Exp
E
E
E z
x
z
x 




x
y
z
1
E

x
1x
E
1z
E
Surface plasmons, A. Kolomenski, S. Peng,
9/24/2012
Boundary conditions
x
x E
E 2
1 
1 1 2 2 1 2
/ / , . .
y y y y
B B i e H H
 
 
1 1 2 2
z z
E E
 

1 1 1 2 2 2 1 1 1 2 2
1 2
( / ) / / ( / / ) ( / ) 0
t y y t
l l
E
B dl B dl B dl l B B B ds ds
t
      

        
    

1 1 2 1 1 1 2 2
1 2
( ) ( ) 0
z z
S S S V
Eds E ds E ds S E E E dv
    
       
   
1 1 2 2 1 1 2
1 2
( ) 0
i
x x i
l l
B
Edl E dl E dl l E E Eds ds
t

         
    

Gauss’s theorem
Stokes's theorem
Stokes's theorem
x
y
z dl
0
s 
0
s 
0
V  
Surface plasmons, A. Kolomenski, S. Peng,
9/24/2012
Relations in an E-M wave
 the curl operator
ˆ ˆ ˆ
x y z
x y z
A
x y z
A A A
   
 
  
( ) ( ) ( )
x y z x
Exp ikr Exp ik x ik y ik z ik Exp ikr
x x
 
   
 
[ ]
i k E i B

  
[ / ]
i k B i E
 
   
1 1
[ / ] ( )
z y
x x y z z y
k B
E k B k B k B

  
      
Surface plasmons, A. Kolomenski, S. Peng,
9/24/2012
Derivation of the dispersion equation
x
x E
E 2
1 
From the other condition =>
1 2
1 2
1 2
z z
y y
k k
H H
 

y
y H
H 2
1 
One boundary condition is
Therefore we have a system of 2 homogeneous equations and
a nontrivial solution is possible only if the determinant of this
system is equal to 0.
0
1
1
2
2
1
1
2
2
1
1
0 









z
z
z
z
k
k
k
k
D
0
0
2
2
2
1
1
1
2
1




y
z
y
z
y
y
H
k
H
k
H
H


Assume no external currents or free charges, magnetic permeability.
1 2 0
  
 
Surface plasmons, A. Kolomenski, S. Peng,
9/24/2012
Surface plasmon dispersion equation
1 2
1 2
z z
k k
 

)
(
)
( 2
1
2
2
2
2
2
2
2
2
2
1 k
c
k
c


 





We square both sides
2
1
2
1
2
2
2







c
k
We introduce , wavenumber of the surface plasmon, then we obtain
x
k
k 
2
2 2 2 2 2
2 1 2 1 1 2 2
( ) ( )
k
c

     
   
Surface plasmons, A. Kolomenski, S. Peng, 9/24/2012
Dispersion equation and properties of
surface plasmons
We would like to have a solution which is localized to the surface, i.e. it
decays with distance from on both sides from the interface.
0
]
[ 1 
 
 

z
z z
ik
Exp
0
]
[ 2 
 
 

z
z z
ik
Exp
This is possible, if
0
, 1
1
2
2
2
2
1 



 q
iq
k
c
k z 

0
, 2
2
2
1
2
2
2 


 q
iq
k
c
k z 

1 1 1
[ ] [ ( )] [ ] 0
z
z
Exp ik z Exp i iq z Exp q z

   

Indeed, then we have waves localized near the interface
2 1 1
[ ] [ ( )] [ ] 0
z
z
Exp ik z Exp i iq z Exp q z

   

Surface plasmons, A. Kolomenski, S. Peng, 9/24/2012
Dispersion equation analysis
1 2
1 2
z z
k k
 
  1 2
1 2
1 2
, 0
q q
and q q
 

 
This is only possible, if 1 2
0 0
or
 
  
2
1
2
1
2
2
2







c
k
If we look again at the dispersion equation
,k must be real (propagating wave!), then with
negative, we see that the condition for surface waves to exist is
1 2
0 0
or
 
 
1 2
0 0 ( )
and dielectric
 
 
1 2 1 2
0, . .
i e
   
   
Surface plasmons, A. Kolomenski, S. Peng, 9/24/2012
Relation of Plasmonics to SOME other fields
Metamaterials
Plasmonics
Nanotechnology
Optics
Biotechnology
SERS
High harmonics generator
coherent control
imaging
Electronics
Opto-electronics
molecular interactions
nano-sensors
proteomics
nanostructures
nanophotonics
nanoantennas
The Growth of the Field of Surface Plasmons
PIETER G. KIK and MARK L. BRONGERSMA SURFACE PLASMON NANOPHOTONICS, (2007)
illustrated by the
number of scientific
articles published
annually containing
the phrase “surface
plasmon” in either
the title or abstract
Surface plasmons (or surface plasmon
polaritons), Part 2: outline
1. Why SP named so?
2. Excitation of SPs: with a prism or a
grating
3. Spectroscopy of SPs in nanostructures:
(a) Nanoparticles
(b) Gratings, nanostructures
4. Applications: sensors, nanophotonics,
surface enhanced Raman spectroscopy
(SERS)
Surface Plasmons, Part 2, A. Kolomenski, 9/26/2012
Dielectric constant of a metal, Drude model
2
0
2
0
0 0 2
0 0
2
0 0
0 2 2
1
, ~ ( )
~ ( )
e
e
r
N
i
i e e
d x
m eE E E exp i t
dt
eE
then x x exp i t x
m
D E P E
eE Ne E
P ex Nex
m m



  
 

 
 
  
     

Consequently,
2 2
2 2
0
0
1 1 ,where
p
r p
e
e
Ne Ne
m
m

 

  
    
plasmon frequency
For free electrons!
Surface Plasmons, Part 2, A. Kolomenski, 9/26/2012
Remarks to Drude’s formula
2
2 *
0
,where
p
b p
e
Ne
m

  
 
  
Bound electrons should be taken into account, then 1-> ,
b

which takes into account the contribution of bound electrons.
Also the mass of electron should be replaced with
the effective mass of electron in the metal, .
*
e
m
For g << p:
Influence of attenuation
t
i
eE
dt
dx
m
dt
x
d
m 
g e
0
2
2


2 2
2 3
' 1 , "
p p
 
  g
 
  
Plasmons correspond to , these are eigen (free)
oscillations of the electronic plasma.
0
 
Surface Plasmons, Part 2,
A. Kolomenski, 9/26/2012
Electrons oscillating in the SP field
metal
dielectric
 
 
   
Interface
There is a longitudinal component in the electric field of SP, because E-M field is
coupled to oscillations of the electronic density (plasmonic oscillations).
This is why tp exite SPs one needs a p-polarization of the incident light.
Surface Plasmons, Part 2, A. Kolomenski, 9/26/2012
Graphing dispersion equation of SPs
,k
,

2
1 2 *
0
,where
p
b p
e
Ne
m

  
 
  
1/2
1 2
1 2
ck
 

 
 

  
 
(
Light line: ck
 
For excitation of SPs we need
to slow down light!
Surface Plasmons, Part 2, A. Kolomenski, 9/26/2012
Surface plasmon excitation:
Coupling of light to SPs with a prism
metal film (n1)
prism (n0)
sample (n2)
incident
laser
beam
reflected
beam
SPW
evanescent
wave
0: critical angle Optical arrangement used to
excite the surface-plasmon wave
based on the Kretschmann-
Raether configuration where a
thin metal film is sandwiched
between the prism and the
sample.
Surface Plasmons, Part 2, A. Kolomenski, 9/26/2012
E. Kretschmann, Z. Phys. 241, 313-324 (1971).
SPR curves for different wavelengths
Gold film (d=47nm) contacting water
50 60 70 80 90
0.0
0.2
0.4
0.6
0.8
1.0 l=1230 nm
l=633 nm
l=490 nm
REFLECTION
COEFFICIENT
INCIDENCE ANGLE (deg)
Surface Plasmons, Part 2, A. Kolomenski, 9/26/2012
Conditions for the resonance
excitation of SPs
Conditions for the resonance excitation of SPs:
a photon is converted into a surface plasmon.
General laws must be observed:
(1) Energy conservation,
(2) Momentum conservation,
( / 2 )(2 )
light light SP light SP
h h h h
      
    
, ,
x light SP x light SP
hk hk k k
  
x
k
z
k
z
k is changing x
k is not changing
SP x
k k

Surface Plasmons, Part 2, A. Kolomenski, 9/26/2012
Momentum conservation
)
(
sin
2
l

l

sp
k
n

Energy conservation
SP
Light 
 
Conditions for the Surface Plasmon Resonance (SPR): phase matching!!!
k
ck

SP
)
sin
/( 2 

ck
ck / 2
0
ksp
p
Resonance excitation with a prism
Surface Plasmons, Part 2, A. Kolomenski, 9/26/2012
Questions?
Surface Plasmon Part 3
Graphing dispersion equation of SPs
2
1 2
2
*
0
,
where
p
b
p
e
Ne
m

 



 

1/2 1/2
2
2
2
2
1/2 2
2
1 2
2 2
1 2
2 2
2 2
,
p
p b
b
p p
b b
ck ck k
c

  
  
  


   
   
 
   
 
   
 

   
   
 
  
   
  
 
   
   
 
   
  
   
   
   
   
   
,k
,

(
Light line: 2
/
ck
 

For excitation of SPs we need
to slow down light!
Surface Plasmons, Part 2, A. Kolomenski, 9/26/2012
2
2 2
2 1/2
2
, 0; . 1
2
( )
p p p
b m b m
b
k when then For we have
  
     
  
 
 
          
  
 
m
 

The influence of the thickness of the gold film
on the properties of SPs
40 42 44 46 48 50
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Reflectivity
Incidence angle (deg)
10 nm
20 nm
50 nm
80 nm
120 nm
(a)
20 40 60 80 100 120 140
0
20
40
60
80
100
120
140
160
180 (b)
l=633 nm
l=805 nm
Attenuation
length
(

m)
Film thickness (nm)
(a) SP resonance curves at 633 nm for different film thicknesses.
(b) The dependence of the attenuation length on the film thickness for 633 nm and
805 nm. The dielectric constants published by Palik are used.
Gold
Glass
Air
-1
res
0
0 )
cos
( 

 D
 k
L sp
Surface Plasmons, Part 2, A. Kolomenski, 9/26/2012
Approximation of small losses
R
k k k
i i rad
p p i i rad
 

    
1
4 1 2
2
1 2
2
( )
[ ( )] ( )
  
D   
k n
p p
 ( / )
2 0
 l the metal film is infinitely thick
np r r r r
 
[ / ( )] /
   
1 2 1 2
1 2
Dkp describes the correction due to finite thickness
i1 2
, internal losses in the film and in the medium
rad radiative loss
Surface Plasmons, Part 2, A. Kolomenski, 9/26/2012
A. Kolomenski et al., Applied Optics, Vol. 48, 5683-5691 (2009)
05SurfacePlasmons.ppt
Examples: changes in the flow cell, bio-
molecular binding reactions
B
0 10 20 30 40 50 60
250
300
350
400
450
500
550
B
A
HRP
B
B
NHS/EDC
SPR
angle
(pixels) Time (min)
Example: binding of monoclonal antibody to
horseradish peroxidase protein
0.30
0.35
0.40
0.45
0.50
70.50 70.75 71.00 71.25 71.50
INCIDENCE ANGLE (deg)
C=0.82%
C=0%
0.64 deg
Applied this sensing technique to myofibers and tubulin molecule.
A. A. Kolomenskii, P. D. Gershon, and H. A. Schuessler, Applied Optics 36, 6539-6547 (1997).
Sensitivity and detection limit
(relationships between different quantities)
angular resolution D-4deg=2 RU
changes of the refractive index Dn-6
average thickness of the protein layer Dd=0.03 Å
surface concentration Dd=3 pg/mm2
with mprotein=24 Da surface concentration of molecules ns=1010 cm-2
A. A. Kolomenskii, P. D. Gershon, and H. A. Schuessler, Applied Optics 36, 6539-6547 (1997).
600 800 1000 1200 1400 1600 1800 2000 2200 2400
1
10
100
1000
exact,  from [1]
approximate,  from [1]
exact,  from [2]
exact,  from [3]
Attenuation
length
(

m)
Wavelength (nm)
Au
600 800 1000 1200 1400 1600 1800 2000 2200 2400
1
10
100
1000
exact,  from [1]
approximate,  from [1]
exact,  from [2]
exact,  from [3]
Attenuation
length
(

m)
Wavelength (nm)
Ag
1. American Institute of Physics Handbook, D. E. Gray, ed. (McGraw-Hill, 1972), p.
105.
2. U. Schröder, Surf. Sci. 102, 118-130 (1981).
3. Handbook of Optical Constants of Solids, E.D. Palik, ed. (Academic1985).
Attenuation lengths of SPs for gold and silver films in
contact with air, calculated for a broad spectral range
Surface Plasmons, Part 2, A. Kolomenski, 9/26/2012
A. Kolomenski et al., Applied Optics, Vol. 48, 5683-5691 (2009)
SPs:
dielectric
2 

Z
E
1  metal
)
|
k
exp(|
~ 1z z
~ exp( | | )
 k2z z
2
1
)
Re( 
 

0
1
frequency;
plasmon
,
2
2
1
:
electrons
free
of
ion
Approximat
2
1
2
1
2
2
2
with
wave
g
Propagatin
p
< 

















p
c
x
k
Condition of existence:
•Spatially localized to the surface E-M wave
•Oscillations of the electronic density.
•Have E -longitudinal component
•Are excited with p-polarized light and the local
field can significantly exceed the field in the
exciting beam.
e
p
m
ne
0
2

 
Summary of surface plasmons
b

Surface Plasmons, Part 2, A. Kolomenski, 9/26/2012
42 43 44 45 46
0
10
20
30
40
50
60
70
80
90
100
110
633nm
633nm with1,eff.
805nm
805nm with1,eff.
|t
012
(

)|
2
Angle  (deg.)
Dependence of the near field intensity enhancement factor on the back side
of the gold film vs. the angle for two wavelengths 633 nm and 805 nm
Surface Plasmons, Part 2, A. Kolomenski, 9/26/2012
A. Kolomenski et al., Applied Optics, Vol. 48, 5683-5691 (2009)
SP resonance: coupling with a grating
(conservation of momentum)
ki
θ
ki sin(θ)
kg
kSP
kSP = ki sin(θ) - kg
ki θ
ki sin(θ) kg
kSP
kSP = ki sin(θ) + kg
+1 order coupling -1 order coupling
grating
Surface Plasmons, Part 2, A. Kolomenski, 9/26/2012
Conditions for the resonance excitation of SPs
Light line
( / )
c n k
 
0 frequency of the source
 
required
additional
momentum
Light line, suited
for resonance excitation
,k
,

SPs are slower than light, and therefore for the same frequency their momentum is larger.
To enable the resonance excitation additional momentum must be provided.
SP dispersion
curve
The crossing of the SP curve and the light
line means resonance excitation for
desired frequency 0

Surface Plasmons, Part 2, A. Kolomenski, 9/26/2012
λ
θ
Schematic of experiment on spectroscopy of SP
modes in nanostructures :transmission
measurements in the far field
Charge
Coupled
Device
(CCD)
Sample
(nanostructure)
Laser
beam
Grating
This setup maps intensity distribution
over angle and wavelength and thus reveals
SP modes that affect transmission.
Surface Plasmons, Part 2, A. Kolomenski, 9/26/2012
Study of the Interaction of 7 fs Rainbow Laser Pulses with Gold
Nanostructure Grating: Coupling to Surface Plasmons
Wavelength (nm)
Intensity
Angle of
Incidence
650
800
-5°
0°
5°
Transmission dependence
The valley area (x-structure) the laser light is
efficiently converted into SPs, about 80% .
AFM image of the nanostructure:
A. Kolomenskii et al., Optics Express, 19, 6587-6598 (2011). Surface Plasmons, Part 2, A. Kolomenski, 9/26/2012
Avoided crossing
We consider two counter-propagating SP waves with complex
amplitudes a and b; the total fields can be presented as linear
combinations of these two individual waves.
The amplitudes a(z) and b(z) satisfy:
b
iK
a
i
a
dz
d
ab
a 
 
b
i
a
iK
b
dz
d
b
ba 


where and are the coupling coefficients.
ba
K
ab
K
Experimental and calculational results:
interaction of SP modes and spectral gap
SPs travels in two opposite directions. The intersection of the straight line with
the dispersion curve gives the point of excitation. Two counter propagating waves
interact with each other when they are scattered on 2Kg. K=wavenumber of
grating.k=projection of light on plane of propagation
Kg
-Kg
2 107 1 107 0 1 107 2 107
5.0 1014
1.0 1015
1.5 1015
2.0 1015
2.5 1015
3.0 1015
3.5 1015
k


sin
)
(
n
k
k
c g




sin
)
(
n
k
k
c g



k

sp

sp

-6 -4 -2 0 2 4 6
650
700
750
800
Theory
Experiment
Wavelength
(nm)
Angle (deg.)
-1 Order
1 Order
Kg
Avoided crossing
By substituting: z
i
e
B
A
z
b
z
a 













)
(
)
(
We obtain: , I – unit matrix,
0
)
( 







B
A
I
M  0













 
B
A
K
K b
ab
ba
a




0
)
)(
(
det 




 ba
ab
b
a K
K
I
M 

















b
a
iM
b
a
dz
d







b
ab
ba
a K
K
M


The coupled-mode equations can be expressed in matrix form:
The two eigenvalues for are:

q
b
a



2



Where:
ba
abK
K
q 
D
 2
2
2
ab
K
q 
D

ab
b
a
K


2


q can be purely imaginary if
Spectral gap!
2
b
a 
 

D
4 2 2 4
720
740
760
Questions?
Surface Plasmons Part 4
Optical detection of
acoustic waves with
surface plasmons
For fast and sensitive detection of acoustic waves the surface
plasmon resonance (SPR) can be used, which responds to
variations of dielectric properties in close proximity to a metal
film supporting surface plasmon waves. When an acoustic wave
is incident onto a receiving plate positioned within the
penetration depth of the surface plasmons, it creates
displacements of the surface of the plate and thus modulates
the dielectric properties, affecting SPR and the reflection of the
incident light. Here we study characteristics and determine the
optimal configuration of such an acousto-optical transducer with
surface plasmons for efficient conversion of an acoustic signal
into an optical one. We simulate the properties of the
transducer and present estimates showing that it can have a
large frequency bandwidth and good sensitivity.
Abstract
Fig. 1. Schematic of the acousto-optical sensor with surface plasmons. The
arrangement consists of a glass prism (PR), the adjacent gold film (GF), a spacer
(SPA) and a receiving plate (RP). The field of the excited surface plasmon (SP)
decays away from the gold film. The acoustic wave (AW) induces displacements of
the RP face close to the GF, which results in a quantifiable modification of the SPR
curve featuring the resonance by a dip in the dependence of the intensity on the
incidence angle . The inset on the right shows a schematic of layers with
notations for the dielectric constants and thicknesses of the layers.
Changes of the SPR curve due to
RP displacement
•
Detection limit for the RP
displacement
Detection of ΔRmin change
Detection of ΔR change at the steep slope
10 15 20 25 30 35 40 45 50
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
Merit
factor,
|S

|x10
3
nm
-1
Gold film thickness (nm)
(a)
1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
2.45
2.50
2.55
2.60
2.65
2.70
Merit
factor,
|S
1
|x10
3
nm
-1
Refractive index
(c)
Fig. 3 The merit factor |S1| for λ=800nm: (a). The
dependence of the (n4,d3)- optimized merit factor |S1| on
the gold film thickness calculated for λ=800nm. (b).
Density plot in false colors showing the merit factor |S1|
for the optimal gold film thickness d2=16nm at different
values of the gap d3 and the refractive index n4; the
overall maximum of |S1|=2.64x10-3nm-1 is obtained at
n4=1.45 and the gap value of d3=0.48μm and is shown by
a large white dot. Note that the sign of S1 is negative (the
value of Rmin decreases for the positive displacement Δζ)
above d3=0.395μm, at which value S1 is close to zero. (c).
The dependence of the d3- optimized merit factor |S1| for
different values of the refractive index n4.
Merit factor S1 for 800nm
26 28 30 32 34 36 38
1.05
1.10
1.15
1.20
Merit
Factor,
|S
2
|x10
3
nm
-1
Gold film thickness (nm)
(a)
1.2 1.3 1.4 1.5 1.6 1.7 1.8
0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25
Merit
factor,
|S

|x10
3
nm
-1
Refractive index
(c)
Fig. 6. The merit factor |S2| for λ=633nm: (a). The
dependence of the (n4,d3)- optimized merit factor
|S2| on the gold film thickness. (b). Density plot in
false colors showing the merit factor |S2| for the
optimal gold film thickness d2=29nm at different
values of the gap d3 and the refractive index n4; the
overall maximum of |S2|=1.19x10-3nm-1 is obtained
at n4=1.41 and the gap value of d3=0.61μm and is
shown by a large white dot. (c). The dependence of
the d3-optimized merit factor |S2| for different
values of the refractive index n4.
Merit factor S2 for 633nm
λ(nm) ParametersforS1 response ParametersforS2 response
800
S1 = −2.64 × 10−3
𝑛𝑚−1
(Fig.3)
S2 = −1.02 × 10−3
𝑛𝑚−1
(Fig.5)
d2(nm) n4 d3(nm) d2(nm) n4 d3(nm)
16 1.45 0.48 25 1.38 0.87
633
S1 = 3.56 × 10−3
𝑛𝑚−1
(Fig.4)
S2 = −1.19 × 10−3
𝑛𝑚−1
(Fig.6)
d2(nm) n4 d3(nm) d2(nm) n4 d3(nm)
22 1.52 0.25 29 1.41 0.61
Table 1. Parameters for realization of the transducer at optical wavelength of
800nm and 633nm with maximum |S1| and |S2| values corresponding to plots
of Figs. 3-6.
Conclusion:
Merit factors of about 10-3nm-1 can be obtained
(a) (c)
(b) (d)
0.010 0.005 0.005 0.010 0.015 0.020
m
0.015
0.010
0.005
0.005
R
0.15 0.10 0.05 0.05 0.10 0.15 0.20
m
0.4
0.2
0.2
R2
0.03 0.02 0.01 0.01 0.02 0.03
m
0.05
0.05
R
0.2 0.1 0.1
m
0.4
0.2
0.2
0.4
0.6
R2
Fig. 7. Variation of the reflection coefficient ΔR in response to acoustic
wave with displacements Δζ of different magnitudes is presented for
optimal parameters of Figs. (3-6) shown in Table 1: (a) and (b) for ΔR
response and the wavelengths of 800nm (Fig. 3) and 633nm (Fig. 4)
respectively; (c) and (d) for ΔR2 response and the wavelengths of
800nm (Fig. 5) and 633nm (Fig. 6) respectively. The solid blue lines
show the responses ΔR, ΔR2 and the dotted red lines depict the linear
fits; the vertical dashed lines show the limits within which the
response deviates from the linear dependence by less than 10%.
(a) (c)
(b) (d)
0.2 0.1 0.1
m
0.4
0.3
0.2
0.1
0.1
0.2
0.3
R
0.2 0.1 0.1 0.2
m
0.3
0.2
0.1
0.1
0.2
0.3
0.4
R2
0.2 0.1 0.1 0.2
m
0.4
0.2
0.2
0.4
R
0.3 0.2 0.1 0.1 0.2 0.3
m
0.6
0.4
0.2
0.2
0.4
0.6
R2
Fig. 8. Realizations of the linearity ranges of the sensor response to the
displacement Δζ for parameters presented in Table 2: (a) and (b) for ΔR
and the optical wavelengths l=800nm, and l=633nm respectively; (c)
and (d) for ΔR2 and the optical wavelengths l=800nm, and l=633nm
respectively. The solid blue lines show the response ΔR for (a,b) and ΔR2
for (c,d), the dotted red lines depict the fitted linear dependences; the
vertical dashed lines show the limits within which the response
deviates from linear dependences by less than 10%.
Quasi-linear response dependences
ΔRmin
l=800nm
l=633nm
ΔR2
Estimates
•
Questions?
Surface Plasmons Part 5
• Surface plasmon effects on nano particles
Mie theory and dipole approximation
)
(
)]
2
)
(
[
)
(
9
)
(
2
2
2
/
3














i
d
r
i
m
ext V
c
For small nanoparticles (R<<wavelength, or roughly 2R< wavelenght/10):
dipole approximation
where V is the particle volume,  frequency light, εm and
are the dielectric functions of the surrounding medium and the particle
material.
When is small or varies slowly, the resonance takes place
at
)
(
2 

2
2
1
,
0
)
2
(
)
(






p
r
d
r 




d
p





2
1
max
0
)
(
)
(
)
( 

 




 i
i
r
t=0 t=T/2
Electronic cluster
Ionic cluster
Electric field
Light Electronic plasma
oscillations
=>
Surface Plasmons, Part 2, A. Kolomenski, 9/26/2012
Extinction spectra of Ag n-particles
in solution
350 375 400 425 450 475
0.0
0.2
0.4
0.6
0.8
1.0
1.2
Ag 27 nm particles
Ag 48 nm particles
Extinction
(a.u.)
Wavelength, nm
The oscillations of a n-particle, induced by a pump pulse, modulate (displace) the plasmon
absorption band. For efficient detection the probe wavelength was selected at the steeper
portion of the slope of this band.
Surface Plasmons, Part 2, A. Kolomenski, 9/26/2012
S. N. Jerebtsov et al. Phys. Rev. B Vol. 76, 184301 (2007).
Bowtie nano-antenna and measured
intensity enhancement
Intensity enhancement vs wavelength
3D finite difference time domain (FDTD)
simulations
Fabricated by Electron Beam Lithography
(EBL) bowtie antennas. Indium tin oxide
substrate. Gap was varied, thickness 20 nm.
Kino et al. In: Surface Plasmon nanophotonics, p.125 (2007).
Surface Plasmons, Part 2, A. Kolomenski, 9/26/2012
Experimental setup for study of “hot spots” for SERS
Raman signals from individual Ag n-particles
Raman microscope with sensitive CCD cameras for imaging the sample in scattering
and using Raman signal. Notch filters were used to suppress the excitation light. Low
concentration of n-particles needed to separate individual particles.
Futamata et al. Vibrational Spectroscopy 35, 121-129 (2004).
Raman spectroscopy
Photon scattering on molecules
Elastic or
Rayleigh scattering
Inelastic or
Raman scattering
h
h h( - ) h( + )
Stocks Anti-Stocks
Raman scattering increases when h produces electronic transition
Surface Plasmons, Part 2, A. Kolomenski, 9/26/2012
Surface Enhanced Raman Spectroscopy (SERS) of DNA bases
Spectra of
individual
n-particles
Stongest enhancement ~1010 from pairs
of particles with axis parallel to polarization
Characteristic stretching modes in heterocycles suited
for DNA sequencing :
adenine 718 and 893 cm-1;guanine 641cm-1;
cytosine 791 cm-1; thymine 616, 743 and 807 cm-1.
Time evolution (whole scale 1 s) demonstrates
Raman peaks and blinking effect, known
for single molecule detection.
Futamata et al. Vibrational Spectroscopy 35, 121-129 (2004).

More Related Content

PDF
Spr in a thin metal film
PPTX
Plasmonic1 new
PDF
Nanophotonics Plasmonics_Lecture-09 deta
PPTX
PLASMONS: A modern form of super particle waves
PPT
PDF
1 s2.0-s2352864817301992-main
PDF
Theory of surface plasmon polaritons
PDF
Plasmon-Polaritons And Their Use In Optical Sub-Wavelength. Event Of Copper A...
Spr in a thin metal film
Plasmonic1 new
Nanophotonics Plasmonics_Lecture-09 deta
PLASMONS: A modern form of super particle waves
1 s2.0-s2352864817301992-main
Theory of surface plasmon polaritons
Plasmon-Polaritons And Their Use In Optical Sub-Wavelength. Event Of Copper A...

Similar to 05SurfacePlasmons.ppt (20)

PDF
Plasmon-Polaritons And Their Use In Optical Sub-Wavelength. Event Of Copper A...
PDF
Plasmon-Polaritons And Their Use In Optical Sub-Wavelength. Event Of Copper A...
PDF
PEER_stage2_10.1088_0022-3727_44_28_283001.pdf
PPTX
Plasmonics
PDF
boudreaux_appended_thesis101104
PPT
Fall09 Term
PDF
Computational electromagnetics in plasmonic nanostructures
PPTX
Plasmonics
PPTX
Plasmonics... A ladder to futuristic technology
PDF
Mie theory of light scattering
PPTX
Plasmonic nanoantennas
PDF
Plasmonic Chain waveguides
PPT
Plasmonics
PPT
UNIT 3_Metallic Nanoparticle property.ppt
PDF
Studies on Metal-Dielectric Plasmonic.PDF
PPTX
High impedance surface_his_ris_amc_nurmerical_analytical_analysis
PDF
Plasmonics Fundamentals.pdf
PPTX
dimer optical properties
PPTX
optical properties of dimer of plasmonic nanosphere
PPTX
dimer optical properties
Plasmon-Polaritons And Their Use In Optical Sub-Wavelength. Event Of Copper A...
Plasmon-Polaritons And Their Use In Optical Sub-Wavelength. Event Of Copper A...
PEER_stage2_10.1088_0022-3727_44_28_283001.pdf
Plasmonics
boudreaux_appended_thesis101104
Fall09 Term
Computational electromagnetics in plasmonic nanostructures
Plasmonics
Plasmonics... A ladder to futuristic technology
Mie theory of light scattering
Plasmonic nanoantennas
Plasmonic Chain waveguides
Plasmonics
UNIT 3_Metallic Nanoparticle property.ppt
Studies on Metal-Dielectric Plasmonic.PDF
High impedance surface_his_ris_amc_nurmerical_analytical_analysis
Plasmonics Fundamentals.pdf
dimer optical properties
optical properties of dimer of plasmonic nanosphere
dimer optical properties
Ad

More from AmnaIqbal93 (6)

PPT
pesticides.ppt
PPT
chemistry.ppt
PPT
resonance.ppt
PPTX
Seunguk-Lee-converted.pptx
PPT
module2.ppt
PPT
Chapter 22.ppt
pesticides.ppt
chemistry.ppt
resonance.ppt
Seunguk-Lee-converted.pptx
module2.ppt
Chapter 22.ppt
Ad

Recently uploaded (20)

PPTX
human mycosis Human fungal infections are called human mycosis..pptx
PDF
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PPTX
202450812 BayCHI UCSC-SV 20250812 v17.pptx
PDF
Classroom Observation Tools for Teachers
PPTX
GDM (1) (1).pptx small presentation for students
PDF
O5-L3 Freight Transport Ops (International) V1.pdf
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PPTX
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
PPTX
Pharma ospi slides which help in ospi learning
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PDF
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
PDF
Microbial disease of the cardiovascular and lymphatic systems
PDF
102 student loan defaulters named and shamed – Is someone you know on the list?
PDF
Complications of Minimal Access Surgery at WLH
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PDF
FourierSeries-QuestionsWithAnswers(Part-A).pdf
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
human mycosis Human fungal infections are called human mycosis..pptx
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
Supply Chain Operations Speaking Notes -ICLT Program
202450812 BayCHI UCSC-SV 20250812 v17.pptx
Classroom Observation Tools for Teachers
GDM (1) (1).pptx small presentation for students
O5-L3 Freight Transport Ops (International) V1.pdf
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
Pharma ospi slides which help in ospi learning
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
Microbial disease of the cardiovascular and lymphatic systems
102 student loan defaulters named and shamed – Is someone you know on the list?
Complications of Minimal Access Surgery at WLH
Module 4: Burden of Disease Tutorial Slides S2 2025
FourierSeries-QuestionsWithAnswers(Part-A).pdf
Final Presentation General Medicine 03-08-2024.pptx
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
2.FourierTransform-ShortQuestionswithAnswers.pdf

05SurfacePlasmons.ppt

  • 2. Surface plasmons: outline 1. Time-line of major discoveries 2. Surface plasmons - surface mode of electromagnetic waves on a metal surface 3. Spectroscopy of SPs in nanostructures: (a) Nanoparticles (b) Gratings, nanostructures 4. Applications: sensors, nanophotonics, surface enhanced Raman spectroscopy (SERS) Surface plasmons, A. Kolomenski, S. Peng, 9/24/2012
  • 3. Time line Excitation of SPs with a prism: Raether, Kretschmann 1941 1907 Rayleigh’s explanation (angle- diffraction orders) 1993- Fano: role of surface waves, surface plasmons 1968 1991 1902 Wood anomalies: reflection on gratings (two types) Nanoplasmonics, extraordinary transmission, etc. First biosensor on SPs SPs allow to localize and guide EM waves!!! 1974 Surface Enhaced Raman Spectroscopy Surface plasmons, A. Kolomenski, S. Peng, 9/24/2012
  • 4. Maxwell’s equations (SI units) in a material, differential form density of charges density of current f  f J Surface plasmons, A. Kolomenski, S. Peng, 9/24/2012
  • 5. Wave equation 2 2 ( ) ( ) B B B B                2 2 2 2 1 1 ( ) ( ) ( ) B E E B t t t t c c t                         2 2 2 2 1 0 B B c t        2 2 2 2 1 0 E E c t        0 Double vector product rule is used a x b x c = (ac) b - (ab) c Surface plasmons, A. Kolomenski, S. Peng, 9/24/2012
  • 6. Plane waves 0 [ ( )] B B Exp i k r t         )] ( [ 0 t r k i Exp E E         B i k B       E i k E       is parallel to is parallel to B E  Thus, we seek the solutions of the form: From Maxwell’s equations one can see that k  B  E  Surface plasmons, A. Kolomenski, S. Peng, 9/24/2012
  • 7. Incident light Simple system of a metal bordering a dielectric with incident plane wave Dielectric, refractive index is dielectric permittivity Metal (gold) 2 n   2  1 r im i      Reflected light Transmitted light Surface plasmons, A. Kolomenski, S. Peng, 9/24/2012
  • 8. Waves at the interface Assume that incident light is p-polarized, which means that the E-vector is parallel to the incidence plane )] ( [ ) , 0 , ( 1 1 1 1 1 t z k x k i Exp E E E z x z x      1 1 1 1 (0, ,0) [ ( )] y x z B B Exp i k x k z t      Then the vector of the magnetic field is perpendicular to the incidence plane and has the form In medium 1, z<0, 2 1 2 2 1 2 1 c k k z x    In medium 2, z>0, 2 2 2 2 2 2 2 c k k z x    2 2 2 2 (0, ,0) [ ( )] y x z B B Exp i k x k z t      )] ( [ ) , 0 , ( 2 2 2 2 2 t z k x k i Exp E E E z x z x      x y z 1 E  x 1x E 1z E Surface plasmons, A. Kolomenski, S. Peng, 9/24/2012
  • 9. Boundary conditions x x E E 2 1  1 1 2 2 1 2 / / , . . y y y y B B i e H H     1 1 2 2 z z E E    1 1 1 2 2 2 1 1 1 2 2 1 2 ( / ) / / ( / / ) ( / ) 0 t y y t l l E B dl B dl B dl l B B B ds ds t                        1 1 2 1 1 1 2 2 1 2 ( ) ( ) 0 z z S S S V Eds E ds E ds S E E E dv                  1 1 2 2 1 1 2 1 2 ( ) 0 i x x i l l B Edl E dl E dl l E E Eds ds t                  Gauss’s theorem Stokes's theorem Stokes's theorem x y z dl 0 s  0 s  0 V   Surface plasmons, A. Kolomenski, S. Peng, 9/24/2012
  • 10. Relations in an E-M wave  the curl operator ˆ ˆ ˆ x y z x y z A x y z A A A          ( ) ( ) ( ) x y z x Exp ikr Exp ik x ik y ik z ik Exp ikr x x         [ ] i k E i B     [ / ] i k B i E       1 1 [ / ] ( ) z y x x y z z y k B E k B k B k B            Surface plasmons, A. Kolomenski, S. Peng, 9/24/2012
  • 11. Derivation of the dispersion equation x x E E 2 1  From the other condition => 1 2 1 2 1 2 z z y y k k H H    y y H H 2 1  One boundary condition is Therefore we have a system of 2 homogeneous equations and a nontrivial solution is possible only if the determinant of this system is equal to 0. 0 1 1 2 2 1 1 2 2 1 1 0           z z z z k k k k D 0 0 2 2 2 1 1 1 2 1     y z y z y y H k H k H H   Assume no external currents or free charges, magnetic permeability. 1 2 0      Surface plasmons, A. Kolomenski, S. Peng, 9/24/2012
  • 12. Surface plasmon dispersion equation 1 2 1 2 z z k k    ) ( ) ( 2 1 2 2 2 2 2 2 2 2 2 1 k c k c          We square both sides 2 1 2 1 2 2 2        c k We introduce , wavenumber of the surface plasmon, then we obtain x k k  2 2 2 2 2 2 2 1 2 1 1 2 2 ( ) ( ) k c            Surface plasmons, A. Kolomenski, S. Peng, 9/24/2012
  • 13. Dispersion equation and properties of surface plasmons We would like to have a solution which is localized to the surface, i.e. it decays with distance from on both sides from the interface. 0 ] [ 1       z z z ik Exp 0 ] [ 2       z z z ik Exp This is possible, if 0 , 1 1 2 2 2 2 1      q iq k c k z   0 , 2 2 2 1 2 2 2     q iq k c k z   1 1 1 [ ] [ ( )] [ ] 0 z z Exp ik z Exp i iq z Exp q z       Indeed, then we have waves localized near the interface 2 1 1 [ ] [ ( )] [ ] 0 z z Exp ik z Exp i iq z Exp q z       Surface plasmons, A. Kolomenski, S. Peng, 9/24/2012
  • 14. Dispersion equation analysis 1 2 1 2 z z k k     1 2 1 2 1 2 , 0 q q and q q      This is only possible, if 1 2 0 0 or      2 1 2 1 2 2 2        c k If we look again at the dispersion equation ,k must be real (propagating wave!), then with negative, we see that the condition for surface waves to exist is 1 2 0 0 or     1 2 0 0 ( ) and dielectric     1 2 1 2 0, . . i e         Surface plasmons, A. Kolomenski, S. Peng, 9/24/2012
  • 15. Relation of Plasmonics to SOME other fields Metamaterials Plasmonics Nanotechnology Optics Biotechnology SERS High harmonics generator coherent control imaging Electronics Opto-electronics molecular interactions nano-sensors proteomics nanostructures nanophotonics nanoantennas
  • 16. The Growth of the Field of Surface Plasmons PIETER G. KIK and MARK L. BRONGERSMA SURFACE PLASMON NANOPHOTONICS, (2007) illustrated by the number of scientific articles published annually containing the phrase “surface plasmon” in either the title or abstract
  • 17. Surface plasmons (or surface plasmon polaritons), Part 2: outline 1. Why SP named so? 2. Excitation of SPs: with a prism or a grating 3. Spectroscopy of SPs in nanostructures: (a) Nanoparticles (b) Gratings, nanostructures 4. Applications: sensors, nanophotonics, surface enhanced Raman spectroscopy (SERS) Surface Plasmons, Part 2, A. Kolomenski, 9/26/2012
  • 18. Dielectric constant of a metal, Drude model 2 0 2 0 0 0 2 0 0 2 0 0 0 2 2 1 , ~ ( ) ~ ( ) e e r N i i e e d x m eE E E exp i t dt eE then x x exp i t x m D E P E eE Ne E P ex Nex m m                        Consequently, 2 2 2 2 0 0 1 1 ,where p r p e e Ne Ne m m             plasmon frequency For free electrons! Surface Plasmons, Part 2, A. Kolomenski, 9/26/2012
  • 19. Remarks to Drude’s formula 2 2 * 0 ,where p b p e Ne m          Bound electrons should be taken into account, then 1-> , b  which takes into account the contribution of bound electrons. Also the mass of electron should be replaced with the effective mass of electron in the metal, . * e m For g << p: Influence of attenuation t i eE dt dx m dt x d m  g e 0 2 2   2 2 2 3 ' 1 , " p p     g      Plasmons correspond to , these are eigen (free) oscillations of the electronic plasma. 0   Surface Plasmons, Part 2, A. Kolomenski, 9/26/2012
  • 20. Electrons oscillating in the SP field metal dielectric         Interface There is a longitudinal component in the electric field of SP, because E-M field is coupled to oscillations of the electronic density (plasmonic oscillations). This is why tp exite SPs one needs a p-polarization of the incident light. Surface Plasmons, Part 2, A. Kolomenski, 9/26/2012
  • 21. Graphing dispersion equation of SPs ,k ,  2 1 2 * 0 ,where p b p e Ne m          1/2 1 2 1 2 ck              ( Light line: ck   For excitation of SPs we need to slow down light! Surface Plasmons, Part 2, A. Kolomenski, 9/26/2012
  • 22. Surface plasmon excitation: Coupling of light to SPs with a prism metal film (n1) prism (n0) sample (n2) incident laser beam reflected beam SPW evanescent wave 0: critical angle Optical arrangement used to excite the surface-plasmon wave based on the Kretschmann- Raether configuration where a thin metal film is sandwiched between the prism and the sample. Surface Plasmons, Part 2, A. Kolomenski, 9/26/2012 E. Kretschmann, Z. Phys. 241, 313-324 (1971).
  • 23. SPR curves for different wavelengths Gold film (d=47nm) contacting water 50 60 70 80 90 0.0 0.2 0.4 0.6 0.8 1.0 l=1230 nm l=633 nm l=490 nm REFLECTION COEFFICIENT INCIDENCE ANGLE (deg) Surface Plasmons, Part 2, A. Kolomenski, 9/26/2012
  • 24. Conditions for the resonance excitation of SPs Conditions for the resonance excitation of SPs: a photon is converted into a surface plasmon. General laws must be observed: (1) Energy conservation, (2) Momentum conservation, ( / 2 )(2 ) light light SP light SP h h h h             , , x light SP x light SP hk hk k k    x k z k z k is changing x k is not changing SP x k k  Surface Plasmons, Part 2, A. Kolomenski, 9/26/2012
  • 25. Momentum conservation ) ( sin 2 l  l  sp k n  Energy conservation SP Light    Conditions for the Surface Plasmon Resonance (SPR): phase matching!!! k ck  SP ) sin /( 2   ck ck / 2 0 ksp p Resonance excitation with a prism Surface Plasmons, Part 2, A. Kolomenski, 9/26/2012
  • 28. Graphing dispersion equation of SPs 2 1 2 2 * 0 , where p b p e Ne m          1/2 1/2 2 2 2 2 1/2 2 2 1 2 2 2 1 2 2 2 2 2 , p p b b p p b b ck ck k c                                                                                               ,k ,  ( Light line: 2 / ck    For excitation of SPs we need to slow down light! Surface Plasmons, Part 2, A. Kolomenski, 9/26/2012 2 2 2 2 1/2 2 , 0; . 1 2 ( ) p p p b m b m b k when then For we have                                 m   
  • 29. The influence of the thickness of the gold film on the properties of SPs 40 42 44 46 48 50 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Reflectivity Incidence angle (deg) 10 nm 20 nm 50 nm 80 nm 120 nm (a) 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 160 180 (b) l=633 nm l=805 nm Attenuation length (  m) Film thickness (nm) (a) SP resonance curves at 633 nm for different film thicknesses. (b) The dependence of the attenuation length on the film thickness for 633 nm and 805 nm. The dielectric constants published by Palik are used. Gold Glass Air -1 res 0 0 ) cos (    D  k L sp Surface Plasmons, Part 2, A. Kolomenski, 9/26/2012
  • 30. Approximation of small losses R k k k i i rad p p i i rad         1 4 1 2 2 1 2 2 ( ) [ ( )] ( )    D    k n p p  ( / ) 2 0  l the metal film is infinitely thick np r r r r   [ / ( )] /     1 2 1 2 1 2 Dkp describes the correction due to finite thickness i1 2 , internal losses in the film and in the medium rad radiative loss Surface Plasmons, Part 2, A. Kolomenski, 9/26/2012 A. Kolomenski et al., Applied Optics, Vol. 48, 5683-5691 (2009)
  • 32. Examples: changes in the flow cell, bio- molecular binding reactions B 0 10 20 30 40 50 60 250 300 350 400 450 500 550 B A HRP B B NHS/EDC SPR angle (pixels) Time (min) Example: binding of monoclonal antibody to horseradish peroxidase protein 0.30 0.35 0.40 0.45 0.50 70.50 70.75 71.00 71.25 71.50 INCIDENCE ANGLE (deg) C=0.82% C=0% 0.64 deg Applied this sensing technique to myofibers and tubulin molecule. A. A. Kolomenskii, P. D. Gershon, and H. A. Schuessler, Applied Optics 36, 6539-6547 (1997).
  • 33. Sensitivity and detection limit (relationships between different quantities) angular resolution D-4deg=2 RU changes of the refractive index Dn-6 average thickness of the protein layer Dd=0.03 Å surface concentration Dd=3 pg/mm2 with mprotein=24 Da surface concentration of molecules ns=1010 cm-2 A. A. Kolomenskii, P. D. Gershon, and H. A. Schuessler, Applied Optics 36, 6539-6547 (1997).
  • 34. 600 800 1000 1200 1400 1600 1800 2000 2200 2400 1 10 100 1000 exact,  from [1] approximate,  from [1] exact,  from [2] exact,  from [3] Attenuation length (  m) Wavelength (nm) Au 600 800 1000 1200 1400 1600 1800 2000 2200 2400 1 10 100 1000 exact,  from [1] approximate,  from [1] exact,  from [2] exact,  from [3] Attenuation length (  m) Wavelength (nm) Ag 1. American Institute of Physics Handbook, D. E. Gray, ed. (McGraw-Hill, 1972), p. 105. 2. U. Schröder, Surf. Sci. 102, 118-130 (1981). 3. Handbook of Optical Constants of Solids, E.D. Palik, ed. (Academic1985). Attenuation lengths of SPs for gold and silver films in contact with air, calculated for a broad spectral range Surface Plasmons, Part 2, A. Kolomenski, 9/26/2012 A. Kolomenski et al., Applied Optics, Vol. 48, 5683-5691 (2009)
  • 35. SPs: dielectric 2   Z E 1  metal ) | k exp(| ~ 1z z ~ exp( | | )  k2z z 2 1 ) Re(     0 1 frequency; plasmon , 2 2 1 : electrons free of ion Approximat 2 1 2 1 2 2 2 with wave g Propagatin p <                   p c x k Condition of existence: •Spatially localized to the surface E-M wave •Oscillations of the electronic density. •Have E -longitudinal component •Are excited with p-polarized light and the local field can significantly exceed the field in the exciting beam. e p m ne 0 2    Summary of surface plasmons b  Surface Plasmons, Part 2, A. Kolomenski, 9/26/2012
  • 36. 42 43 44 45 46 0 10 20 30 40 50 60 70 80 90 100 110 633nm 633nm with1,eff. 805nm 805nm with1,eff. |t 012 (  )| 2 Angle  (deg.) Dependence of the near field intensity enhancement factor on the back side of the gold film vs. the angle for two wavelengths 633 nm and 805 nm Surface Plasmons, Part 2, A. Kolomenski, 9/26/2012 A. Kolomenski et al., Applied Optics, Vol. 48, 5683-5691 (2009)
  • 37. SP resonance: coupling with a grating (conservation of momentum) ki θ ki sin(θ) kg kSP kSP = ki sin(θ) - kg ki θ ki sin(θ) kg kSP kSP = ki sin(θ) + kg +1 order coupling -1 order coupling grating Surface Plasmons, Part 2, A. Kolomenski, 9/26/2012
  • 38. Conditions for the resonance excitation of SPs Light line ( / ) c n k   0 frequency of the source   required additional momentum Light line, suited for resonance excitation ,k ,  SPs are slower than light, and therefore for the same frequency their momentum is larger. To enable the resonance excitation additional momentum must be provided. SP dispersion curve The crossing of the SP curve and the light line means resonance excitation for desired frequency 0  Surface Plasmons, Part 2, A. Kolomenski, 9/26/2012
  • 39. λ θ Schematic of experiment on spectroscopy of SP modes in nanostructures :transmission measurements in the far field Charge Coupled Device (CCD) Sample (nanostructure) Laser beam Grating This setup maps intensity distribution over angle and wavelength and thus reveals SP modes that affect transmission. Surface Plasmons, Part 2, A. Kolomenski, 9/26/2012
  • 40. Study of the Interaction of 7 fs Rainbow Laser Pulses with Gold Nanostructure Grating: Coupling to Surface Plasmons Wavelength (nm) Intensity Angle of Incidence 650 800 -5° 0° 5° Transmission dependence The valley area (x-structure) the laser light is efficiently converted into SPs, about 80% . AFM image of the nanostructure: A. Kolomenskii et al., Optics Express, 19, 6587-6598 (2011). Surface Plasmons, Part 2, A. Kolomenski, 9/26/2012
  • 41. Avoided crossing We consider two counter-propagating SP waves with complex amplitudes a and b; the total fields can be presented as linear combinations of these two individual waves. The amplitudes a(z) and b(z) satisfy: b iK a i a dz d ab a    b i a iK b dz d b ba    where and are the coupling coefficients. ba K ab K
  • 42. Experimental and calculational results: interaction of SP modes and spectral gap SPs travels in two opposite directions. The intersection of the straight line with the dispersion curve gives the point of excitation. Two counter propagating waves interact with each other when they are scattered on 2Kg. K=wavenumber of grating.k=projection of light on plane of propagation Kg -Kg 2 107 1 107 0 1 107 2 107 5.0 1014 1.0 1015 1.5 1015 2.0 1015 2.5 1015 3.0 1015 3.5 1015 k   sin ) ( n k k c g     sin ) ( n k k c g    k  sp  sp  -6 -4 -2 0 2 4 6 650 700 750 800 Theory Experiment Wavelength (nm) Angle (deg.) -1 Order 1 Order Kg
  • 43. Avoided crossing By substituting: z i e B A z b z a               ) ( ) ( We obtain: , I – unit matrix, 0 ) (         B A I M  0                B A K K b ab ba a     0 ) )( ( det       ba ab b a K K I M                   b a iM b a dz d        b ab ba a K K M   The coupled-mode equations can be expressed in matrix form: The two eigenvalues for are:  q b a    2    Where: ba abK K q  D  2 2 2 ab K q  D  ab b a K   2   q can be purely imaginary if Spectral gap! 2 b a     D 4 2 2 4 720 740 760
  • 46. Optical detection of acoustic waves with surface plasmons
  • 47. For fast and sensitive detection of acoustic waves the surface plasmon resonance (SPR) can be used, which responds to variations of dielectric properties in close proximity to a metal film supporting surface plasmon waves. When an acoustic wave is incident onto a receiving plate positioned within the penetration depth of the surface plasmons, it creates displacements of the surface of the plate and thus modulates the dielectric properties, affecting SPR and the reflection of the incident light. Here we study characteristics and determine the optimal configuration of such an acousto-optical transducer with surface plasmons for efficient conversion of an acoustic signal into an optical one. We simulate the properties of the transducer and present estimates showing that it can have a large frequency bandwidth and good sensitivity. Abstract
  • 48. Fig. 1. Schematic of the acousto-optical sensor with surface plasmons. The arrangement consists of a glass prism (PR), the adjacent gold film (GF), a spacer (SPA) and a receiving plate (RP). The field of the excited surface plasmon (SP) decays away from the gold film. The acoustic wave (AW) induces displacements of the RP face close to the GF, which results in a quantifiable modification of the SPR curve featuring the resonance by a dip in the dependence of the intensity on the incidence angle . The inset on the right shows a schematic of layers with notations for the dielectric constants and thicknesses of the layers.
  • 49. Changes of the SPR curve due to RP displacement
  • 50. • Detection limit for the RP displacement Detection of ΔRmin change Detection of ΔR change at the steep slope
  • 51. 10 15 20 25 30 35 40 45 50 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 Merit factor, |S  |x10 3 nm -1 Gold film thickness (nm) (a) 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.45 2.50 2.55 2.60 2.65 2.70 Merit factor, |S 1 |x10 3 nm -1 Refractive index (c) Fig. 3 The merit factor |S1| for λ=800nm: (a). The dependence of the (n4,d3)- optimized merit factor |S1| on the gold film thickness calculated for λ=800nm. (b). Density plot in false colors showing the merit factor |S1| for the optimal gold film thickness d2=16nm at different values of the gap d3 and the refractive index n4; the overall maximum of |S1|=2.64x10-3nm-1 is obtained at n4=1.45 and the gap value of d3=0.48μm and is shown by a large white dot. Note that the sign of S1 is negative (the value of Rmin decreases for the positive displacement Δζ) above d3=0.395μm, at which value S1 is close to zero. (c). The dependence of the d3- optimized merit factor |S1| for different values of the refractive index n4. Merit factor S1 for 800nm
  • 52. 26 28 30 32 34 36 38 1.05 1.10 1.15 1.20 Merit Factor, |S 2 |x10 3 nm -1 Gold film thickness (nm) (a) 1.2 1.3 1.4 1.5 1.6 1.7 1.8 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25 Merit factor, |S  |x10 3 nm -1 Refractive index (c) Fig. 6. The merit factor |S2| for λ=633nm: (a). The dependence of the (n4,d3)- optimized merit factor |S2| on the gold film thickness. (b). Density plot in false colors showing the merit factor |S2| for the optimal gold film thickness d2=29nm at different values of the gap d3 and the refractive index n4; the overall maximum of |S2|=1.19x10-3nm-1 is obtained at n4=1.41 and the gap value of d3=0.61μm and is shown by a large white dot. (c). The dependence of the d3-optimized merit factor |S2| for different values of the refractive index n4. Merit factor S2 for 633nm
  • 53. λ(nm) ParametersforS1 response ParametersforS2 response 800 S1 = −2.64 × 10−3 𝑛𝑚−1 (Fig.3) S2 = −1.02 × 10−3 𝑛𝑚−1 (Fig.5) d2(nm) n4 d3(nm) d2(nm) n4 d3(nm) 16 1.45 0.48 25 1.38 0.87 633 S1 = 3.56 × 10−3 𝑛𝑚−1 (Fig.4) S2 = −1.19 × 10−3 𝑛𝑚−1 (Fig.6) d2(nm) n4 d3(nm) d2(nm) n4 d3(nm) 22 1.52 0.25 29 1.41 0.61 Table 1. Parameters for realization of the transducer at optical wavelength of 800nm and 633nm with maximum |S1| and |S2| values corresponding to plots of Figs. 3-6. Conclusion: Merit factors of about 10-3nm-1 can be obtained
  • 54. (a) (c) (b) (d) 0.010 0.005 0.005 0.010 0.015 0.020 m 0.015 0.010 0.005 0.005 R 0.15 0.10 0.05 0.05 0.10 0.15 0.20 m 0.4 0.2 0.2 R2 0.03 0.02 0.01 0.01 0.02 0.03 m 0.05 0.05 R 0.2 0.1 0.1 m 0.4 0.2 0.2 0.4 0.6 R2 Fig. 7. Variation of the reflection coefficient ΔR in response to acoustic wave with displacements Δζ of different magnitudes is presented for optimal parameters of Figs. (3-6) shown in Table 1: (a) and (b) for ΔR response and the wavelengths of 800nm (Fig. 3) and 633nm (Fig. 4) respectively; (c) and (d) for ΔR2 response and the wavelengths of 800nm (Fig. 5) and 633nm (Fig. 6) respectively. The solid blue lines show the responses ΔR, ΔR2 and the dotted red lines depict the linear fits; the vertical dashed lines show the limits within which the response deviates from the linear dependence by less than 10%.
  • 55. (a) (c) (b) (d) 0.2 0.1 0.1 m 0.4 0.3 0.2 0.1 0.1 0.2 0.3 R 0.2 0.1 0.1 0.2 m 0.3 0.2 0.1 0.1 0.2 0.3 0.4 R2 0.2 0.1 0.1 0.2 m 0.4 0.2 0.2 0.4 R 0.3 0.2 0.1 0.1 0.2 0.3 m 0.6 0.4 0.2 0.2 0.4 0.6 R2 Fig. 8. Realizations of the linearity ranges of the sensor response to the displacement Δζ for parameters presented in Table 2: (a) and (b) for ΔR and the optical wavelengths l=800nm, and l=633nm respectively; (c) and (d) for ΔR2 and the optical wavelengths l=800nm, and l=633nm respectively. The solid blue lines show the response ΔR for (a,b) and ΔR2 for (c,d), the dotted red lines depict the fitted linear dependences; the vertical dashed lines show the limits within which the response deviates from linear dependences by less than 10%. Quasi-linear response dependences ΔRmin l=800nm l=633nm ΔR2
  • 58. Surface Plasmons Part 5 • Surface plasmon effects on nano particles
  • 59. Mie theory and dipole approximation ) ( )] 2 ) ( [ ) ( 9 ) ( 2 2 2 / 3               i d r i m ext V c For small nanoparticles (R<<wavelength, or roughly 2R< wavelenght/10): dipole approximation where V is the particle volume,  frequency light, εm and are the dielectric functions of the surrounding medium and the particle material. When is small or varies slowly, the resonance takes place at ) ( 2   2 2 1 , 0 ) 2 ( ) (       p r d r      d p      2 1 max 0 ) ( ) ( ) (          i i r t=0 t=T/2 Electronic cluster Ionic cluster Electric field Light Electronic plasma oscillations => Surface Plasmons, Part 2, A. Kolomenski, 9/26/2012
  • 60. Extinction spectra of Ag n-particles in solution 350 375 400 425 450 475 0.0 0.2 0.4 0.6 0.8 1.0 1.2 Ag 27 nm particles Ag 48 nm particles Extinction (a.u.) Wavelength, nm The oscillations of a n-particle, induced by a pump pulse, modulate (displace) the plasmon absorption band. For efficient detection the probe wavelength was selected at the steeper portion of the slope of this band. Surface Plasmons, Part 2, A. Kolomenski, 9/26/2012 S. N. Jerebtsov et al. Phys. Rev. B Vol. 76, 184301 (2007).
  • 61. Bowtie nano-antenna and measured intensity enhancement Intensity enhancement vs wavelength 3D finite difference time domain (FDTD) simulations Fabricated by Electron Beam Lithography (EBL) bowtie antennas. Indium tin oxide substrate. Gap was varied, thickness 20 nm. Kino et al. In: Surface Plasmon nanophotonics, p.125 (2007). Surface Plasmons, Part 2, A. Kolomenski, 9/26/2012
  • 62. Experimental setup for study of “hot spots” for SERS Raman signals from individual Ag n-particles Raman microscope with sensitive CCD cameras for imaging the sample in scattering and using Raman signal. Notch filters were used to suppress the excitation light. Low concentration of n-particles needed to separate individual particles. Futamata et al. Vibrational Spectroscopy 35, 121-129 (2004).
  • 63. Raman spectroscopy Photon scattering on molecules Elastic or Rayleigh scattering Inelastic or Raman scattering h h h( - ) h( + ) Stocks Anti-Stocks Raman scattering increases when h produces electronic transition Surface Plasmons, Part 2, A. Kolomenski, 9/26/2012
  • 64. Surface Enhanced Raman Spectroscopy (SERS) of DNA bases Spectra of individual n-particles Stongest enhancement ~1010 from pairs of particles with axis parallel to polarization Characteristic stretching modes in heterocycles suited for DNA sequencing : adenine 718 and 893 cm-1;guanine 641cm-1; cytosine 791 cm-1; thymine 616, 743 and 807 cm-1. Time evolution (whole scale 1 s) demonstrates Raman peaks and blinking effect, known for single molecule detection. Futamata et al. Vibrational Spectroscopy 35, 121-129 (2004).