SlideShare a Scribd company logo
1
Data Mining:
Concepts and Techniques
(3rd ed.)
Dosen: Dr. Vitri Tundjungsari
— Chapter 8 —
Jiawei Han, Micheline Kamber, and Jian Pei
University of Illinois at Urbana-Champaign &
Simon Fraser University
©2011 Han, Kamber & Pei. All rights reserved.
2
Chapter 8. Classification: Basic
Concepts
 Classification: Basic Concepts
 Decision Tree Induction
 Bayes Classification Methods
 Rule-Based Classification
 Model Evaluation and Selection
 Techniques to Improve Classification Accuracy:
Ensemble Methods
 Summary
3
Supervised vs. Unsupervised Learning
 Supervised learning (classification)
 Supervision: The training data (observations,
measurements, etc.) are accompanied by labels indicating
the class of the observations
 New data is classified based on the training set
 Unsupervised learning (clustering)
 The class labels of training data is unknown
 Given a set of measurements, observations, etc. with the
aim of establishing the existence of classes or clusters in
the data
4
 Classification
 predicts categorical class labels (discrete or nominal)
 classifies data (constructs a model) based on the training
set and the values (class labels) in a classifying attribute
and uses it in classifying new data
 Numeric Prediction
 models continuous-valued functions, i.e., predicts
unknown or missing values
 Typical applications
 Credit/loan approval:
 Medical diagnosis: if a tumor is cancerous or benign
 Fraud detection: if a transaction is fraudulent
 Web page categorization: which category it is
Prediction Problems: Classification vs.
Numeric Prediction
5
Classification—A Two-Step
Process
 Model construction: describing a set of predetermined classes
 Each tuple/sample is assumed to belong to a predefined class, as
determined by the class label attribute
 The set of tuples used for model construction is training set
 The model is represented as classification rules, decision trees, or
mathematical formulae
 Model usage: for classifying future or unknown objects
 Estimate accuracy of the model
 The known label of test sample is compared with the classified
result from the model
 Accuracy rate is the percentage of test set samples that are
correctly classified by the model
 Test set is independent of training set (otherwise overfitting)
 If the accuracy is acceptable, use the model to classify new data
 Note: If the test set is used to select models, it is called validation (test) set
6
Process (1): Model Construction
Training
Data
NAME RANK YEARS TENURED
Mike Assistant Prof 3 no
Mary Assistant Prof 7 yes
Bill Professor 2 yes
Jim Associate Prof 7 yes
Dave Assistant Prof 6 no
Anne Associate Prof 3 no
Classification
Algorithms
IF rank = ‘professor’
OR years > 6
THEN tenured = ‘yes’
Classifier
(Model)
7
Process (2): Using the Model in
Prediction
Classifier
Testing
Data
NAME RANK YEARS TENURED
Tom Assistant Prof 2 no
Merlisa Associate Prof 7 no
George Professor 5 yes
Joseph Assistant Prof 7 yes
Unseen Data
(Jeff, Professor, 4)
Tenured?
8
Chapter 8. Classification: Basic
Concepts
 Classification: Basic Concepts
 Decision Tree Induction
 Bayes Classification Methods
 Rule-Based Classification
 Model Evaluation and Selection
 Techniques to Improve Classification Accuracy:
Ensemble Methods
 Summary
9
Decision Tree Induction: An Example
age?
overcast
student? credit rating?
<=30 >40
no yes yes
yes
31..40
fair
excellent
yes
no
age income student credit_rating buys_computer
<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no
 Training data set: Buys_computer
 The data set follows an example of
Quinlan’s ID3 (Playing Tennis)
 Resulting tree:
10
Algorithm for Decision Tree Induction
 Basic algorithm (a greedy algorithm)
 Tree is constructed in a top-down recursive divide-and-
conquer manner
 At start, all the training examples are at the root
 Attributes are categorical (if continuous-valued, they are
discretized in advance)
 Examples are partitioned recursively based on selected
attributes
 Test attributes are selected on the basis of a heuristic or
statistical measure (e.g., information gain)
 Conditions for stopping partitioning
 All samples for a given node belong to the same class
 There are no remaining attributes for further partitioning –
majority voting is employed for classifying the leaf
 There are no samples left
Brief Review of Entropy

11
m = 2
12
Attribute Selection Measure:
Information Gain (ID3/C4.5)
 Select the attribute with the highest information gain
 Let pi be the probability that an arbitrary tuple in D belongs to
class Ci, estimated by |Ci, D|/|D|
 Expected information (entropy) needed to classify a tuple in D:
 Information needed (after using A to split D into v partitions) to
classify D:
 Information gained by branching on attribute A
)
(
log
)
( 2
1
i
m
i
i p
p
D
Info 



)
(
|
|
|
|
)
(
1
j
v
j
j
A D
Info
D
D
D
Info 
 

(D)
Info
Info(D)
Gain(A) A


13
Attribute Selection: Information Gain
 Class P: buys_computer = “yes”
 Class N: buys_computer = “no”
means “age <=30” has 5 out of
14 samples, with 2 yes’es and 3
no’s. Hence
Similarly,
age pi ni I(pi, ni)
<=30 2 3 0.971
31…40 4 0 0
>40 3 2 0.971
694
.
0
)
2
,
3
(
14
5
)
0
,
4
(
14
4
)
3
,
2
(
14
5
)
(




I
I
I
D
Infoage
048
.
0
)
_
(
151
.
0
)
(
029
.
0
)
(



rating
credit
Gain
student
Gain
income
Gain
246
.
0
)
(
)
(
)
( 

 D
Info
D
Info
age
Gain age
age income student credit_rating buys_computer
<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no
)
3
,
2
(
14
5
I
940
.
0
)
14
5
(
log
14
5
)
14
9
(
log
14
9
)
5
,
9
(
)
( 2
2 



 I
D
Info
14
Computing Information-Gain for
Continuous-Valued Attributes
 Let attribute A be a continuous-valued attribute
 Must determine the best split point for A
 Sort the value A in increasing order
 Typically, the midpoint between each pair of adjacent values
is considered as a possible split point
 (ai+ai+1)/2 is the midpoint between the values of ai and ai+1
 The point with the minimum expected information
requirement for A is selected as the split-point for A
 Split:
 D1 is the set of tuples in D satisfying A ≤ split-point, and D2 is
the set of tuples in D satisfying A > split-point
15
Gain Ratio for Attribute Selection
(C4.5)
 Information gain measure is biased towards attributes with a
large number of values
 C4.5 (a successor of ID3) uses gain ratio to overcome the
problem (normalization to information gain)
 GainRatio(A) = Gain(A)/SplitInfo(A)
 Ex.
 gain_ratio(income) = 0.029/1.557 = 0.019
 The attribute with the maximum gain ratio is selected as the
splitting attribute
)
|
|
|
|
(
log
|
|
|
|
)
( 2
1 D
D
D
D
D
SplitInfo
j
v
j
j
A 

 

16
Gini Index (CART, IBM
IntelligentMiner)
 If a data set D contains examples from n classes, gini index,
gini(D) is defined as
where pj is the relative frequency of class j in D
 If a data set D is split on A into two subsets D1 and D2, the gini
index gini(D) is defined as
 Reduction in Impurity:
 The attribute provides the smallest ginisplit(D) (or the largest
reduction in impurity) is chosen to split the node (need to
enumerate all the possible splitting points for each attribute)




n
j
p j
D
gini
1
2
1
)
(
)
(
|
|
|
|
)
(
|
|
|
|
)
( 2
2
1
1
D
gini
D
D
D
gini
D
D
D
giniA


)
(
)
(
)
( D
gini
D
gini
A
gini A



17
Computation of Gini Index
 Ex. D has 9 tuples in buys_computer = “yes” and 5 in “no”
 Suppose the attribute income partitions D into 10 in D1: {low,
medium} and 4 in D2
Gini{low,high} is 0.458; Gini{medium,high} is 0.450. Thus, split on the
{low,medium} (and {high}) since it has the lowest Gini index
 All attributes are assumed continuous-valued
 May need other tools, e.g., clustering, to get the possible split
values
 Can be modified for categorical attributes
459
.
0
14
5
14
9
1
)
(
2
2
















D
gini
)
(
14
4
)
(
14
10
)
( 2
1
}
,
{ D
Gini
D
Gini
D
gini medium
low
income 














18
Comparing Attribute Selection Measures
 The three measures, in general, return good results but
 Information gain:
 biased towards multivalued attributes
 Gain ratio:
 tends to prefer unbalanced splits in which one partition is
much smaller than the others
 Gini index:
 biased to multivalued attributes
 has difficulty when # of classes is large
 tends to favor tests that result in equal-sized partitions
and purity in both partitions
19
Other Attribute Selection Measures
 CHAID: a popular decision tree algorithm, measure based on χ2 test for
independence
 C-SEP: performs better than info. gain and gini index in certain cases
 G-statistic: has a close approximation to χ2 distribution
 MDL (Minimal Description Length) principle (i.e., the simplest solution is
preferred):
 The best tree as the one that requires the fewest # of bits to both (1)
encode the tree, and (2) encode the exceptions to the tree
 Multivariate splits (partition based on multiple variable combinations)
 CART: finds multivariate splits based on a linear comb. of attrs.
 Which attribute selection measure is the best?
 Most give good results, none is significantly superior than others
20
Overfitting and Tree Pruning
 Overfitting: An induced tree may overfit the training data
 Too many branches, some may reflect anomalies due to
noise or outliers
 Poor accuracy for unseen samples
 Two approaches to avoid overfitting
 Prepruning: Halt tree construction early ̵ do not split a node
if this would result in the goodness measure falling below a
threshold
 Difficult to choose an appropriate threshold
 Postpruning: Remove branches from a “fully grown” tree—
get a sequence of progressively pruned trees
 Use a set of data different from the training data to
decide which is the “best pruned tree”
21
Enhancements to Basic Decision Tree
Induction
 Allow for continuous-valued attributes
 Dynamically define new discrete-valued attributes that
partition the continuous attribute value into a discrete set of
intervals
 Handle missing attribute values
 Assign the most common value of the attribute
 Assign probability to each of the possible values
 Attribute construction
 Create new attributes based on existing ones that are
sparsely represented
 This reduces fragmentation, repetition, and replication
22
Classification in Large Databases
 Classification—a classical problem extensively studied by
statisticians and machine learning researchers
 Scalability: Classifying data sets with millions of examples and
hundreds of attributes with reasonable speed
 Why is decision tree induction popular?
 relatively faster learning speed (than other classification
methods)
 convertible to simple and easy to understand classification
rules
 can use SQL queries for accessing databases
 comparable classification accuracy with other methods
 RainForest (VLDB’98 — Gehrke, Ramakrishnan & Ganti)
 Builds an AVC-list (attribute, value, class label)
23
Scalability Framework for
RainForest
 Separates the scalability aspects from the criteria that
determine the quality of the tree
 Builds an AVC-list: AVC (Attribute, Value, Class_label)
 AVC-set (of an attribute X )
 Projection of training dataset onto the attribute X and
class label where counts of individual class label are
aggregated
 AVC-group (of a node n )
 Set of AVC-sets of all predictor attributes at the node n
24
Rainforest: Training Set and Its AVC
Sets
student Buy_Computer
yes no
yes 6 1
no 3 4
Age Buy_Computer
yes no
<=30 2 3
31..40 4 0
>40 3 2
Credit
rating
Buy_Computer
yes no
fair 6 2
excellent 3 3
age income studentcredit_rating
buys_computer
<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no
AVC-set on income
AVC-set on Age
AVC-set on Student
Training Examples
income Buy_Computer
yes no
high 2 2
medium 4 2
low 3 1
AVC-set on
credit_rating
25
BOAT (Bootstrapped Optimistic
Algorithm for Tree Construction)
 Use a statistical technique called bootstrapping to create
several smaller samples (subsets), each fits in memory
 Each subset is used to create a tree, resulting in several
trees
 These trees are examined and used to construct a new
tree T’
 It turns out that T’ is very close to the tree that would
be generated using the whole data set together
 Adv: requires only two scans of DB, an incremental alg.
December 19, 2022 Data Mining: Concepts and Techniques 26
Presentation of Classification Results
December 19, 2022 Data Mining: Concepts and Techniques 27
SGI/MineSet 3.0
Data Mining: Concepts and Techniques 28
Interactive Visual Mining by
Perception-Based Classification (PBC)
29
Chapter 8. Classification: Basic
Concepts
 Classification: Basic Concepts
 Decision Tree Induction
 Bayes Classification Methods
 Rule-Based Classification
 Model Evaluation and Selection
 Techniques to Improve Classification Accuracy:
Ensemble Methods
 Summary
30
Bayesian Classification: Why?
 A statistical classifier: performs probabilistic prediction, i.e.,
predicts class membership probabilities
 Foundation: Based on Bayes’ Theorem.
 Performance: A simple Bayesian classifier, naïve Bayesian
classifier, has comparable performance with decision tree and
selected neural network classifiers
 Incremental: Each training example can incrementally
increase/decrease the probability that a hypothesis is correct —
prior knowledge can be combined with observed data
 Standard: Even when Bayesian methods are computationally
intractable, they can provide a standard of optimal decision
making against which other methods can be measured
31
Bayes’ Theorem: Basics
 Total probability Theorem:
 Bayes’ Theorem:
 Let X be a data sample (“evidence”): class label is unknown
 Let H be a hypothesis that X belongs to class C
 Classification is to determine P(H|X), (i.e., posteriori probability): the
probability that the hypothesis holds given the observed data sample X
 P(H) (prior probability): the initial probability
 E.g., X will buy computer, regardless of age, income, …
 P(X): probability that sample data is observed
 P(X|H) (likelihood): the probability of observing the sample X, given that
the hypothesis holds
 E.g., Given that X will buy computer, the prob. that X is 31..40,
medium income
)
(
)
1
|
(
)
(
i
A
P
M
i i
A
B
P
B
P 


)
(
/
)
(
)
|
(
)
(
)
(
)
|
(
)
|
( X
X
X
X
X P
H
P
H
P
P
H
P
H
P
H
P 


32
Prediction Based on Bayes’ Theorem
 Given training data X, posteriori probability of a hypothesis H,
P(H|X), follows the Bayes’ theorem
 Informally, this can be viewed as
posteriori = likelihood x prior/evidence
 Predicts X belongs to Ci iff the probability P(Ci|X) is the highest
among all the P(Ck|X) for all the k classes
 Practical difficulty: It requires initial knowledge of many
probabilities, involving significant computational cost
)
(
/
)
(
)
|
(
)
(
)
(
)
|
(
)
|
( X
X
X
X
X P
H
P
H
P
P
H
P
H
P
H
P 


33
Classification Is to Derive the Maximum
Posteriori
 Let D be a training set of tuples and their associated class
labels, and each tuple is represented by an n-D attribute vector
X = (x1, x2, …, xn)
 Suppose there are m classes C1, C2, …, Cm.
 Classification is to derive the maximum posteriori, i.e., the
maximal P(Ci|X)
 This can be derived from Bayes’ theorem
 Since P(X) is constant for all classes, only
needs to be maximized
)
(
)
(
)
|
(
)
|
(
X
X
X
P
i
C
P
i
C
P
i
C
P 
)
(
)
|
(
)
|
(
i
C
P
i
C
P
i
C
P X
X 
34
Naïve Bayes Classifier
 A simplified assumption: attributes are conditionally
independent (i.e., no dependence relation between
attributes):
 This greatly reduces the computation cost: Only counts the
class distribution
 If Ak is categorical, P(xk|Ci) is the # of tuples in Ci having value xk
for Ak divided by |Ci, D| (# of tuples of Ci in D)
 If Ak is continous-valued, P(xk|Ci) is usually computed based on
Gaussian distribution with a mean μ and standard deviation σ
and P(xk|Ci) is
)
|
(
...
)
|
(
)
|
(
1
)
|
(
)
|
(
2
1
Ci
x
P
Ci
x
P
Ci
x
P
n
k
Ci
x
P
Ci
P
n
k







X
2
2
2
)
(
2
1
)
,
,
( 








x
e
x
g
)
,
,
(
)
|
( i
i C
C
k
x
g
Ci
P 


X
35
Naïve Bayes Classifier: Training Dataset
Class:
C1:buys_computer = ‘yes’
C2:buys_computer = ‘no’
Data to be classified:
X = (age <=30,
Income = medium,
Student = yes
Credit_rating = Fair)
age income student
credit_rating
buys_compu
<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no
36
Naïve Bayes Classifier: An Example
 P(Ci): P(buys_computer = “yes”) = 9/14 = 0.643
P(buys_computer = “no”) = 5/14= 0.357
 Compute P(X|Ci) for each class
P(age = “<=30” | buys_computer = “yes”) = 2/9 = 0.222
P(age = “<= 30” | buys_computer = “no”) = 3/5 = 0.6
P(income = “medium” | buys_computer = “yes”) = 4/9 = 0.444
P(income = “medium” | buys_computer = “no”) = 2/5 = 0.4
P(student = “yes” | buys_computer = “yes) = 6/9 = 0.667
P(student = “yes” | buys_computer = “no”) = 1/5 = 0.2
P(credit_rating = “fair” | buys_computer = “yes”) = 6/9 = 0.667
P(credit_rating = “fair” | buys_computer = “no”) = 2/5 = 0.4
 X = (age <= 30 , income = medium, student = yes, credit_rating = fair)
P(X|Ci) : P(X|buys_computer = “yes”) = 0.222 x 0.444 x 0.667 x 0.667 = 0.044
P(X|buys_computer = “no”) = 0.6 x 0.4 x 0.2 x 0.4 = 0.019
P(X|Ci)*P(Ci) : P(X|buys_computer = “yes”) * P(buys_computer = “yes”) = 0.028
P(X|buys_computer = “no”) * P(buys_computer = “no”) = 0.007
Therefore, X belongs to class (“buys_computer = yes”)
age income student
credit_rating
buys_comp
<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no
37
Avoiding the Zero-Probability
Problem
 Naïve Bayesian prediction requires each conditional prob. be
non-zero. Otherwise, the predicted prob. will be zero
 Ex. Suppose a dataset with 1000 tuples, income=low (0),
income= medium (990), and income = high (10)
 Use Laplacian correction (or Laplacian estimator)
 Adding 1 to each case
Prob(income = low) = 1/1003
Prob(income = medium) = 991/1003
Prob(income = high) = 11/1003
 The “corrected” prob. estimates are close to their
“uncorrected” counterparts



n
k
Ci
xk
P
Ci
X
P
1
)
|
(
)
|
(
38
Naïve Bayes Classifier: Comments
 Advantages
 Easy to implement
 Good results obtained in most of the cases
 Disadvantages
 Assumption: class conditional independence, therefore loss
of accuracy
 Practically, dependencies exist among variables
 E.g., hospitals: patients: Profile: age, family history, etc.
Symptoms: fever, cough etc., Disease: lung cancer,
diabetes, etc.
 Dependencies among these cannot be modeled by Naïve
Bayes Classifier
 How to deal with these dependencies? Bayesian Belief Networks
(Chapter 9)
39
Chapter 8. Classification: Basic
Concepts
 Classification: Basic Concepts
 Decision Tree Induction
 Bayes Classification Methods
 Rule-Based Classification
 Model Evaluation and Selection
 Techniques to Improve Classification Accuracy:
Ensemble Methods
 Summary
40
Using IF-THEN Rules for Classification
 Represent the knowledge in the form of IF-THEN rules
R: IF age = youth AND student = yes THEN buys_computer = yes
 Rule antecedent/precondition vs. rule consequent
 Assessment of a rule: coverage and accuracy
 ncovers = # of tuples covered by R
 ncorrect = # of tuples correctly classified by R
coverage(R) = ncovers /|D| /* D: training data set */
accuracy(R) = ncorrect / ncovers
 If more than one rule are triggered, need conflict resolution
 Size ordering: assign the highest priority to the triggering rules that has
the “toughest” requirement (i.e., with the most attribute tests)
 Class-based ordering: decreasing order of prevalence or misclassification
cost per class
 Rule-based ordering (decision list): rules are organized into one long
priority list, according to some measure of rule quality or by experts
41
age?
student? credit rating?
<=30 >40
no yes yes
yes
31..40
fair
excellent
yes
no
 Example: Rule extraction from our buys_computer decision-tree
IF age = young AND student = no THEN buys_computer = no
IF age = young AND student = yes THEN buys_computer = yes
IF age = mid-age THEN buys_computer = yes
IF age = old AND credit_rating = excellent THEN buys_computer = no
IF age = old AND credit_rating = fair THEN buys_computer = yes
Rule Extraction from a Decision Tree
 Rules are easier to understand than large
trees
 One rule is created for each path from the
root to a leaf
 Each attribute-value pair along a path forms a
conjunction: the leaf holds the class
prediction
 Rules are mutually exclusive and exhaustive
42
Rule Induction: Sequential Covering
Method
 Sequential covering algorithm: Extracts rules directly from training
data
 Typical sequential covering algorithms: FOIL, AQ, CN2, RIPPER
 Rules are learned sequentially, each for a given class Ci will cover
many tuples of Ci but none (or few) of the tuples of other classes
 Steps:
 Rules are learned one at a time
 Each time a rule is learned, the tuples covered by the rules are
removed
 Repeat the process on the remaining tuples until termination
condition, e.g., when no more training examples or when the
quality of a rule returned is below a user-specified threshold
 Comp. w. decision-tree induction: learning a set of rules
simultaneously

More Related Content

PPT
08ClassBasic.ppt
PPT
08ClassBasic.ppt
PPT
Basics of Classification.ppt
PPT
Data Mining and Warehousing Concept and Techniques
PPT
Basic Concept of Classification - Data Mining
PPT
Classification Algorighms in Data Warehousing and Data Mininbg
PPT
08ClassBasic - Cosdfsdfadgádfádffádgádpy.ppt
PPT
Chapter 8. Classification Basic Concepts.ppt
08ClassBasic.ppt
08ClassBasic.ppt
Basics of Classification.ppt
Data Mining and Warehousing Concept and Techniques
Basic Concept of Classification - Data Mining
Classification Algorighms in Data Warehousing and Data Mininbg
08ClassBasic - Cosdfsdfadgádfádffádgádpy.ppt
Chapter 8. Classification Basic Concepts.ppt

Similar to 08ClassBasic VT.ppt (20)

PPT
1791kjkljkljlkkljlkjkljlkkljlkjkjl9164.ppt
PPTX
Dataming-chapter-7-Classification-Basic.pptx
PPT
Chapter 08 ClassBasic.ppt file used for help
PDF
08 classbasic
PPT
08 classbasic
PPT
08 classbasic
PPT
Data Mining Concepts and Techniques.ppt
PPT
Data Mining Concepts and Techniques.ppt
PPT
ClassificationOfMachineLearninginCSE.ppt
PPT
Data Mining:Concepts and Techniques, Chapter 8. Classification: Basic Concepts
PPT
Classification (ML).ppt
PPT
Unit 3classification
PDF
Classification, Attribute Selection, Classifiers- Decision Tree, ID3,C4.5,Nav...
PPT
Classfication Basic.ppt
PPTX
unit classification.pptx
PPT
Chapter 08 Class_Basic.ppt DataMinning
PPT
Cs501 classification prediction
PPT
Data Mining
PDF
classification in data mining and data warehousing.pdf
PPTX
Machine Learning - Classification Algorithms
1791kjkljkljlkkljlkjkljlkkljlkjkjl9164.ppt
Dataming-chapter-7-Classification-Basic.pptx
Chapter 08 ClassBasic.ppt file used for help
08 classbasic
08 classbasic
08 classbasic
Data Mining Concepts and Techniques.ppt
Data Mining Concepts and Techniques.ppt
ClassificationOfMachineLearninginCSE.ppt
Data Mining:Concepts and Techniques, Chapter 8. Classification: Basic Concepts
Classification (ML).ppt
Unit 3classification
Classification, Attribute Selection, Classifiers- Decision Tree, ID3,C4.5,Nav...
Classfication Basic.ppt
unit classification.pptx
Chapter 08 Class_Basic.ppt DataMinning
Cs501 classification prediction
Data Mining
classification in data mining and data warehousing.pdf
Machine Learning - Classification Algorithms
Ad

Recently uploaded (20)

PPTX
STUDY DESIGN details- Lt Col Maksud (21).pptx
PPTX
Data_Analytics_and_PowerBI_Presentation.pptx
PPTX
iec ppt-1 pptx icmr ppt on rehabilitation.pptx
PPTX
Microsoft-Fabric-Unifying-Analytics-for-the-Modern-Enterprise Solution.pptx
PPTX
climate analysis of Dhaka ,Banglades.pptx
PDF
Clinical guidelines as a resource for EBP(1).pdf
PDF
22.Patil - Early prediction of Alzheimer’s disease using convolutional neural...
PDF
“Getting Started with Data Analytics Using R – Concepts, Tools & Case Studies”
PPTX
ALIMENTARY AND BILIARY CONDITIONS 3-1.pptx
PDF
Galatica Smart Energy Infrastructure Startup Pitch Deck
PPTX
advance b rammar.pptxfdgdfgdfsgdfgsdgfdfgdfgsdfgdfgdfg
PPTX
Acceptance and paychological effects of mandatory extra coach I classes.pptx
PDF
Fluorescence-microscope_Botany_detailed content
PPT
Reliability_Chapter_ presentation 1221.5784
PDF
Business Analytics and business intelligence.pdf
PPTX
The THESIS FINAL-DEFENSE-PRESENTATION.pptx
PDF
168300704-gasification-ppt.pdfhghhhsjsjhsuxush
PDF
Lecture1 pattern recognition............
PPTX
DISORDERS OF THE LIVER, GALLBLADDER AND PANCREASE (1).pptx
STUDY DESIGN details- Lt Col Maksud (21).pptx
Data_Analytics_and_PowerBI_Presentation.pptx
iec ppt-1 pptx icmr ppt on rehabilitation.pptx
Microsoft-Fabric-Unifying-Analytics-for-the-Modern-Enterprise Solution.pptx
climate analysis of Dhaka ,Banglades.pptx
Clinical guidelines as a resource for EBP(1).pdf
22.Patil - Early prediction of Alzheimer’s disease using convolutional neural...
“Getting Started with Data Analytics Using R – Concepts, Tools & Case Studies”
ALIMENTARY AND BILIARY CONDITIONS 3-1.pptx
Galatica Smart Energy Infrastructure Startup Pitch Deck
advance b rammar.pptxfdgdfgdfsgdfgsdgfdfgdfgsdfgdfgdfg
Acceptance and paychological effects of mandatory extra coach I classes.pptx
Fluorescence-microscope_Botany_detailed content
Reliability_Chapter_ presentation 1221.5784
Business Analytics and business intelligence.pdf
The THESIS FINAL-DEFENSE-PRESENTATION.pptx
168300704-gasification-ppt.pdfhghhhsjsjhsuxush
Lecture1 pattern recognition............
DISORDERS OF THE LIVER, GALLBLADDER AND PANCREASE (1).pptx
Ad

08ClassBasic VT.ppt

  • 1. 1 Data Mining: Concepts and Techniques (3rd ed.) Dosen: Dr. Vitri Tundjungsari — Chapter 8 — Jiawei Han, Micheline Kamber, and Jian Pei University of Illinois at Urbana-Champaign & Simon Fraser University ©2011 Han, Kamber & Pei. All rights reserved.
  • 2. 2 Chapter 8. Classification: Basic Concepts  Classification: Basic Concepts  Decision Tree Induction  Bayes Classification Methods  Rule-Based Classification  Model Evaluation and Selection  Techniques to Improve Classification Accuracy: Ensemble Methods  Summary
  • 3. 3 Supervised vs. Unsupervised Learning  Supervised learning (classification)  Supervision: The training data (observations, measurements, etc.) are accompanied by labels indicating the class of the observations  New data is classified based on the training set  Unsupervised learning (clustering)  The class labels of training data is unknown  Given a set of measurements, observations, etc. with the aim of establishing the existence of classes or clusters in the data
  • 4. 4  Classification  predicts categorical class labels (discrete or nominal)  classifies data (constructs a model) based on the training set and the values (class labels) in a classifying attribute and uses it in classifying new data  Numeric Prediction  models continuous-valued functions, i.e., predicts unknown or missing values  Typical applications  Credit/loan approval:  Medical diagnosis: if a tumor is cancerous or benign  Fraud detection: if a transaction is fraudulent  Web page categorization: which category it is Prediction Problems: Classification vs. Numeric Prediction
  • 5. 5 Classification—A Two-Step Process  Model construction: describing a set of predetermined classes  Each tuple/sample is assumed to belong to a predefined class, as determined by the class label attribute  The set of tuples used for model construction is training set  The model is represented as classification rules, decision trees, or mathematical formulae  Model usage: for classifying future or unknown objects  Estimate accuracy of the model  The known label of test sample is compared with the classified result from the model  Accuracy rate is the percentage of test set samples that are correctly classified by the model  Test set is independent of training set (otherwise overfitting)  If the accuracy is acceptable, use the model to classify new data  Note: If the test set is used to select models, it is called validation (test) set
  • 6. 6 Process (1): Model Construction Training Data NAME RANK YEARS TENURED Mike Assistant Prof 3 no Mary Assistant Prof 7 yes Bill Professor 2 yes Jim Associate Prof 7 yes Dave Assistant Prof 6 no Anne Associate Prof 3 no Classification Algorithms IF rank = ‘professor’ OR years > 6 THEN tenured = ‘yes’ Classifier (Model)
  • 7. 7 Process (2): Using the Model in Prediction Classifier Testing Data NAME RANK YEARS TENURED Tom Assistant Prof 2 no Merlisa Associate Prof 7 no George Professor 5 yes Joseph Assistant Prof 7 yes Unseen Data (Jeff, Professor, 4) Tenured?
  • 8. 8 Chapter 8. Classification: Basic Concepts  Classification: Basic Concepts  Decision Tree Induction  Bayes Classification Methods  Rule-Based Classification  Model Evaluation and Selection  Techniques to Improve Classification Accuracy: Ensemble Methods  Summary
  • 9. 9 Decision Tree Induction: An Example age? overcast student? credit rating? <=30 >40 no yes yes yes 31..40 fair excellent yes no age income student credit_rating buys_computer <=30 high no fair no <=30 high no excellent no 31…40 high no fair yes >40 medium no fair yes >40 low yes fair yes >40 low yes excellent no 31…40 low yes excellent yes <=30 medium no fair no <=30 low yes fair yes >40 medium yes fair yes <=30 medium yes excellent yes 31…40 medium no excellent yes 31…40 high yes fair yes >40 medium no excellent no  Training data set: Buys_computer  The data set follows an example of Quinlan’s ID3 (Playing Tennis)  Resulting tree:
  • 10. 10 Algorithm for Decision Tree Induction  Basic algorithm (a greedy algorithm)  Tree is constructed in a top-down recursive divide-and- conquer manner  At start, all the training examples are at the root  Attributes are categorical (if continuous-valued, they are discretized in advance)  Examples are partitioned recursively based on selected attributes  Test attributes are selected on the basis of a heuristic or statistical measure (e.g., information gain)  Conditions for stopping partitioning  All samples for a given node belong to the same class  There are no remaining attributes for further partitioning – majority voting is employed for classifying the leaf  There are no samples left
  • 11. Brief Review of Entropy  11 m = 2
  • 12. 12 Attribute Selection Measure: Information Gain (ID3/C4.5)  Select the attribute with the highest information gain  Let pi be the probability that an arbitrary tuple in D belongs to class Ci, estimated by |Ci, D|/|D|  Expected information (entropy) needed to classify a tuple in D:  Information needed (after using A to split D into v partitions) to classify D:  Information gained by branching on attribute A ) ( log ) ( 2 1 i m i i p p D Info     ) ( | | | | ) ( 1 j v j j A D Info D D D Info     (D) Info Info(D) Gain(A) A  
  • 13. 13 Attribute Selection: Information Gain  Class P: buys_computer = “yes”  Class N: buys_computer = “no” means “age <=30” has 5 out of 14 samples, with 2 yes’es and 3 no’s. Hence Similarly, age pi ni I(pi, ni) <=30 2 3 0.971 31…40 4 0 0 >40 3 2 0.971 694 . 0 ) 2 , 3 ( 14 5 ) 0 , 4 ( 14 4 ) 3 , 2 ( 14 5 ) (     I I I D Infoage 048 . 0 ) _ ( 151 . 0 ) ( 029 . 0 ) (    rating credit Gain student Gain income Gain 246 . 0 ) ( ) ( ) (    D Info D Info age Gain age age income student credit_rating buys_computer <=30 high no fair no <=30 high no excellent no 31…40 high no fair yes >40 medium no fair yes >40 low yes fair yes >40 low yes excellent no 31…40 low yes excellent yes <=30 medium no fair no <=30 low yes fair yes >40 medium yes fair yes <=30 medium yes excellent yes 31…40 medium no excellent yes 31…40 high yes fair yes >40 medium no excellent no ) 3 , 2 ( 14 5 I 940 . 0 ) 14 5 ( log 14 5 ) 14 9 ( log 14 9 ) 5 , 9 ( ) ( 2 2      I D Info
  • 14. 14 Computing Information-Gain for Continuous-Valued Attributes  Let attribute A be a continuous-valued attribute  Must determine the best split point for A  Sort the value A in increasing order  Typically, the midpoint between each pair of adjacent values is considered as a possible split point  (ai+ai+1)/2 is the midpoint between the values of ai and ai+1  The point with the minimum expected information requirement for A is selected as the split-point for A  Split:  D1 is the set of tuples in D satisfying A ≤ split-point, and D2 is the set of tuples in D satisfying A > split-point
  • 15. 15 Gain Ratio for Attribute Selection (C4.5)  Information gain measure is biased towards attributes with a large number of values  C4.5 (a successor of ID3) uses gain ratio to overcome the problem (normalization to information gain)  GainRatio(A) = Gain(A)/SplitInfo(A)  Ex.  gain_ratio(income) = 0.029/1.557 = 0.019  The attribute with the maximum gain ratio is selected as the splitting attribute ) | | | | ( log | | | | ) ( 2 1 D D D D D SplitInfo j v j j A     
  • 16. 16 Gini Index (CART, IBM IntelligentMiner)  If a data set D contains examples from n classes, gini index, gini(D) is defined as where pj is the relative frequency of class j in D  If a data set D is split on A into two subsets D1 and D2, the gini index gini(D) is defined as  Reduction in Impurity:  The attribute provides the smallest ginisplit(D) (or the largest reduction in impurity) is chosen to split the node (need to enumerate all the possible splitting points for each attribute)     n j p j D gini 1 2 1 ) ( ) ( | | | | ) ( | | | | ) ( 2 2 1 1 D gini D D D gini D D D giniA   ) ( ) ( ) ( D gini D gini A gini A   
  • 17. 17 Computation of Gini Index  Ex. D has 9 tuples in buys_computer = “yes” and 5 in “no”  Suppose the attribute income partitions D into 10 in D1: {low, medium} and 4 in D2 Gini{low,high} is 0.458; Gini{medium,high} is 0.450. Thus, split on the {low,medium} (and {high}) since it has the lowest Gini index  All attributes are assumed continuous-valued  May need other tools, e.g., clustering, to get the possible split values  Can be modified for categorical attributes 459 . 0 14 5 14 9 1 ) ( 2 2                 D gini ) ( 14 4 ) ( 14 10 ) ( 2 1 } , { D Gini D Gini D gini medium low income               
  • 18. 18 Comparing Attribute Selection Measures  The three measures, in general, return good results but  Information gain:  biased towards multivalued attributes  Gain ratio:  tends to prefer unbalanced splits in which one partition is much smaller than the others  Gini index:  biased to multivalued attributes  has difficulty when # of classes is large  tends to favor tests that result in equal-sized partitions and purity in both partitions
  • 19. 19 Other Attribute Selection Measures  CHAID: a popular decision tree algorithm, measure based on χ2 test for independence  C-SEP: performs better than info. gain and gini index in certain cases  G-statistic: has a close approximation to χ2 distribution  MDL (Minimal Description Length) principle (i.e., the simplest solution is preferred):  The best tree as the one that requires the fewest # of bits to both (1) encode the tree, and (2) encode the exceptions to the tree  Multivariate splits (partition based on multiple variable combinations)  CART: finds multivariate splits based on a linear comb. of attrs.  Which attribute selection measure is the best?  Most give good results, none is significantly superior than others
  • 20. 20 Overfitting and Tree Pruning  Overfitting: An induced tree may overfit the training data  Too many branches, some may reflect anomalies due to noise or outliers  Poor accuracy for unseen samples  Two approaches to avoid overfitting  Prepruning: Halt tree construction early ̵ do not split a node if this would result in the goodness measure falling below a threshold  Difficult to choose an appropriate threshold  Postpruning: Remove branches from a “fully grown” tree— get a sequence of progressively pruned trees  Use a set of data different from the training data to decide which is the “best pruned tree”
  • 21. 21 Enhancements to Basic Decision Tree Induction  Allow for continuous-valued attributes  Dynamically define new discrete-valued attributes that partition the continuous attribute value into a discrete set of intervals  Handle missing attribute values  Assign the most common value of the attribute  Assign probability to each of the possible values  Attribute construction  Create new attributes based on existing ones that are sparsely represented  This reduces fragmentation, repetition, and replication
  • 22. 22 Classification in Large Databases  Classification—a classical problem extensively studied by statisticians and machine learning researchers  Scalability: Classifying data sets with millions of examples and hundreds of attributes with reasonable speed  Why is decision tree induction popular?  relatively faster learning speed (than other classification methods)  convertible to simple and easy to understand classification rules  can use SQL queries for accessing databases  comparable classification accuracy with other methods  RainForest (VLDB’98 — Gehrke, Ramakrishnan & Ganti)  Builds an AVC-list (attribute, value, class label)
  • 23. 23 Scalability Framework for RainForest  Separates the scalability aspects from the criteria that determine the quality of the tree  Builds an AVC-list: AVC (Attribute, Value, Class_label)  AVC-set (of an attribute X )  Projection of training dataset onto the attribute X and class label where counts of individual class label are aggregated  AVC-group (of a node n )  Set of AVC-sets of all predictor attributes at the node n
  • 24. 24 Rainforest: Training Set and Its AVC Sets student Buy_Computer yes no yes 6 1 no 3 4 Age Buy_Computer yes no <=30 2 3 31..40 4 0 >40 3 2 Credit rating Buy_Computer yes no fair 6 2 excellent 3 3 age income studentcredit_rating buys_computer <=30 high no fair no <=30 high no excellent no 31…40 high no fair yes >40 medium no fair yes >40 low yes fair yes >40 low yes excellent no 31…40 low yes excellent yes <=30 medium no fair no <=30 low yes fair yes >40 medium yes fair yes <=30 medium yes excellent yes 31…40 medium no excellent yes 31…40 high yes fair yes >40 medium no excellent no AVC-set on income AVC-set on Age AVC-set on Student Training Examples income Buy_Computer yes no high 2 2 medium 4 2 low 3 1 AVC-set on credit_rating
  • 25. 25 BOAT (Bootstrapped Optimistic Algorithm for Tree Construction)  Use a statistical technique called bootstrapping to create several smaller samples (subsets), each fits in memory  Each subset is used to create a tree, resulting in several trees  These trees are examined and used to construct a new tree T’  It turns out that T’ is very close to the tree that would be generated using the whole data set together  Adv: requires only two scans of DB, an incremental alg.
  • 26. December 19, 2022 Data Mining: Concepts and Techniques 26 Presentation of Classification Results
  • 27. December 19, 2022 Data Mining: Concepts and Techniques 27 SGI/MineSet 3.0
  • 28. Data Mining: Concepts and Techniques 28 Interactive Visual Mining by Perception-Based Classification (PBC)
  • 29. 29 Chapter 8. Classification: Basic Concepts  Classification: Basic Concepts  Decision Tree Induction  Bayes Classification Methods  Rule-Based Classification  Model Evaluation and Selection  Techniques to Improve Classification Accuracy: Ensemble Methods  Summary
  • 30. 30 Bayesian Classification: Why?  A statistical classifier: performs probabilistic prediction, i.e., predicts class membership probabilities  Foundation: Based on Bayes’ Theorem.  Performance: A simple Bayesian classifier, naïve Bayesian classifier, has comparable performance with decision tree and selected neural network classifiers  Incremental: Each training example can incrementally increase/decrease the probability that a hypothesis is correct — prior knowledge can be combined with observed data  Standard: Even when Bayesian methods are computationally intractable, they can provide a standard of optimal decision making against which other methods can be measured
  • 31. 31 Bayes’ Theorem: Basics  Total probability Theorem:  Bayes’ Theorem:  Let X be a data sample (“evidence”): class label is unknown  Let H be a hypothesis that X belongs to class C  Classification is to determine P(H|X), (i.e., posteriori probability): the probability that the hypothesis holds given the observed data sample X  P(H) (prior probability): the initial probability  E.g., X will buy computer, regardless of age, income, …  P(X): probability that sample data is observed  P(X|H) (likelihood): the probability of observing the sample X, given that the hypothesis holds  E.g., Given that X will buy computer, the prob. that X is 31..40, medium income ) ( ) 1 | ( ) ( i A P M i i A B P B P    ) ( / ) ( ) | ( ) ( ) ( ) | ( ) | ( X X X X X P H P H P P H P H P H P   
  • 32. 32 Prediction Based on Bayes’ Theorem  Given training data X, posteriori probability of a hypothesis H, P(H|X), follows the Bayes’ theorem  Informally, this can be viewed as posteriori = likelihood x prior/evidence  Predicts X belongs to Ci iff the probability P(Ci|X) is the highest among all the P(Ck|X) for all the k classes  Practical difficulty: It requires initial knowledge of many probabilities, involving significant computational cost ) ( / ) ( ) | ( ) ( ) ( ) | ( ) | ( X X X X X P H P H P P H P H P H P   
  • 33. 33 Classification Is to Derive the Maximum Posteriori  Let D be a training set of tuples and their associated class labels, and each tuple is represented by an n-D attribute vector X = (x1, x2, …, xn)  Suppose there are m classes C1, C2, …, Cm.  Classification is to derive the maximum posteriori, i.e., the maximal P(Ci|X)  This can be derived from Bayes’ theorem  Since P(X) is constant for all classes, only needs to be maximized ) ( ) ( ) | ( ) | ( X X X P i C P i C P i C P  ) ( ) | ( ) | ( i C P i C P i C P X X 
  • 34. 34 Naïve Bayes Classifier  A simplified assumption: attributes are conditionally independent (i.e., no dependence relation between attributes):  This greatly reduces the computation cost: Only counts the class distribution  If Ak is categorical, P(xk|Ci) is the # of tuples in Ci having value xk for Ak divided by |Ci, D| (# of tuples of Ci in D)  If Ak is continous-valued, P(xk|Ci) is usually computed based on Gaussian distribution with a mean μ and standard deviation σ and P(xk|Ci) is ) | ( ... ) | ( ) | ( 1 ) | ( ) | ( 2 1 Ci x P Ci x P Ci x P n k Ci x P Ci P n k        X 2 2 2 ) ( 2 1 ) , , (          x e x g ) , , ( ) | ( i i C C k x g Ci P    X
  • 35. 35 Naïve Bayes Classifier: Training Dataset Class: C1:buys_computer = ‘yes’ C2:buys_computer = ‘no’ Data to be classified: X = (age <=30, Income = medium, Student = yes Credit_rating = Fair) age income student credit_rating buys_compu <=30 high no fair no <=30 high no excellent no 31…40 high no fair yes >40 medium no fair yes >40 low yes fair yes >40 low yes excellent no 31…40 low yes excellent yes <=30 medium no fair no <=30 low yes fair yes >40 medium yes fair yes <=30 medium yes excellent yes 31…40 medium no excellent yes 31…40 high yes fair yes >40 medium no excellent no
  • 36. 36 Naïve Bayes Classifier: An Example  P(Ci): P(buys_computer = “yes”) = 9/14 = 0.643 P(buys_computer = “no”) = 5/14= 0.357  Compute P(X|Ci) for each class P(age = “<=30” | buys_computer = “yes”) = 2/9 = 0.222 P(age = “<= 30” | buys_computer = “no”) = 3/5 = 0.6 P(income = “medium” | buys_computer = “yes”) = 4/9 = 0.444 P(income = “medium” | buys_computer = “no”) = 2/5 = 0.4 P(student = “yes” | buys_computer = “yes) = 6/9 = 0.667 P(student = “yes” | buys_computer = “no”) = 1/5 = 0.2 P(credit_rating = “fair” | buys_computer = “yes”) = 6/9 = 0.667 P(credit_rating = “fair” | buys_computer = “no”) = 2/5 = 0.4  X = (age <= 30 , income = medium, student = yes, credit_rating = fair) P(X|Ci) : P(X|buys_computer = “yes”) = 0.222 x 0.444 x 0.667 x 0.667 = 0.044 P(X|buys_computer = “no”) = 0.6 x 0.4 x 0.2 x 0.4 = 0.019 P(X|Ci)*P(Ci) : P(X|buys_computer = “yes”) * P(buys_computer = “yes”) = 0.028 P(X|buys_computer = “no”) * P(buys_computer = “no”) = 0.007 Therefore, X belongs to class (“buys_computer = yes”) age income student credit_rating buys_comp <=30 high no fair no <=30 high no excellent no 31…40 high no fair yes >40 medium no fair yes >40 low yes fair yes >40 low yes excellent no 31…40 low yes excellent yes <=30 medium no fair no <=30 low yes fair yes >40 medium yes fair yes <=30 medium yes excellent yes 31…40 medium no excellent yes 31…40 high yes fair yes >40 medium no excellent no
  • 37. 37 Avoiding the Zero-Probability Problem  Naïve Bayesian prediction requires each conditional prob. be non-zero. Otherwise, the predicted prob. will be zero  Ex. Suppose a dataset with 1000 tuples, income=low (0), income= medium (990), and income = high (10)  Use Laplacian correction (or Laplacian estimator)  Adding 1 to each case Prob(income = low) = 1/1003 Prob(income = medium) = 991/1003 Prob(income = high) = 11/1003  The “corrected” prob. estimates are close to their “uncorrected” counterparts    n k Ci xk P Ci X P 1 ) | ( ) | (
  • 38. 38 Naïve Bayes Classifier: Comments  Advantages  Easy to implement  Good results obtained in most of the cases  Disadvantages  Assumption: class conditional independence, therefore loss of accuracy  Practically, dependencies exist among variables  E.g., hospitals: patients: Profile: age, family history, etc. Symptoms: fever, cough etc., Disease: lung cancer, diabetes, etc.  Dependencies among these cannot be modeled by Naïve Bayes Classifier  How to deal with these dependencies? Bayesian Belief Networks (Chapter 9)
  • 39. 39 Chapter 8. Classification: Basic Concepts  Classification: Basic Concepts  Decision Tree Induction  Bayes Classification Methods  Rule-Based Classification  Model Evaluation and Selection  Techniques to Improve Classification Accuracy: Ensemble Methods  Summary
  • 40. 40 Using IF-THEN Rules for Classification  Represent the knowledge in the form of IF-THEN rules R: IF age = youth AND student = yes THEN buys_computer = yes  Rule antecedent/precondition vs. rule consequent  Assessment of a rule: coverage and accuracy  ncovers = # of tuples covered by R  ncorrect = # of tuples correctly classified by R coverage(R) = ncovers /|D| /* D: training data set */ accuracy(R) = ncorrect / ncovers  If more than one rule are triggered, need conflict resolution  Size ordering: assign the highest priority to the triggering rules that has the “toughest” requirement (i.e., with the most attribute tests)  Class-based ordering: decreasing order of prevalence or misclassification cost per class  Rule-based ordering (decision list): rules are organized into one long priority list, according to some measure of rule quality or by experts
  • 41. 41 age? student? credit rating? <=30 >40 no yes yes yes 31..40 fair excellent yes no  Example: Rule extraction from our buys_computer decision-tree IF age = young AND student = no THEN buys_computer = no IF age = young AND student = yes THEN buys_computer = yes IF age = mid-age THEN buys_computer = yes IF age = old AND credit_rating = excellent THEN buys_computer = no IF age = old AND credit_rating = fair THEN buys_computer = yes Rule Extraction from a Decision Tree  Rules are easier to understand than large trees  One rule is created for each path from the root to a leaf  Each attribute-value pair along a path forms a conjunction: the leaf holds the class prediction  Rules are mutually exclusive and exhaustive
  • 42. 42 Rule Induction: Sequential Covering Method  Sequential covering algorithm: Extracts rules directly from training data  Typical sequential covering algorithms: FOIL, AQ, CN2, RIPPER  Rules are learned sequentially, each for a given class Ci will cover many tuples of Ci but none (or few) of the tuples of other classes  Steps:  Rules are learned one at a time  Each time a rule is learned, the tuples covered by the rules are removed  Repeat the process on the remaining tuples until termination condition, e.g., when no more training examples or when the quality of a rule returned is below a user-specified threshold  Comp. w. decision-tree induction: learning a set of rules simultaneously