SlideShare a Scribd company logo
Wind Energy I




                           Wind field
                        characterization


Michael Hölling, WS 2010/2011   slide 1
Wind Energy I                              Class content
                                                            5 Wind turbines in
                                                                                       6 Wind - blades
                                                              general
                                2 Wind measurements                                      interaction
                                                                                  7 Π-theorem

                                                                         8 Wind turbine
                                                                           characterization
                                  3 Wind field                                    9 Control strategies
                                    characterization
                                                                     10 Generator
    4 Wind power


                                                                     11 Electrics / grid




Michael Hölling, WS 2010/2011                     slide 2
Wind Energy I                    Motivation

 Why should we know anything about the wind field ?
                                Atmospheric boundary layer (ABL)




Michael Hölling, WS 2010/2011       slide 3
Wind Energy I                    Motivation

 Why should we know anything about the wind field ?
                                Atmospheric boundary layer (ABL)




Michael Hölling, WS 2010/2011       slide 3
Wind Energy I                    Motivation

 Why should we know anything about the wind field ?
                                Atmospheric boundary layer (ABL)




Michael Hölling, WS 2010/2011       slide 3
Wind Energy I                         Motivation
 Enercon E-126                          BARD 5.0




http://www.wind-energy-the-facts.org                http://www.ecogeneration.com.au




 Michael Hölling, WS 2010/2011           slide 4
Wind Energy I                   Motivation

 GROWIAN - Große Windkraftanlage (Big Wind energy converter)




Michael Hölling, WS 2010/2011     slide 5
Wind Energy I                   Resource wind
                                m 2 ρ·V                 ρ·A·x 2
 Kinetic energy of wind: E =       ·u =           ·u =
                                                    2
                                                             ·u
                                 2           2            2
 Corresponding power                 d ρ·A·x 2
 for constant velocity u : Pair =                   ·u
                                     dt       2
                                     1            2 dx
                                 =     ·ρ·A·u ·
                                     2               dt
                                     1
                                 =     · ρ · A · u3
                                     2
 Wind energy converter can NOT convert 100% of that energy !
 Consequently the power of the wind energy converter is also
 smaller:                      1
                 PW EC = cp · · ρ · A · u3 = cp · Pair
                               2
Michael Hölling, WS 2010/2011       slide 6
Wind Energy I                              Resource wind

              Power curve of wind energy converter - theory
                                                          rated
                           2.0
                                                                    P(u)
                           1.6
               P(u) [MW]




                           1.2
                                                          cut out
                           0.8    cut in

                           0.4

                           0.0
                              0            10                20        30
                                                u [m/s]
Michael Hölling, WS 2010/2011                   slide 7
Wind Energy I                   Resource wind

              Power curve of wind energy converter - reality




Michael Hölling, WS 2010/2011       slide 8
Wind Energy I                   Resource wind
               Annual mean wind speed taken from wind atlas




Michael Hölling, WS 2010/2011       slide 9
Wind Energy I                             Resource wind

 Estimation of Annual Energy Production (AEP) based on annual
 mean wind speed from wind atlas:
                           2.0
                                                                     P(u)
                           1.6
               P(u) [MW]




                           1.2

                           0.8
                                  500kW
                           0.4            u    annual       ≈ 7m/s

                           0.0
                              0           10                  20        30
                                                u [m/s]

Michael Hölling, WS 2010/2011                    slide 10
Wind Energy I                             Resource wind

 Is such a calculation realistic ? How does real wind behave ?
                                Wind velocity time series (20 days)




Michael Hölling, WS 2010/2011                  slide 11
Wind Energy I                    Resource wind

                 Calculation of 10-minute averaged wind speed




Michael Hölling, WS 2010/2011        slide 12
Wind Energy I                    Resource wind

                 Calculation of 10-minute averaged wind speed




Michael Hölling, WS 2010/2011        slide 12
Wind Energy I                   Resource wind

               Distribution of 10-minute averaged wind speeds
               (u)




Michael Hölling, WS 2010/2011       slide 13
Wind Energy I                   Resource wind
    Estimation of energy production based on wind distribution




                                               (u)




Michael Hölling, WS 2010/2011       slide 14
Wind Energy I                   Resource wind
    Estimation of energy production based on wind distribution




                                               (u)




Michael Hölling, WS 2010/2011       slide 14
Wind Energy I                          Resource wind
    Estimation of energy production based on wind distribution
                                E(u)




                                                      (u)




Michael Hölling, WS 2010/2011              slide 14
Wind Energy I                          Resource wind
    Estimation of energy production based on wind distribution
                                E(u)




                                                      (u)




Michael Hölling, WS 2010/2011              slide 14
Wind Energy I                          Resource wind
    Estimation of energy production based on wind distribution
                                E(u)




                                                      (u)




Michael Hölling, WS 2010/2011              slide 14
Wind Energy I                          Resource wind
    Estimation of energy production based on wind distribution
                                E(u)




                                                      (u)




Michael Hölling, WS 2010/2011              slide 14
Wind Energy I                                   Resource wind
    Estimation of energy production based on wind distribution
                                E(u)




                                                                 (u)
energy production:
              N                   N
      E=           E(ui ) =            counts(ui )/6 · P (ui )
             i=1                 i=1

Michael Hölling, WS 2010/2011                         slide 14
Wind Energy I                   Resource wind
 Comparison of energy production for mean wind speed and 10-
 minute averaged wind speed distribution (example based on
 data of 20 days):




                                 u = 6.3m/s                 244 kW




                                          E    =   counts(< u >)[h] · P (< u >)
                                               =   24 · 20 · 244 = 117120kW h


Michael Hölling, WS 2010/2011       slide 15
Wind Energy I                               Resource wind

                                E(u)




        N                 N
E=           E(ui ) =           counts(ui )/6 · P (ui ) = 166, 920kWh
       i=1               i=1

Michael Hölling, WS 2010/2011                     slide 16
Wind Energy I                        Resource wind

                        Description of wind speed distribution
               (u)




Michael Hölling, WS 2010/2011            slide 17
Wind Energy I                    Resource wind

                Convert to probability density by normalization




Michael Hölling, WS 2010/2011        slide 18
Wind Energy I                    Resource wind

               Distribution can be fitted by Weibull distribution



    A = scaling parameter

    k = form parameter

                                                            A=7

                                                            k = 2.59




Michael Hölling, WS 2010/2011         slide 19
Wind Energy I                      Resource wind

                                Weibull distribution




                                                       u [m/s]

Michael Hölling, WS 2010/2011           slide 20
Wind Energy I                             Resource wind

                                Wind speed variation with height
                                          Atmospheric boundary layer (ABL)




Michael Hölling, WS 2010/2011                 slide 21
Wind Energy I                   Wind field characterization

 Meteorological approach:
         logarithmic profile

         roughness length for topographical effects

         thermal effects

 International Electrotechnical Commission (IEC) approach:
         power law profile

         standard for site assessment

 Alternative approach:
         stochastic analysis

         high frequency data for better understanding


Michael Hölling, WS 2010/2011             slide 22
Wind Energy I                   Meteorological approach

 Wind speed u (mean values) as a function of height z:

 Logarithmic profile:




     u* = friction velocity (typically between
     0.1m/s and 0.5m/s)

     k = von Karman constant, about 0.4

     z0 = surface roughness length




Michael Hölling, WS 2010/2011               slide 23
Wind Energy I                   Meteorological approach

                                                          classes
                                                          3

                                                          2

                                                          1
                                                          0




Michael Hölling, WS 2010/2011            slide 24
Wind Energy I                   Meteorological approach

                                                          classes
                                                          3

                                                          2

                                                          1
                                                          0




Michael Hölling, WS 2010/2011            slide 25
Wind Energy I                   Meteorological approach

                     Influence of friction velocity u* on profile




Michael Hölling, WS 2010/2011            slide 26
Wind Energy I                   Meteorological approach

                     Influence of friction velocity u* on profile




Michael Hölling, WS 2010/2011            slide 27
Wind Energy I                   Meteorological approach

 Thermal effects make ABL stable, neutral or unstable
                                                          Monin Obukhov
                                                              length




Michael Hölling, WS 2010/2011            slide 28
Wind Energy I                        IEC approach

 Wind speed u (mean values) as a function of height z:

 Power law profile:




                                                    z2
 α needs to be fitted from data !

Velocity at height z can be determined by:
                                     α
                                z                   z1
              u(z) = u(z1 ) ·
                                z1
Commonly used for wind energy applications !

Michael Hölling, WS 2010/2011            slide 29
Wind Energy I                   Wind profile

          What is the difference between the two approaches ?




Michael Hölling, WS 2010/2011      slide 30
Wind Energy I                           Wind profile

          What is the difference between the two approaches ?




                                           u(z2)

                                u(z1)




Michael Hölling, WS 2010/2011              slide 30
Wind Energy I                           Wind profile

          What is the difference between the two approaches ?




                                           u(z2)

                                u(z1)




Michael Hölling, WS 2010/2011              slide 31
Wind Energy I Site characterization / assessment

 IEC demands information for site characterization:

     annual mean wind velocity

     parameters for Weibull distribution of 10-min averaged wind
     speeds

     annual mean wind profile
                                     σ<u>10min
     turbulence intensity       Ti =
                                     < u >10min




Michael Hölling, WS 2010/2011         slide 32
Wind Energy I                       Alternative approach

                                What happens in reality ?




Michael Hölling, WS 2010/2011              slide 33
Wind Energy I                       Alternative approach

                                What happens in reality ?




Michael Hölling, WS 2010/2011              slide 34

More Related Content

PDF
Wind energy I. Lesson 1. Introduction
PDF
Wind energy I. Lesson 9. Control strategies
PDF
Wind energy II. Lesson 2. Wind speed measurement
PDF
Wind energy I. Lesson 8. Power losses at rotor blade
PDF
Wind energy I. Lesson 4. Wind power
PDF
Wind energy I. Lesson 7. Wind blade interaction
PDF
636883main fdr talk_niac_2012_final
PPTX
What is alternative energy
Wind energy I. Lesson 1. Introduction
Wind energy I. Lesson 9. Control strategies
Wind energy II. Lesson 2. Wind speed measurement
Wind energy I. Lesson 8. Power losses at rotor blade
Wind energy I. Lesson 4. Wind power
Wind energy I. Lesson 7. Wind blade interaction
636883main fdr talk_niac_2012_final
What is alternative energy

Viewers also liked (10)

PPTX
Alternative Energy for Permaculturists. Choosing the right alternative energy...
PDF
Wind energy I. Lesson 6. Wind turbines in general P2
PPTX
Advances in Wind Assessment Technology: Industry Pursuit of Higher Resource M...
PPTX
Computational flow optimization of Wind turbine blades
PPT
Lecture 1
PDF
Wind Energy Lecture slides
PPT
Lecture 6
PPTX
Horizontal Axis Wind Turbine
PPTX
Wind energy basics
PPTX
Wind Power Point Presentation
Alternative Energy for Permaculturists. Choosing the right alternative energy...
Wind energy I. Lesson 6. Wind turbines in general P2
Advances in Wind Assessment Technology: Industry Pursuit of Higher Resource M...
Computational flow optimization of Wind turbine blades
Lecture 1
Wind Energy Lecture slides
Lecture 6
Horizontal Axis Wind Turbine
Wind energy basics
Wind Power Point Presentation
Ad

Similar to Wind energy I. Lesson 3. Wind field characterization (20)

PPT
Session 15 wind power
PPT
Powerpoint Presentation On WIND ENERGY
KEY
L6 Wind Energy
PDF
Small wind power for rural locations - part 1
PPT
Windpower
PPTX
UNIT 2_ Wind Energy Conversion System.pptx
PDF
Wind Energy to Electrical Energy
PPT
Wind turbines
PPT
wind turbines
PPTX
NCEPG Chapter 2.pptx, This is the WEC system.
PPT
Wind turbine
PPT
wind turbine detailed presentation .ppt
PPTX
Wind energy
PPT
Wind Power
PDF
Control Of Offshore Windmills
PDF
WIND ENERGY REPORT AE 215- 2018 SOURCES OF FARM POWER
PPT
Wind Energy
PDF
Basics of Wind Meteorology - Dynamics of Horizontal Flow
DOCX
Wind Energy-2.docx
PPTX
Wind Energy ppt
Session 15 wind power
Powerpoint Presentation On WIND ENERGY
L6 Wind Energy
Small wind power for rural locations - part 1
Windpower
UNIT 2_ Wind Energy Conversion System.pptx
Wind Energy to Electrical Energy
Wind turbines
wind turbines
NCEPG Chapter 2.pptx, This is the WEC system.
Wind turbine
wind turbine detailed presentation .ppt
Wind energy
Wind Power
Control Of Offshore Windmills
WIND ENERGY REPORT AE 215- 2018 SOURCES OF FARM POWER
Wind Energy
Basics of Wind Meteorology - Dynamics of Horizontal Flow
Wind Energy-2.docx
Wind Energy ppt
Ad

More from Tuong Do (20)

PDF
Tiềm năng và xu hướng công nghệ phát triển điện mặt trời ở Việt Nam
PDF
Tổng quan Công nghệ Khí sinh học
PPTX
Điện mặt trời và cơ chế thanh toán bù trừ net-metering tại Thailand
PPTX
Solar PV development in singapore and SERIS introduction
PPTX
Vietnam the new powerhouse for cell manufacturing in Southeast Asia
PPT
Solar technology and market trend 2017 - Tuong Do
PPT
Xu hướng công nghệ thị trường - Điện mặt trời và Điện gió
PDF
STATE OF THE INDUSTRY KEYNOTE BNEF SUMMIT 2016
PDF
Renewable energy models for rice residues - SNV Vietnam
PPTX
GIZ support mechanism for RE development in Vietnam
PDF
Giz2013 en-identification-of-biomass-market-opportunities-in-vietnam 2
PDF
Giz2013 en-exploring-biogas-market-opportunities-vietnam
PDF
Module 1: Technical options and international best practices for on-grid powe...
PDF
Module 2: Assessment of international good practices in the fields of biomass...
PDF
Module 3: Criteria for the siting and systems integration
PDF
Module 7: Assessment of framework conditions and necessary adaptations
PDF
Module 4: Basic design parameters (technical and economic) for commercially v...
PDF
04 giz doris_beck_presentation_vietnam_september_2013
PDF
Module 6 Basic design parameters for commercially viable on-grid biomass gasi...
PDF
Giz2013 Policies and regulatory framework promoting the application of biomas...
Tiềm năng và xu hướng công nghệ phát triển điện mặt trời ở Việt Nam
Tổng quan Công nghệ Khí sinh học
Điện mặt trời và cơ chế thanh toán bù trừ net-metering tại Thailand
Solar PV development in singapore and SERIS introduction
Vietnam the new powerhouse for cell manufacturing in Southeast Asia
Solar technology and market trend 2017 - Tuong Do
Xu hướng công nghệ thị trường - Điện mặt trời và Điện gió
STATE OF THE INDUSTRY KEYNOTE BNEF SUMMIT 2016
Renewable energy models for rice residues - SNV Vietnam
GIZ support mechanism for RE development in Vietnam
Giz2013 en-identification-of-biomass-market-opportunities-in-vietnam 2
Giz2013 en-exploring-biogas-market-opportunities-vietnam
Module 1: Technical options and international best practices for on-grid powe...
Module 2: Assessment of international good practices in the fields of biomass...
Module 3: Criteria for the siting and systems integration
Module 7: Assessment of framework conditions and necessary adaptations
Module 4: Basic design parameters (technical and economic) for commercially v...
04 giz doris_beck_presentation_vietnam_september_2013
Module 6 Basic design parameters for commercially viable on-grid biomass gasi...
Giz2013 Policies and regulatory framework promoting the application of biomas...

Recently uploaded (20)

PDF
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
PDF
FOISHS ANNUAL IMPLEMENTATION PLAN 2025.pdf
PPTX
202450812 BayCHI UCSC-SV 20250812 v17.pptx
PPTX
Unit 4 Computer Architecture Multicore Processor.pptx
PDF
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
PDF
1_English_Language_Set_2.pdf probationary
PPTX
Chinmaya Tiranga Azadi Quiz (Class 7-8 )
PDF
1.3 FINAL REVISED K-10 PE and Health CG 2023 Grades 4-10 (1).pdf
PDF
Vision Prelims GS PYQ Analysis 2011-2022 www.upscpdf.com.pdf
PDF
Hazard Identification & Risk Assessment .pdf
PPTX
Share_Module_2_Power_conflict_and_negotiation.pptx
PPTX
Computer Architecture Input Output Memory.pptx
PDF
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
PDF
FORM 1 BIOLOGY MIND MAPS and their schemes
PDF
CISA (Certified Information Systems Auditor) Domain-Wise Summary.pdf
PDF
IGGE1 Understanding the Self1234567891011
PPTX
CHAPTER IV. MAN AND BIOSPHERE AND ITS TOTALITY.pptx
PDF
What if we spent less time fighting change, and more time building what’s rig...
PDF
Trump Administration's workforce development strategy
PDF
Computing-Curriculum for Schools in Ghana
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
FOISHS ANNUAL IMPLEMENTATION PLAN 2025.pdf
202450812 BayCHI UCSC-SV 20250812 v17.pptx
Unit 4 Computer Architecture Multicore Processor.pptx
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
1_English_Language_Set_2.pdf probationary
Chinmaya Tiranga Azadi Quiz (Class 7-8 )
1.3 FINAL REVISED K-10 PE and Health CG 2023 Grades 4-10 (1).pdf
Vision Prelims GS PYQ Analysis 2011-2022 www.upscpdf.com.pdf
Hazard Identification & Risk Assessment .pdf
Share_Module_2_Power_conflict_and_negotiation.pptx
Computer Architecture Input Output Memory.pptx
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
FORM 1 BIOLOGY MIND MAPS and their schemes
CISA (Certified Information Systems Auditor) Domain-Wise Summary.pdf
IGGE1 Understanding the Self1234567891011
CHAPTER IV. MAN AND BIOSPHERE AND ITS TOTALITY.pptx
What if we spent less time fighting change, and more time building what’s rig...
Trump Administration's workforce development strategy
Computing-Curriculum for Schools in Ghana

Wind energy I. Lesson 3. Wind field characterization

  • 1. Wind Energy I Wind field characterization Michael Hölling, WS 2010/2011 slide 1
  • 2. Wind Energy I Class content 5 Wind turbines in 6 Wind - blades general 2 Wind measurements interaction 7 Π-theorem 8 Wind turbine characterization 3 Wind field 9 Control strategies characterization 10 Generator 4 Wind power 11 Electrics / grid Michael Hölling, WS 2010/2011 slide 2
  • 3. Wind Energy I Motivation Why should we know anything about the wind field ? Atmospheric boundary layer (ABL) Michael Hölling, WS 2010/2011 slide 3
  • 4. Wind Energy I Motivation Why should we know anything about the wind field ? Atmospheric boundary layer (ABL) Michael Hölling, WS 2010/2011 slide 3
  • 5. Wind Energy I Motivation Why should we know anything about the wind field ? Atmospheric boundary layer (ABL) Michael Hölling, WS 2010/2011 slide 3
  • 6. Wind Energy I Motivation Enercon E-126 BARD 5.0 http://www.wind-energy-the-facts.org http://www.ecogeneration.com.au Michael Hölling, WS 2010/2011 slide 4
  • 7. Wind Energy I Motivation GROWIAN - Große Windkraftanlage (Big Wind energy converter) Michael Hölling, WS 2010/2011 slide 5
  • 8. Wind Energy I Resource wind m 2 ρ·V ρ·A·x 2 Kinetic energy of wind: E = ·u = ·u = 2 ·u 2 2 2 Corresponding power d ρ·A·x 2 for constant velocity u : Pair = ·u dt 2 1 2 dx = ·ρ·A·u · 2 dt 1 = · ρ · A · u3 2 Wind energy converter can NOT convert 100% of that energy ! Consequently the power of the wind energy converter is also smaller: 1 PW EC = cp · · ρ · A · u3 = cp · Pair 2 Michael Hölling, WS 2010/2011 slide 6
  • 9. Wind Energy I Resource wind Power curve of wind energy converter - theory rated 2.0 P(u) 1.6 P(u) [MW] 1.2 cut out 0.8 cut in 0.4 0.0 0 10 20 30 u [m/s] Michael Hölling, WS 2010/2011 slide 7
  • 10. Wind Energy I Resource wind Power curve of wind energy converter - reality Michael Hölling, WS 2010/2011 slide 8
  • 11. Wind Energy I Resource wind Annual mean wind speed taken from wind atlas Michael Hölling, WS 2010/2011 slide 9
  • 12. Wind Energy I Resource wind Estimation of Annual Energy Production (AEP) based on annual mean wind speed from wind atlas: 2.0 P(u) 1.6 P(u) [MW] 1.2 0.8 500kW 0.4 u annual ≈ 7m/s 0.0 0 10 20 30 u [m/s] Michael Hölling, WS 2010/2011 slide 10
  • 13. Wind Energy I Resource wind Is such a calculation realistic ? How does real wind behave ? Wind velocity time series (20 days) Michael Hölling, WS 2010/2011 slide 11
  • 14. Wind Energy I Resource wind Calculation of 10-minute averaged wind speed Michael Hölling, WS 2010/2011 slide 12
  • 15. Wind Energy I Resource wind Calculation of 10-minute averaged wind speed Michael Hölling, WS 2010/2011 slide 12
  • 16. Wind Energy I Resource wind Distribution of 10-minute averaged wind speeds (u) Michael Hölling, WS 2010/2011 slide 13
  • 17. Wind Energy I Resource wind Estimation of energy production based on wind distribution (u) Michael Hölling, WS 2010/2011 slide 14
  • 18. Wind Energy I Resource wind Estimation of energy production based on wind distribution (u) Michael Hölling, WS 2010/2011 slide 14
  • 19. Wind Energy I Resource wind Estimation of energy production based on wind distribution E(u) (u) Michael Hölling, WS 2010/2011 slide 14
  • 20. Wind Energy I Resource wind Estimation of energy production based on wind distribution E(u) (u) Michael Hölling, WS 2010/2011 slide 14
  • 21. Wind Energy I Resource wind Estimation of energy production based on wind distribution E(u) (u) Michael Hölling, WS 2010/2011 slide 14
  • 22. Wind Energy I Resource wind Estimation of energy production based on wind distribution E(u) (u) Michael Hölling, WS 2010/2011 slide 14
  • 23. Wind Energy I Resource wind Estimation of energy production based on wind distribution E(u) (u) energy production: N N E= E(ui ) = counts(ui )/6 · P (ui ) i=1 i=1 Michael Hölling, WS 2010/2011 slide 14
  • 24. Wind Energy I Resource wind Comparison of energy production for mean wind speed and 10- minute averaged wind speed distribution (example based on data of 20 days): u = 6.3m/s 244 kW E = counts(< u >)[h] · P (< u >) = 24 · 20 · 244 = 117120kW h Michael Hölling, WS 2010/2011 slide 15
  • 25. Wind Energy I Resource wind E(u) N N E= E(ui ) = counts(ui )/6 · P (ui ) = 166, 920kWh i=1 i=1 Michael Hölling, WS 2010/2011 slide 16
  • 26. Wind Energy I Resource wind Description of wind speed distribution (u) Michael Hölling, WS 2010/2011 slide 17
  • 27. Wind Energy I Resource wind Convert to probability density by normalization Michael Hölling, WS 2010/2011 slide 18
  • 28. Wind Energy I Resource wind Distribution can be fitted by Weibull distribution A = scaling parameter k = form parameter A=7 k = 2.59 Michael Hölling, WS 2010/2011 slide 19
  • 29. Wind Energy I Resource wind Weibull distribution u [m/s] Michael Hölling, WS 2010/2011 slide 20
  • 30. Wind Energy I Resource wind Wind speed variation with height Atmospheric boundary layer (ABL) Michael Hölling, WS 2010/2011 slide 21
  • 31. Wind Energy I Wind field characterization Meteorological approach: logarithmic profile roughness length for topographical effects thermal effects International Electrotechnical Commission (IEC) approach: power law profile standard for site assessment Alternative approach: stochastic analysis high frequency data for better understanding Michael Hölling, WS 2010/2011 slide 22
  • 32. Wind Energy I Meteorological approach Wind speed u (mean values) as a function of height z: Logarithmic profile: u* = friction velocity (typically between 0.1m/s and 0.5m/s) k = von Karman constant, about 0.4 z0 = surface roughness length Michael Hölling, WS 2010/2011 slide 23
  • 33. Wind Energy I Meteorological approach classes 3 2 1 0 Michael Hölling, WS 2010/2011 slide 24
  • 34. Wind Energy I Meteorological approach classes 3 2 1 0 Michael Hölling, WS 2010/2011 slide 25
  • 35. Wind Energy I Meteorological approach Influence of friction velocity u* on profile Michael Hölling, WS 2010/2011 slide 26
  • 36. Wind Energy I Meteorological approach Influence of friction velocity u* on profile Michael Hölling, WS 2010/2011 slide 27
  • 37. Wind Energy I Meteorological approach Thermal effects make ABL stable, neutral or unstable Monin Obukhov length Michael Hölling, WS 2010/2011 slide 28
  • 38. Wind Energy I IEC approach Wind speed u (mean values) as a function of height z: Power law profile: z2 α needs to be fitted from data ! Velocity at height z can be determined by: α z z1 u(z) = u(z1 ) · z1 Commonly used for wind energy applications ! Michael Hölling, WS 2010/2011 slide 29
  • 39. Wind Energy I Wind profile What is the difference between the two approaches ? Michael Hölling, WS 2010/2011 slide 30
  • 40. Wind Energy I Wind profile What is the difference between the two approaches ? u(z2) u(z1) Michael Hölling, WS 2010/2011 slide 30
  • 41. Wind Energy I Wind profile What is the difference between the two approaches ? u(z2) u(z1) Michael Hölling, WS 2010/2011 slide 31
  • 42. Wind Energy I Site characterization / assessment IEC demands information for site characterization: annual mean wind velocity parameters for Weibull distribution of 10-min averaged wind speeds annual mean wind profile σ<u>10min turbulence intensity Ti = < u >10min Michael Hölling, WS 2010/2011 slide 32
  • 43. Wind Energy I Alternative approach What happens in reality ? Michael Hölling, WS 2010/2011 slide 33
  • 44. Wind Energy I Alternative approach What happens in reality ? Michael Hölling, WS 2010/2011 slide 34