SlideShare a Scribd company logo
Introduction to Audio Content Analysis
module A.2: fundamentals — convolution
alexander lerch
overview systems convolution filter examples summary
introduction
overview
corresponding textbook section
appendix A.2
lecture content
• LTI systems
• convolution
• filter examples
learning objectives
• basic understanding of linearity and time-invariance
• basic understanding of the convolution operation
• ability to implement simple filters
module A.2: fundamentals — convolution 1 / 9
overview systems convolution filter examples summary
introduction
overview
corresponding textbook section
appendix A.2
lecture content
• LTI systems
• convolution
• filter examples
learning objectives
• basic understanding of linearity and time-invariance
• basic understanding of the convolution operation
• ability to implement simple filters
module A.2: fundamentals — convolution 1 / 9
overview systems convolution filter examples summary
systems
introduction
a system:
any process producing an output signal in response to an input signal

System
x(t) y(t)
name examples for systems in signal processing
module A.2: fundamentals — convolution 2 / 9
overview systems convolution filter examples summary
systems
introduction
a system:
any process producing an output signal in response to an input signal

System
x(t) y(t)
name examples for systems in signal processing
filters, effects
vocal tract
room
(audio) cable
. . .
module A.2: fundamentals — convolution 2 / 9
overview systems convolution filter examples summary
systems
LTI systems
LTI: Linear Time-Invariant Systems
are a great model for many real-world systems
linearity
1 homogeneity: f (ax) = af (x)
2 superposition (additivity): f (x + y) = f (x) + f (y)
time invariance: f (x(t − τ)) = f (x)(t − τ)
module A.2: fundamentals — convolution 3 / 9
overview systems convolution filter examples summary
convolution
introduction
convolution
convolution operation describes the output of an LTI system:
y(t) = (x ∗ h)(t) :=
∞
Z
−∞
x(τ)h(t − τ)dτ
y(i) = (x ∗ h)(i) :=
∞
X
j=−∞
x(j)h(i − j)
module A.2: fundamentals — convolution 4 / 9
overview systems convolution filter examples summary
convolution
animation
module A.2: fundamentals — convolution 5 / 9
matlab
source:
matlab/animateConvolution.m
overview systems convolution filter examples summary
convolution
properties
identity:
x(i) = δ(i) ∗ x(i)
commutativity:
h(i) ∗ x(i) = x(i) ∗ h(i)
associativity:
g(i) ∗ h(i)

∗ x(i) = g(i) ∗ h(i) ∗ x(i)

distributivity:
g(i) ∗ h(i) + x(i)

= g(i) ∗ h(i)

+ g(i) ∗ x(i)

circularity:
h(i) periodic ⇒ y(i) = h(i) ∗ x(i) periodic
module A.2: fundamentals — convolution 6 / 9
overview systems convolution filter examples summary
convolution
properties
identity:
x(i) = δ(i) ∗ x(i)
commutativity:
h(i) ∗ x(i) = x(i) ∗ h(i)
associativity:
g(i) ∗ h(i)

∗ x(i) = g(i) ∗ h(i) ∗ x(i)

distributivity:
g(i) ∗ h(i) + x(i)

= g(i) ∗ h(i)

+ g(i) ∗ x(i)

circularity:
h(i) periodic ⇒ y(i) = h(i) ∗ x(i) periodic
module A.2: fundamentals — convolution 6 / 9
overview systems convolution filter examples summary
convolution
properties
identity:
x(i) = δ(i) ∗ x(i)
commutativity:
h(i) ∗ x(i) = x(i) ∗ h(i)
associativity:
g(i) ∗ h(i)

∗ x(i) = g(i) ∗ h(i) ∗ x(i)

distributivity:
g(i) ∗ h(i) + x(i)

= g(i) ∗ h(i)

+ g(i) ∗ x(i)

circularity:
h(i) periodic ⇒ y(i) = h(i) ∗ x(i) periodic
module A.2: fundamentals — convolution 6 / 9
overview systems convolution filter examples summary
convolution
properties
identity:
x(i) = δ(i) ∗ x(i)
commutativity:
h(i) ∗ x(i) = x(i) ∗ h(i)
associativity:
g(i) ∗ h(i)

∗ x(i) = g(i) ∗ h(i) ∗ x(i)

distributivity:
g(i) ∗ h(i) + x(i)

= g(i) ∗ h(i)

+ g(i) ∗ x(i)

circularity:
h(i) periodic ⇒ y(i) = h(i) ∗ x(i) periodic
module A.2: fundamentals — convolution 6 / 9
overview systems convolution filter examples summary
convolution
properties
identity:
x(i) = δ(i) ∗ x(i)
commutativity:
h(i) ∗ x(i) = x(i) ∗ h(i)
associativity:
g(i) ∗ h(i)

∗ x(i) = g(i) ∗ h(i) ∗ x(i)

distributivity:
g(i) ∗ h(i) + x(i)

= g(i) ∗ h(i)

+ g(i) ∗ x(i)

circularity:
h(i) periodic ⇒ y(i) = h(i) ∗ x(i) periodic
module A.2: fundamentals — convolution 6 / 9
overview systems convolution filter examples summary
filter
example 1: Moving Average
y(i) =
J −1
X
j=0
b(j) · x(i − j)
replaces current sample with average of J samples
smooths a signal (low pass)
IR: rectangular
linear phase, but inefficient for many coefficients
Finite Impulse Response (FIR)
module A.2: fundamentals — convolution 7 / 9
overview systems convolution filter examples summary
filter
example 2: Single-Pole
y(i) = (1 − α) · x(i) + α · y(i − 1)
recursive system: output depends on previous output
the larger alpha, the less the current input is taken into account (low pass)
alpha from 0. . . 1
efficient, but non-linear phase
Infinite Impulse Response (IIR)
module A.2: fundamentals — convolution 8 / 9
overview systems convolution filter examples summary
summary
lecture content
LTI system
• good model for many real-world system
• linear (homogeneity, superposition) and time-invariant
• impulse response reflects all system properties
convolution
• operation that computes the output of an LTI system from the input
low pass filters
• often used to smooth a signal
• typical examples are moving average (FIR) and single pole (IIR)
module A.2: fundamentals — convolution 9 / 9

More Related Content

DOCX
Final document
PDF
Digital Signal Processing-Digital Filters
PDF
Lti system
PPT
Continuous-Time Convolution in Linear Systems and Signals
PDF
Digital Signal Processing[ECEG-3171]-Ch1_L07
PPT
Lecture8 Signal and Systems
PDF
DSP_note_for_lab especially ofr Lab finals
PPT
3. convolution fourier
Final document
Digital Signal Processing-Digital Filters
Lti system
Continuous-Time Convolution in Linear Systems and Signals
Digital Signal Processing[ECEG-3171]-Ch1_L07
Lecture8 Signal and Systems
DSP_note_for_lab especially ofr Lab finals
3. convolution fourier

Similar to 0A-02-ACA-Fundamentals-Convolution.pdf (20)

PDF
Module 1 (1).pdf
PPT
Chapter 1 introduction (Image Processing)
PPT
Lecture4 Signal and Systems
PDF
Lect4-LTI-signal-processing1.pdf
PPT
cos323_s06_lecture13_sigproc bio signal processing
PPT
Speech technology basics
PPTX
Lecture 3 (ADSP).pptx
PPTX
Digital Signal Processing Tutorial Using Python
PDF
summary.pdf
PPT
Ajal filters
PDF
Sampling and Reconstruction DSP Material.pdf
PPTX
lecture3 Discereye time signals and systems.pptx
PPTX
Digital signal processing
PDF
Lecture 2 Introduction to digital image
PDF
Notes for signals and systems
PDF
(Original PDF) Applied Digital Signal Processing Theory and Practice
PPT
unit 11.ppt
PPTX
SignalDecompositionTheory.pptx
PDF
00400_Systems.pdf
Module 1 (1).pdf
Chapter 1 introduction (Image Processing)
Lecture4 Signal and Systems
Lect4-LTI-signal-processing1.pdf
cos323_s06_lecture13_sigproc bio signal processing
Speech technology basics
Lecture 3 (ADSP).pptx
Digital Signal Processing Tutorial Using Python
summary.pdf
Ajal filters
Sampling and Reconstruction DSP Material.pdf
lecture3 Discereye time signals and systems.pptx
Digital signal processing
Lecture 2 Introduction to digital image
Notes for signals and systems
(Original PDF) Applied Digital Signal Processing Theory and Practice
unit 11.ppt
SignalDecompositionTheory.pptx
00400_Systems.pdf

More from AlexanderLerch4 (20)

PDF
12-02-ACA-Genre.pdf
PDF
10-02-ACA-Alignment.pdf
PDF
09-03-ACA-Temporal-Onsets.pdf
PDF
13-00-ACA-Mood.pdf
PDF
09-07-ACA-Temporal-Structure.pdf
PDF
09-01-ACA-Temporal-Intro.pdf
PDF
07-06-ACA-Tonal-Chord.pdf
PDF
15-00-ACA-Music-Performance-Analysis.pdf
PDF
12-01-ACA-Similarity.pdf
PDF
09-04-ACA-Temporal-BeatHisto.pdf
PDF
09-05-ACA-Temporal-Tempo.pdf
PDF
11-00-ACA-Fingerprinting.pdf
PDF
08-00-ACA-Intensity.pdf
PDF
03-05-ACA-Input-Features.pdf
PDF
07-03-03-ACA-Tonal-Monof0.pdf
PDF
05-00-ACA-Data-Intro.pdf
PDF
07-03-05-ACA-Tonal-F0Eval.pdf
PDF
03-03-01-ACA-Input-TF-Fourier.pdf
PDF
03-06-ACA-Input-FeatureLearning.pdf
PDF
07-03-04-ACA-Tonal-Polyf0.pdf
12-02-ACA-Genre.pdf
10-02-ACA-Alignment.pdf
09-03-ACA-Temporal-Onsets.pdf
13-00-ACA-Mood.pdf
09-07-ACA-Temporal-Structure.pdf
09-01-ACA-Temporal-Intro.pdf
07-06-ACA-Tonal-Chord.pdf
15-00-ACA-Music-Performance-Analysis.pdf
12-01-ACA-Similarity.pdf
09-04-ACA-Temporal-BeatHisto.pdf
09-05-ACA-Temporal-Tempo.pdf
11-00-ACA-Fingerprinting.pdf
08-00-ACA-Intensity.pdf
03-05-ACA-Input-Features.pdf
07-03-03-ACA-Tonal-Monof0.pdf
05-00-ACA-Data-Intro.pdf
07-03-05-ACA-Tonal-F0Eval.pdf
03-03-01-ACA-Input-TF-Fourier.pdf
03-06-ACA-Input-FeatureLearning.pdf
07-03-04-ACA-Tonal-Polyf0.pdf

Recently uploaded (20)

PPTX
Group 1 Presentation -Planning and Decision Making .pptx
PPTX
TechTalks-8-2019-Service-Management-ITIL-Refresh-ITIL-4-Framework-Supports-Ou...
PPTX
Chapter 5: Probability Theory and Statistics
PPTX
1. Introduction to Computer Programming.pptx
PDF
Agricultural_Statistics_at_a_Glance_2022_0.pdf
PPTX
Digital-Transformation-Roadmap-for-Companies.pptx
PDF
A novel scalable deep ensemble learning framework for big data classification...
PDF
Building Integrated photovoltaic BIPV_UPV.pdf
PPTX
Tartificialntelligence_presentation.pptx
PDF
Mushroom cultivation and it's methods.pdf
PDF
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
PDF
NewMind AI Weekly Chronicles - August'25-Week II
PDF
Unlocking AI with Model Context Protocol (MCP)
PDF
MIND Revenue Release Quarter 2 2025 Press Release
PPTX
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
PDF
Approach and Philosophy of On baking technology
PDF
A comparative analysis of optical character recognition models for extracting...
PDF
Web App vs Mobile App What Should You Build First.pdf
PDF
A comparative study of natural language inference in Swahili using monolingua...
PDF
From MVP to Full-Scale Product A Startup’s Software Journey.pdf
Group 1 Presentation -Planning and Decision Making .pptx
TechTalks-8-2019-Service-Management-ITIL-Refresh-ITIL-4-Framework-Supports-Ou...
Chapter 5: Probability Theory and Statistics
1. Introduction to Computer Programming.pptx
Agricultural_Statistics_at_a_Glance_2022_0.pdf
Digital-Transformation-Roadmap-for-Companies.pptx
A novel scalable deep ensemble learning framework for big data classification...
Building Integrated photovoltaic BIPV_UPV.pdf
Tartificialntelligence_presentation.pptx
Mushroom cultivation and it's methods.pdf
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
NewMind AI Weekly Chronicles - August'25-Week II
Unlocking AI with Model Context Protocol (MCP)
MIND Revenue Release Quarter 2 2025 Press Release
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
Approach and Philosophy of On baking technology
A comparative analysis of optical character recognition models for extracting...
Web App vs Mobile App What Should You Build First.pdf
A comparative study of natural language inference in Swahili using monolingua...
From MVP to Full-Scale Product A Startup’s Software Journey.pdf

0A-02-ACA-Fundamentals-Convolution.pdf

  • 1. Introduction to Audio Content Analysis module A.2: fundamentals — convolution alexander lerch
  • 2. overview systems convolution filter examples summary introduction overview corresponding textbook section appendix A.2 lecture content • LTI systems • convolution • filter examples learning objectives • basic understanding of linearity and time-invariance • basic understanding of the convolution operation • ability to implement simple filters module A.2: fundamentals — convolution 1 / 9
  • 3. overview systems convolution filter examples summary introduction overview corresponding textbook section appendix A.2 lecture content • LTI systems • convolution • filter examples learning objectives • basic understanding of linearity and time-invariance • basic understanding of the convolution operation • ability to implement simple filters module A.2: fundamentals — convolution 1 / 9
  • 4. overview systems convolution filter examples summary systems introduction a system: any process producing an output signal in response to an input signal System x(t) y(t) name examples for systems in signal processing module A.2: fundamentals — convolution 2 / 9
  • 5. overview systems convolution filter examples summary systems introduction a system: any process producing an output signal in response to an input signal System x(t) y(t) name examples for systems in signal processing filters, effects vocal tract room (audio) cable . . . module A.2: fundamentals — convolution 2 / 9
  • 6. overview systems convolution filter examples summary systems LTI systems LTI: Linear Time-Invariant Systems are a great model for many real-world systems linearity 1 homogeneity: f (ax) = af (x) 2 superposition (additivity): f (x + y) = f (x) + f (y) time invariance: f (x(t − τ)) = f (x)(t − τ) module A.2: fundamentals — convolution 3 / 9
  • 7. overview systems convolution filter examples summary convolution introduction convolution convolution operation describes the output of an LTI system: y(t) = (x ∗ h)(t) := ∞ Z −∞ x(τ)h(t − τ)dτ y(i) = (x ∗ h)(i) := ∞ X j=−∞ x(j)h(i − j) module A.2: fundamentals — convolution 4 / 9
  • 8. overview systems convolution filter examples summary convolution animation module A.2: fundamentals — convolution 5 / 9 matlab source: matlab/animateConvolution.m
  • 9. overview systems convolution filter examples summary convolution properties identity: x(i) = δ(i) ∗ x(i) commutativity: h(i) ∗ x(i) = x(i) ∗ h(i) associativity: g(i) ∗ h(i) ∗ x(i) = g(i) ∗ h(i) ∗ x(i) distributivity: g(i) ∗ h(i) + x(i) = g(i) ∗ h(i) + g(i) ∗ x(i) circularity: h(i) periodic ⇒ y(i) = h(i) ∗ x(i) periodic module A.2: fundamentals — convolution 6 / 9
  • 10. overview systems convolution filter examples summary convolution properties identity: x(i) = δ(i) ∗ x(i) commutativity: h(i) ∗ x(i) = x(i) ∗ h(i) associativity: g(i) ∗ h(i) ∗ x(i) = g(i) ∗ h(i) ∗ x(i) distributivity: g(i) ∗ h(i) + x(i) = g(i) ∗ h(i) + g(i) ∗ x(i) circularity: h(i) periodic ⇒ y(i) = h(i) ∗ x(i) periodic module A.2: fundamentals — convolution 6 / 9
  • 11. overview systems convolution filter examples summary convolution properties identity: x(i) = δ(i) ∗ x(i) commutativity: h(i) ∗ x(i) = x(i) ∗ h(i) associativity: g(i) ∗ h(i) ∗ x(i) = g(i) ∗ h(i) ∗ x(i) distributivity: g(i) ∗ h(i) + x(i) = g(i) ∗ h(i) + g(i) ∗ x(i) circularity: h(i) periodic ⇒ y(i) = h(i) ∗ x(i) periodic module A.2: fundamentals — convolution 6 / 9
  • 12. overview systems convolution filter examples summary convolution properties identity: x(i) = δ(i) ∗ x(i) commutativity: h(i) ∗ x(i) = x(i) ∗ h(i) associativity: g(i) ∗ h(i) ∗ x(i) = g(i) ∗ h(i) ∗ x(i) distributivity: g(i) ∗ h(i) + x(i) = g(i) ∗ h(i) + g(i) ∗ x(i) circularity: h(i) periodic ⇒ y(i) = h(i) ∗ x(i) periodic module A.2: fundamentals — convolution 6 / 9
  • 13. overview systems convolution filter examples summary convolution properties identity: x(i) = δ(i) ∗ x(i) commutativity: h(i) ∗ x(i) = x(i) ∗ h(i) associativity: g(i) ∗ h(i) ∗ x(i) = g(i) ∗ h(i) ∗ x(i) distributivity: g(i) ∗ h(i) + x(i) = g(i) ∗ h(i) + g(i) ∗ x(i) circularity: h(i) periodic ⇒ y(i) = h(i) ∗ x(i) periodic module A.2: fundamentals — convolution 6 / 9
  • 14. overview systems convolution filter examples summary filter example 1: Moving Average y(i) = J −1 X j=0 b(j) · x(i − j) replaces current sample with average of J samples smooths a signal (low pass) IR: rectangular linear phase, but inefficient for many coefficients Finite Impulse Response (FIR) module A.2: fundamentals — convolution 7 / 9
  • 15. overview systems convolution filter examples summary filter example 2: Single-Pole y(i) = (1 − α) · x(i) + α · y(i − 1) recursive system: output depends on previous output the larger alpha, the less the current input is taken into account (low pass) alpha from 0. . . 1 efficient, but non-linear phase Infinite Impulse Response (IIR) module A.2: fundamentals — convolution 8 / 9
  • 16. overview systems convolution filter examples summary summary lecture content LTI system • good model for many real-world system • linear (homogeneity, superposition) and time-invariant • impulse response reflects all system properties convolution • operation that computes the output of an LTI system from the input low pass filters • often used to smooth a signal • typical examples are moving average (FIR) and single pole (IIR) module A.2: fundamentals — convolution 9 / 9