Wind Energy I




                            Wind speed
                           measurements


Michael Hölling, WS 2010/2011   slide 1
Wind Energy I                              Class content
                                                            5 Wind turbines in
                                                                                       6 Wind - blades
                                                              general
                                2 Wind measurements                                      interaction
                                                                                  7 Π-theorem

                                                                         8 Wind turbine
                                                                           characterization
                                  3 Wind field                                    9 Control strategies
                                    characterization
                                                                     10 Generator
    4 Wind power


                                                                     11 Electrics / grid




Michael Hölling, WS 2010/2011                     slide 2
Wind Energy I                   Wind speed measurements


 1. Pressure sensors - e.g. Prandtl tube with manometer
 2. Cup anemometer
 3. Ultrasonic anemometer (USA)
 4. Light detection and ranging (LiDAR)
 5. New developments - e.g. sphere anemometer




Michael Hölling, WS 2010/2011            slide 3
Wind Energy I                           Sensor resolution

                                Temporal and spatial resolution

 Taylor’s hypothesis - picture of frozen turbulence:

 “Eddies have much longer life-time than they need to travel past a
 sensor”                   σu
                                             << 1
                                         u

                                         temporal resolution limits spatial
                                         resolution
                                         AND
                                         spatial resolution limits temporal
                                         resolution
Michael Hölling, WS 2010/2011                 slide 4
Wind Energy I                           Pressure measurements

 Why should we measure the pressure ?

 Bernoulli equation:                    ptotal = pdyn + pstatic

                                with:    pdyn = 1/2 · ρair · u       2


                                                          Prandtl tube




Michael Hölling, WS 2010/2011                   slide 5
Wind Energy I                   Pressure measurements

  Therefore the velocity is                  Measure the pressure e.g. with
  given by:                                  an “inclined tube manometer”

               2 · (ptotal − pstatic )
  u=
                        ρair




Michael Hölling, WS 2010/2011            slide 6
Wind Energy I                       Cup anemometry

 Why this basic design ?




                                u
                                                     urot


Michael Hölling, WS 2010/2011            slide 7
Wind Energy I                    Cup anemometry

                                Different models




Michael Hölling, WS 2010/2011         slide 8
Wind Energy I                                      Cup anemometry

                                                      Calibration
        5
        4




                                                                     u [m/s]
        3
U [V]
 U[V]

        2
        1
        0




              0     1000    2000            3000   4000   5000                 f [Hz]
                                   t t[s]
                                      [s]

            optoelectronic detection
            inductive detection



Michael Hölling, WS 2010/2011                              slide 9
Wind Energy I                    Cup anemometry

                                  Over-speeding
                                                             gusts at 2/3 Hz, 9 m/s




                                           v [m/s]
u [m/s]




                                                                       t [s]
                                                           measured turbulence intensity
                                                               33%               8%
                                                     hot-wire anemometer cup anemometer



  Michael Hölling, WS 2010/2011        slide 10
Wind Energy I                                                                                           Cup anemometry

                                                                                                          Inclined flow
                                                                                       tilt response anemometer Type 3.3351.00.000 , serial 0807011 at ca. 10 m/s
                                                                                                                   dataset 1796_09
                                                   0,1
                                                                        nozzle
                                                  0,08

                                                  0,06
                                                                -20°
                                                  0,04                                                                                                                          nozzle
         rel. deviation of anemoemter frequency




                                                  0,02

                                                     0
                                                                                                                                                                         +20°
                                                  -0,02

                                                  -0,04

                                                  -0,06

                                                  -0,08

                                                   -0,1

                                                  -0,12

                                                  -0,14

                                                  -0,16

                                                  -0,18

                                                   -0,2
                                                          -34 -32 -30 -28 -26 -24 -22 -20 -18 -16 -14 -12 -10 -8   -6   -4   -2 0 2 4        6   8   10 12 14 16 18 20 22 24 26 28 30 32 34
                                                                                                                             tilt angle /°

                                                                                                           dev. V anemo at 1Hz        dev. V anemo bin average




Michael Hölling, WS 2010/2011                                                                                           slide 11
Wind Energy I                    Cup anemometry

                                       Summary

     low temporal resolution (about 1Hz)

     effected by inertia

     not sensitive to wind direction

     moving parts result in

         wear of bearings

         sensitive to icing


                                                    www.thiesclima.com




Michael Hölling, WS 2010/2011            slide 12
Wind Energy I                   Ultrasonic anemometry

                                    Measurement principle




Michael Hölling, WS 2010/2011           slide 13
Wind Energy I                       Ultrasonic anemometry

                                Different models - 2D and 3D




Michael Hölling, WS 2010/2011               slide 14
Wind Energy I                   Ultrasonic anemometry

                                    Drawbacks

                                            Deviation from horizontal velocity



u



                                       supports create wakes

                                       system is expensive




Michael Hölling, WS 2010/2011           slide 15
Wind Energy I                           LiDAR

                                Measurement principle




Michael Hölling, WS 2010/2011           slide 16
Wind Energy I                            LiDAR

                                Possibilities with LiDAR




Michael Hölling, WS 2010/2011             slide 17
Wind Energy I                   Sphere anemometer

               Motivation
    alternative to
        cup anemometry --> 1D, 1Hz, wear of bearings,
        over-speeding
        ultrasonic anemometry --> expensive, wake
        effects of transducer supports




                Properties
    wind velocity and direction measurements
    temporal resolution up to resonance frequency




Michael Hölling, WS 2010/2011          slide 18
Wind Energy I                           Sphere anemometer

                                   Measurement principle

            deflection of a flexible tube due to drag forces acting
                                    l3     Fs   Ft
                                s=     ·      +
                                   E·J     3    8
            with general expression for drag force
                                 1
                           F = · · A · cD · v 2
                                 2
            drag coefficient cD considered constant for
            Re ≈ 103 . . . 2 · 105 leads to
                                                     √
                                s∝v ⇒v =m·
                                    2
                                                          s

                      Easy calibration function!


Michael Hölling, WS 2010/2011                  slide 19
Wind Energy I                           Sphere anemometer

                                   Measurement principle

            deflection of a flexible tube due to drag forces acting
                                    l3     Fs   Ft
                                s=     ·      +                      Kugel
                                                                    sphere
                                   E·J     3    8
            with general expression for drag force                            laser
                                                                              Laser

                                 1
                           F = · · A · cD · v 2                               Rohr
                                                                                         l
                                 2
            drag coefficient cD considered constant for                            tube
            Re ≈ 103 . . . 2 · 105 leads to                         Gewinde
                                                     √
                                s∝v ⇒v =m·
                                    2
                                                          s
                                                                         2D-PSD

                      Easy calibration function!


Michael Hölling, WS 2010/2011                  slide 19
Wind Energy I                                     Sphere anemometer

                                                      Calibration
                                                               270°                        v [m/s]
                                  0.3
                                                                                              20


                                  0.2
                                                                                              17


                                  0.1                                                         14
                        Ux [V]




                                  0.0   0°                                          180°      11

                                                                                              9
                                 –0.1
                                                                                              7


                                 –0.2
                                          !                                                   5

                                                                                              3
                                                                                              2
                                 –0.3                                                         1
                                                               90°
                                                                                              0
                                        –0.3   –0.2   –0.1    0.0       0.1   0.2   0.3
                                                             Uy [V]


Michael Hölling, WS 2010/2011                                slide 20
Wind Energy I                    Sphere anemometer

                                Gusts measurements




Michael Hölling, WS 2010/2011          slide 21
Wind Energy I                              Sphere anemometer

                                      Comparison of time series


                            u [m/s]




                                                     t [s]

                                       measured turbulence intensities
                                     33%            32%             8%
                         hot-wire anemometer       sphere      cup anemometer



Michael Hölling, WS 2010/2011                       slide 22
Wind Energy I                        Sphere anemometer

                                Comparison of power spectra




Michael Hölling, WS 2010/2011              slide 23
Wind Energy I                      Sphere anemometer

                           “Evolution” of sphere anemometer

              2007                   2008           2009      2010




Michael Hölling, WS 2010/2011            slide 24

More Related Content

PPT
ENVIRONMENTAL IMPACT OF EMISSION OF POWER PLANTS
PDF
Flame Stabilization Techniques
PPT
Thermal power plant
PPTX
SOLAR THERMAL PLANT
PDF
Combined Cycle Gas Turbine Power Plant Part 1
PPTX
SOLAR POND TECHNOLOGY
PDF
Power-to-gas storing renewable energy in the gas grid
ENVIRONMENTAL IMPACT OF EMISSION OF POWER PLANTS
Flame Stabilization Techniques
Thermal power plant
SOLAR THERMAL PLANT
Combined Cycle Gas Turbine Power Plant Part 1
SOLAR POND TECHNOLOGY
Power-to-gas storing renewable energy in the gas grid

What's hot (20)

PPT
Wind energy
PDF
combustion in boilers
PDF
solar radiation measurement
PDF
Wind energy I. Lesson 4. Wind power
PPTX
Renewable energy
PPTX
Cogeneration
PPTX
Tidal Energy
PPT
Wind Resource Assessment
PPTX
Environmental Impacts of Electricity Production
PDF
100++-interview questions and answers on steam turbine.pdf
PPTX
THERMODYNAMICS - UNIT - V
PPT
Magnetohydrodynamics(mhd) hkr
PPTX
Ppt combined cycle power plant
PPTX
Fireball Formation and Combustion of Coal in a Boiler
PDF
WIND ENERGY
PPT
EME Module 3 REFRIGERATION AND AIR CONDITIONING PART-1
PPTX
available energy ,irreversibility,exchargy
PPTX
Geothermal energy..nayak
PDF
Cogeneration
PPTX
Wind energy basics
Wind energy
combustion in boilers
solar radiation measurement
Wind energy I. Lesson 4. Wind power
Renewable energy
Cogeneration
Tidal Energy
Wind Resource Assessment
Environmental Impacts of Electricity Production
100++-interview questions and answers on steam turbine.pdf
THERMODYNAMICS - UNIT - V
Magnetohydrodynamics(mhd) hkr
Ppt combined cycle power plant
Fireball Formation and Combustion of Coal in a Boiler
WIND ENERGY
EME Module 3 REFRIGERATION AND AIR CONDITIONING PART-1
available energy ,irreversibility,exchargy
Geothermal energy..nayak
Cogeneration
Wind energy basics
Ad

Viewers also liked (20)

PPTX
Advances in Wind Assessment Technology: Industry Pursuit of Higher Resource M...
PPT
Cup anemometer presentation file
PPT
Measurement of speed of wind
PPTX
Temperature sensor /Anemometer
PPT
Anemometer interstellar
PPTX
Weather meter
PDF
Lecture hw 2012
PDF
Cup anemometer barometer
PPTX
Alternative Energy for Permaculturists. Choosing the right alternative energy...
PPTX
What is alternative energy
PDF
Wind energy I. Lesson 3. Wind field characterization
PDF
Wind energy I. Lesson 6. Wind turbines in general P2
PDF
Structural Vibrations- 8th sem handwritten scanned notes- Miss. Drishti Sobti
PPT
Intro to ultrasonics
PDF
Intelligent load control for heated wind measurement sensors
PPT
Anemometer
PDF
Wind energy I. Lesson 7. Wind blade interaction
PPT
Impact echo
PPTX
The DXN Portable Ultrasonic Flow Meter
PPTX
Computational flow optimization of Wind turbine blades
Advances in Wind Assessment Technology: Industry Pursuit of Higher Resource M...
Cup anemometer presentation file
Measurement of speed of wind
Temperature sensor /Anemometer
Anemometer interstellar
Weather meter
Lecture hw 2012
Cup anemometer barometer
Alternative Energy for Permaculturists. Choosing the right alternative energy...
What is alternative energy
Wind energy I. Lesson 3. Wind field characterization
Wind energy I. Lesson 6. Wind turbines in general P2
Structural Vibrations- 8th sem handwritten scanned notes- Miss. Drishti Sobti
Intro to ultrasonics
Intelligent load control for heated wind measurement sensors
Anemometer
Wind energy I. Lesson 7. Wind blade interaction
Impact echo
The DXN Portable Ultrasonic Flow Meter
Computational flow optimization of Wind turbine blades
Ad

Similar to Wind energy II. Lesson 2. Wind speed measurement (20)

PDF
Wind energy I. Lesson 1. Introduction
PDF
Wind energy I. Lesson 9. Control strategies
PDF
Acoustic emission signatures of electrical discharge machining
PDF
Montrιal o.flamand
PDF
Experimental and Numerical Investigation of Shock/Turbulence Interaction by H...
PDF
Wind energy I. Lesson 8. Power losses at rotor blade
PPT
PPTX
Airborne and underground matter-wave interferometers: geodesy, navigation and...
PDF
Atmospheric flow modeling II
PPTX
Different types of Tonometry
PDF
Bernoulli’s equation and their applications
PDF
Dissertation report
DOC
Shock Test Report 04
DOCX
Investigation of Supercavitation Physics
DOCX
Mom lab revised
PDF
F5 Physics Experiment List
PPTX
tonometry-140624223245-phpapp02-converted.pptx
PDF
Sreu Jean Cortes
DOCX
Ge4000 report - Static Force Curve Activity in Nanofluidic Channels
PDF
Experimental investigation of two heated oblique
Wind energy I. Lesson 1. Introduction
Wind energy I. Lesson 9. Control strategies
Acoustic emission signatures of electrical discharge machining
Montrιal o.flamand
Experimental and Numerical Investigation of Shock/Turbulence Interaction by H...
Wind energy I. Lesson 8. Power losses at rotor blade
Airborne and underground matter-wave interferometers: geodesy, navigation and...
Atmospheric flow modeling II
Different types of Tonometry
Bernoulli’s equation and their applications
Dissertation report
Shock Test Report 04
Investigation of Supercavitation Physics
Mom lab revised
F5 Physics Experiment List
tonometry-140624223245-phpapp02-converted.pptx
Sreu Jean Cortes
Ge4000 report - Static Force Curve Activity in Nanofluidic Channels
Experimental investigation of two heated oblique

More from Tuong Do (20)

PDF
Tiềm năng và xu hướng công nghệ phát triển điện mặt trời ở Việt Nam
PDF
Tổng quan Công nghệ Khí sinh học
PPTX
Điện mặt trời và cơ chế thanh toán bù trừ net-metering tại Thailand
PPTX
Solar PV development in singapore and SERIS introduction
PPTX
Vietnam the new powerhouse for cell manufacturing in Southeast Asia
PPT
Solar technology and market trend 2017 - Tuong Do
PPT
Xu hướng công nghệ thị trường - Điện mặt trời và Điện gió
PDF
STATE OF THE INDUSTRY KEYNOTE BNEF SUMMIT 2016
PDF
Renewable energy models for rice residues - SNV Vietnam
PPTX
GIZ support mechanism for RE development in Vietnam
PDF
Giz2013 en-identification-of-biomass-market-opportunities-in-vietnam 2
PDF
Giz2013 en-exploring-biogas-market-opportunities-vietnam
PDF
Module 1: Technical options and international best practices for on-grid powe...
PDF
Module 2: Assessment of international good practices in the fields of biomass...
PDF
Module 3: Criteria for the siting and systems integration
PDF
Module 7: Assessment of framework conditions and necessary adaptations
PDF
Module 4: Basic design parameters (technical and economic) for commercially v...
PDF
04 giz doris_beck_presentation_vietnam_september_2013
PDF
Module 6 Basic design parameters for commercially viable on-grid biomass gasi...
PDF
Giz2013 Policies and regulatory framework promoting the application of biomas...
Tiềm năng và xu hướng công nghệ phát triển điện mặt trời ở Việt Nam
Tổng quan Công nghệ Khí sinh học
Điện mặt trời và cơ chế thanh toán bù trừ net-metering tại Thailand
Solar PV development in singapore and SERIS introduction
Vietnam the new powerhouse for cell manufacturing in Southeast Asia
Solar technology and market trend 2017 - Tuong Do
Xu hướng công nghệ thị trường - Điện mặt trời và Điện gió
STATE OF THE INDUSTRY KEYNOTE BNEF SUMMIT 2016
Renewable energy models for rice residues - SNV Vietnam
GIZ support mechanism for RE development in Vietnam
Giz2013 en-identification-of-biomass-market-opportunities-in-vietnam 2
Giz2013 en-exploring-biogas-market-opportunities-vietnam
Module 1: Technical options and international best practices for on-grid powe...
Module 2: Assessment of international good practices in the fields of biomass...
Module 3: Criteria for the siting and systems integration
Module 7: Assessment of framework conditions and necessary adaptations
Module 4: Basic design parameters (technical and economic) for commercially v...
04 giz doris_beck_presentation_vietnam_september_2013
Module 6 Basic design parameters for commercially viable on-grid biomass gasi...
Giz2013 Policies and regulatory framework promoting the application of biomas...

Recently uploaded (20)

PDF
Environmental Education MCQ BD2EE - Share Source.pdf
PPTX
Computer Architecture Input Output Memory.pptx
PPTX
A powerpoint presentation on the Revised K-10 Science Shaping Paper
PDF
1.3 FINAL REVISED K-10 PE and Health CG 2023 Grades 4-10 (1).pdf
PDF
LEARNERS WITH ADDITIONAL NEEDS ProfEd Topic
PPTX
Share_Module_2_Power_conflict_and_negotiation.pptx
PDF
Hazard Identification & Risk Assessment .pdf
PDF
Paper A Mock Exam 9_ Attempt review.pdf.
PDF
semiconductor packaging in vlsi design fab
PDF
advance database management system book.pdf
PDF
Complications of Minimal Access-Surgery.pdf
PPTX
ELIAS-SEZIURE AND EPilepsy semmioan session.pptx
PDF
CISA (Certified Information Systems Auditor) Domain-Wise Summary.pdf
PDF
David L Page_DCI Research Study Journey_how Methodology can inform one's prac...
PDF
FORM 1 BIOLOGY MIND MAPS and their schemes
PDF
MICROENCAPSULATION_NDDS_BPHARMACY__SEM VII_PCI .pdf
PDF
Race Reva University – Shaping Future Leaders in Artificial Intelligence
PDF
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 2).pdf
PDF
Uderstanding digital marketing and marketing stratergie for engaging the digi...
PDF
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 1)
Environmental Education MCQ BD2EE - Share Source.pdf
Computer Architecture Input Output Memory.pptx
A powerpoint presentation on the Revised K-10 Science Shaping Paper
1.3 FINAL REVISED K-10 PE and Health CG 2023 Grades 4-10 (1).pdf
LEARNERS WITH ADDITIONAL NEEDS ProfEd Topic
Share_Module_2_Power_conflict_and_negotiation.pptx
Hazard Identification & Risk Assessment .pdf
Paper A Mock Exam 9_ Attempt review.pdf.
semiconductor packaging in vlsi design fab
advance database management system book.pdf
Complications of Minimal Access-Surgery.pdf
ELIAS-SEZIURE AND EPilepsy semmioan session.pptx
CISA (Certified Information Systems Auditor) Domain-Wise Summary.pdf
David L Page_DCI Research Study Journey_how Methodology can inform one's prac...
FORM 1 BIOLOGY MIND MAPS and their schemes
MICROENCAPSULATION_NDDS_BPHARMACY__SEM VII_PCI .pdf
Race Reva University – Shaping Future Leaders in Artificial Intelligence
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 2).pdf
Uderstanding digital marketing and marketing stratergie for engaging the digi...
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 1)

Wind energy II. Lesson 2. Wind speed measurement

  • 1. Wind Energy I Wind speed measurements Michael Hölling, WS 2010/2011 slide 1
  • 2. Wind Energy I Class content 5 Wind turbines in 6 Wind - blades general 2 Wind measurements interaction 7 Π-theorem 8 Wind turbine characterization 3 Wind field 9 Control strategies characterization 10 Generator 4 Wind power 11 Electrics / grid Michael Hölling, WS 2010/2011 slide 2
  • 3. Wind Energy I Wind speed measurements 1. Pressure sensors - e.g. Prandtl tube with manometer 2. Cup anemometer 3. Ultrasonic anemometer (USA) 4. Light detection and ranging (LiDAR) 5. New developments - e.g. sphere anemometer Michael Hölling, WS 2010/2011 slide 3
  • 4. Wind Energy I Sensor resolution Temporal and spatial resolution Taylor’s hypothesis - picture of frozen turbulence: “Eddies have much longer life-time than they need to travel past a sensor” σu << 1 u temporal resolution limits spatial resolution AND spatial resolution limits temporal resolution Michael Hölling, WS 2010/2011 slide 4
  • 5. Wind Energy I Pressure measurements Why should we measure the pressure ? Bernoulli equation: ptotal = pdyn + pstatic with: pdyn = 1/2 · ρair · u 2 Prandtl tube Michael Hölling, WS 2010/2011 slide 5
  • 6. Wind Energy I Pressure measurements Therefore the velocity is Measure the pressure e.g. with given by: an “inclined tube manometer” 2 · (ptotal − pstatic ) u= ρair Michael Hölling, WS 2010/2011 slide 6
  • 7. Wind Energy I Cup anemometry Why this basic design ? u urot Michael Hölling, WS 2010/2011 slide 7
  • 8. Wind Energy I Cup anemometry Different models Michael Hölling, WS 2010/2011 slide 8
  • 9. Wind Energy I Cup anemometry Calibration 5 4 u [m/s] 3 U [V] U[V] 2 1 0 0 1000 2000 3000 4000 5000 f [Hz] t t[s] [s] optoelectronic detection inductive detection Michael Hölling, WS 2010/2011 slide 9
  • 10. Wind Energy I Cup anemometry Over-speeding gusts at 2/3 Hz, 9 m/s v [m/s] u [m/s] t [s] measured turbulence intensity 33% 8% hot-wire anemometer cup anemometer Michael Hölling, WS 2010/2011 slide 10
  • 11. Wind Energy I Cup anemometry Inclined flow tilt response anemometer Type 3.3351.00.000 , serial 0807011 at ca. 10 m/s dataset 1796_09 0,1 nozzle 0,08 0,06 -20° 0,04 nozzle rel. deviation of anemoemter frequency 0,02 0 +20° -0,02 -0,04 -0,06 -0,08 -0,1 -0,12 -0,14 -0,16 -0,18 -0,2 -34 -32 -30 -28 -26 -24 -22 -20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 tilt angle /° dev. V anemo at 1Hz dev. V anemo bin average Michael Hölling, WS 2010/2011 slide 11
  • 12. Wind Energy I Cup anemometry Summary low temporal resolution (about 1Hz) effected by inertia not sensitive to wind direction moving parts result in wear of bearings sensitive to icing www.thiesclima.com Michael Hölling, WS 2010/2011 slide 12
  • 13. Wind Energy I Ultrasonic anemometry Measurement principle Michael Hölling, WS 2010/2011 slide 13
  • 14. Wind Energy I Ultrasonic anemometry Different models - 2D and 3D Michael Hölling, WS 2010/2011 slide 14
  • 15. Wind Energy I Ultrasonic anemometry Drawbacks Deviation from horizontal velocity u supports create wakes system is expensive Michael Hölling, WS 2010/2011 slide 15
  • 16. Wind Energy I LiDAR Measurement principle Michael Hölling, WS 2010/2011 slide 16
  • 17. Wind Energy I LiDAR Possibilities with LiDAR Michael Hölling, WS 2010/2011 slide 17
  • 18. Wind Energy I Sphere anemometer Motivation alternative to cup anemometry --> 1D, 1Hz, wear of bearings, over-speeding ultrasonic anemometry --> expensive, wake effects of transducer supports Properties wind velocity and direction measurements temporal resolution up to resonance frequency Michael Hölling, WS 2010/2011 slide 18
  • 19. Wind Energy I Sphere anemometer Measurement principle deflection of a flexible tube due to drag forces acting l3 Fs Ft s= · + E·J 3 8 with general expression for drag force 1 F = · · A · cD · v 2 2 drag coefficient cD considered constant for Re ≈ 103 . . . 2 · 105 leads to √ s∝v ⇒v =m· 2 s Easy calibration function! Michael Hölling, WS 2010/2011 slide 19
  • 20. Wind Energy I Sphere anemometer Measurement principle deflection of a flexible tube due to drag forces acting l3 Fs Ft s= · + Kugel sphere E·J 3 8 with general expression for drag force laser Laser 1 F = · · A · cD · v 2 Rohr l 2 drag coefficient cD considered constant for tube Re ≈ 103 . . . 2 · 105 leads to Gewinde √ s∝v ⇒v =m· 2 s 2D-PSD Easy calibration function! Michael Hölling, WS 2010/2011 slide 19
  • 21. Wind Energy I Sphere anemometer Calibration 270° v [m/s] 0.3 20 0.2 17 0.1 14 Ux [V] 0.0 0° 180° 11 9 –0.1 7 –0.2 ! 5 3 2 –0.3 1 90° 0 –0.3 –0.2 –0.1 0.0 0.1 0.2 0.3 Uy [V] Michael Hölling, WS 2010/2011 slide 20
  • 22. Wind Energy I Sphere anemometer Gusts measurements Michael Hölling, WS 2010/2011 slide 21
  • 23. Wind Energy I Sphere anemometer Comparison of time series u [m/s] t [s] measured turbulence intensities 33% 32% 8% hot-wire anemometer sphere cup anemometer Michael Hölling, WS 2010/2011 slide 22
  • 24. Wind Energy I Sphere anemometer Comparison of power spectra Michael Hölling, WS 2010/2011 slide 23
  • 25. Wind Energy I Sphere anemometer “Evolution” of sphere anemometer 2007 2008 2009 2010 Michael Hölling, WS 2010/2011 slide 24