SlideShare a Scribd company logo
1
Mathematics - Unit Test
Moder Paper
Weightage Tables
Table : 1 Weightage to Academic Standards
S. No. Academic Standards Weightage % Marks
1. Problem Solving 40 10
2. Reasoning & Proof 20 5
3. Communication 12 3
4. Connnections 16 4
5. Representation & Visualisation 12 3
Total 100% 25
Table : 2 Weightage to Content
S. No. Chapter Weightage % Marks
1. Real numbers 48% 12
2. Sets 20% 5
3. Polynomials 32% 8
100% 25
Table : 3 Weightage to difficulty level
S. No. Difficulty level Weightage % Marks
1. Easy 24% 06
2. Average 52% 13
3. Difficulty 24% 06
100% 25
Table : 4 Weightage to type of questions
S. No. Type of Questions Weightage % No. of Questions Marks
1. Objective 28% 07 07
2. ShortAnswer 40% 05 10
3. Essay 32% 02 08
100% 14 25
2
BluePrint
Unit:ContainingChaptersRealNumbers,Sets&Polynominals
AcademicStandards
ProblemSolvingReasoning&ProofCommunicationConnectionRepresentation
S.No.ContentObjSAETotalObjSAETotalObjSAETotalObjSAETotalObjSAETotalTotal
1.RealNumbers(1)1
(1)2
-03--(1)4
04(1)1
--01(1)1
(1)2
-03(1)1
--0112
2.Sets-(1)2
-02(1)1
--01-(1)2
-02--------05
3.Polynominals(1)1
-(1)4
05--------(1)1--
01-(1)2
-0208
(2)1
(2)2
(1)4
10(1)1
-(1)4
05(1)1
(1)2
-03(2)1
(1)2
-04(1)1
(1)2
-0325
3
Mathematics - Unit Test
(Real numbers, sets, Pohynomials)
Class: X Max Marks: 25
Time: 45 min
Instructions:
· The question paper consists of three sections.
· All questions are compulsory.
Section - I
7 ´ 1 = 7 marks
Note:
1. Answer all the questions. Each question carries 1 mark.
2. Choose the correct anwer from the four alternatives given for each ques-
tion and write capital letters A, B, C or D in the brackets.
1. The prime factorisation form of 156 ( )
A) 2 ´ 3´ 13 B) 22
´ 32
´ 13 C) 22
´ 3´ 13 D) 2 ´ 32
´ 13
2. The logarithemic form of 8x
= 2 ( )
A) logx
8 = 2 B) log8
2 = x C) logx
2 = 8 D) log2
x = 8
3. The
q
p
form of the decimal 0.875 ( )
A) 3
2
7
B)
16
7
C)
8
3
D) 2
2
7
4. Which of the following integers does
4
3
lies between ( )
A) 0 and 1 B) 1 and 2 C) 3 and 4 D) -1 and 1
5. A = {x / x is a boy} B = {x / x is a girl} them ( )
A) f=È BA B) q¹Ç BA C)A- B =A D)A- B = f
6. The zero of the polynomial 2x-3 ( )
A)
3
2
B)
2
3
C)
3
2-
D)
2
3-
7. one of the following algebraic expression is not a polynomial ( )
A) - 2
2x B) 52 +x C)
x
x
1
+ D) 5 - 2x
4
Section - II
5 ´ 2 = 10 marks
Note:
1. Answer all the questions.
2. Each question carries 2 marks.
8. Write the following rationals as decimals without actual division
i)
25
13
ii)
110
143
9. Expand log 2
3
y
x
10. IfA= {1, 2, 3}, B = {2, 3, 4, 5} find BA È and BA Ç
11. Write the following sets in roster form
(i)A= The set of natural numbers less than 7
(ii) B = {x : x is a letter in the word ‘School’}
12. Draw the graph of P(x) = x-2 and find where it interesects X-axis.
Section - III
2 ´ 4 = 8 marks
Note:
1. Answer all the questions, choosing one from each question.
2. Each question carries 4 marks.
13. Prove that 2 is irrational by the method of contradiction
(or)
Prove that 523 - is irrational.
14. Find the zeros of the quadratic polynomial x2
+5x+6 and verify the relationship
between the zeroes and coefficients.
Divide 3x3
+ x2
+ 2x+5by 3x-1 and verify the result with division algorithm.
5
X class Mathematics
(2014-15)
Unit wise Division of Syllabus
Unit - I:
1. Real numbers
2. Sets
3. Polynomial
Unit - II:
1. Similar Triangles
2. Linear Equations in 2 variables
Unit - III:
1. Progressions
2. Tangents and secants to a circle
Unit - IV:
1. Application of Trigonometry
2. Probatrility
6
X class
Mathematics (2014-15)
Chapter wise Division of Syllabus
Under Paper I and Paper II
Paper - I Paper - II
1. Real numbers 1. Similar Triangles
(ydŸïe dŸ+K«T) (dŸsÁÖ|Ÿ çÜuó„TC²T)
2. Sets 2. Tangents and secants to a circle
(dŸ$TÔáTT) (eÔï“¿ì dŸÎsÁô¹s¿£T eT]jáTT#óû<Šq ¹sKT)
3. Polynomials 3. Mensuration
(‹VŸQ|Ÿ<ŠTT) (¹¿ŒçÔá$TÜ)
4. Pair of Linear equations in two variables 4. Trigonometry
(Âs+&ƒT #ásÁsXø—ýË ¹s¿¡jáT dŸMT¿£sÁD² ÈÔá) (çÜ¿ÃD$TÜ)
5. Quadratic Equations 5. Applications of Trigonometry
(esÁZ dŸMT¿£sÁD²T) (çÜ¿ÃD$TÜ nqTesÁïHT)
6. Progressions 6. Probability
(çXâ&óƒTT) (dŸ+uó²e«Ôá)
7. Co-ordinate Geometry 7. Statastics
(“sÁÖ|Ÿ¿£ ¹sU² >·DìÔá+) (kÍ+K«¿£ XæçdŸï+)
7
SSC Public Examinations - March - 2015
Model Paper - Mathematics
Weightage Tables
Paper - 1
Table - 1: Weightage to Academic Standards
S. No. Academic Standards Weightage (%) Marks Paper-I
1. Problem Solving 40% 32
2. Reasoning and Proof 20% 16 Part A- 64 marks
3. Communication 10% 08 Part B- 15 marks
4. Connection 15% 12
5. Representation 15% 11
Total 100% 79 Including choice
questions
Table : 2 Weightage to Content
S. No. CotentArea Weightage % Marks
1. Number System 24% 19
2. Algebra 60% 47
3. Co-ordinate Gemetry 16% 13
Total 100% 79
Table : 3 Weightage to difficulty level
S. No. Difficulty level Weightage % Marks
1. Easy 25% 20
2. Average 50% 39
3. Difficulty 25% 20
Total 100% 79
8
Table - 4: Weightage to type of Questions
S. No. Type of Questions Weightage (%) No. of Questions Marks
1. Objective type (½) 19% 30 15
2. Very short answer type (1) 08% 06 06
3. Short answer type (2) 20% 08 16
4. Essay type (4) 41% 08 32
5. Graph (5) 12% 02 10
Total 100% 54 79
Table - 5: Area wise, Standard wise Division of Question paper
Q.No. Marks Area Ae. Std Q.No. Marks Area Ae. Std
PART-A
1 2 Num.Sys. PS 28(4) ½ Algebra COM
2 2 Num.Sys. R/P 29(5) ½ Algebra CON
3 2 Algebra PS 30(6) ½ Algebra REP
4. 2 Algebra PS 31(7) ½ Co-Geo PS
5. 2 Algebra COM 32(8) ½ Co-Geo PS
6. 2 Algebra CON 33(9) ½ Co-Geo R/P
7. 2 Co-Geo PS 34(10) ½ Co-Geo CON
8 2 Co-Geo CON 35(11) ½ Num.Sys. R/P
9. 1 Num.Sys. PS 36(12) ½ Num.Sys. REP
10. 1 Num.Sys. PS 37(13) ½ Algebra PS
11. 1 Num.Sys. CON 38(14) ½ Algebra R/P
12. 1 Algebra PS 39(15) ½ Algebra COM
13. 1 Algebra CON 40(16) ½ Algebra CON
14. 1 Co-Geo COM 41(17) ½ Co-Geo PS
15. 4 Num. Sys 42(18) ½ Co-Geo PS
16. 4 Num. Sys PS 43(19) ½ Co-Geo COM
17. 4 Algebra R/P 44(20) ½ Co-Geo CON
18. 4 Algebra PS 45(21) ½ Num.Sys. COM
19. 4 Algebra PS 46(22) ½ Num.Sys. CON
20. 4 Algebra RP 47(23) ½ Num.Sys. COM
21. 4 Algebra CON. 48(24) ½ Num.Sys. COM
22. 4 Co-Geo PS 49(25) ½ Num.Sys. COM
23. 5 Algebra REP 50(26) ½ Algebra PS
24. 5 Algebra REP 51(27) ½ Algebra PS
PART-B
25(1) ½ Num.Sys. PS 52(28) ½ Algebra PS
26(2) ½ Algebra PS 53(29) ½ Algebra PS
27(3) ½ Algebra R/P 51(30) ½ Algebra PS
9
Table-6:BluePrint-MathsPaper-I
AcademicStandards
ProblemSolvingAcademicReasoningStandardsConnectionRepresentationTot
andProofCommunicational
Sl.ContentAreaOVSASAEGTotOVSASAEGTotOVSASAEGTotOVSASAEGTotOVSASAEGTot(GT)
No.
1NumbersSystem(1)½
(1)1
(1)2
(1)4
-7½(1)½
-(1)2
(1)4
-6½(5)½
(1)1
---3½-(1)1
---1(1)½
----½19
-Realnumbers
-Sets
2Algebra(7)½
(1)1
(2)2
(2)4
-16½(2)½
--(2)4
-9(2)½
-(1)2
--3(2)½
(1)1
(1)2
(1)4
-8(1)½
---(2)5
10½47
-Polynomials
-LinearEquation
introvariables
-QuadraticEqn.
-Progression
3Co-ordinate(4)½
-(1)2
(1)4
-8(1)½
----½(1)½
(1)1
---1½(2)½
-(1)2
--3------13
Geometry
Total(12)½
(2)1
(4)2
(4)4
-32(4)½
-(1)2
(3)4
-16(8)½
(2)1
(1)2
--08(4)½
(2)1
(2)2
(1)4
-12(2)½
---(2)5
1179
10
Mathematics - Paper - I
(English Version)
Part A and B
Time: 2½ hours Max Marks: 50
Instructions:
1. Answer the questions under Part-A on a seperate answer book.
2. Write the answerws to the questions under Part-B on the question paper
itself and attach it to the answerbook of Part - A
Part-A
Section - I
Time: 2 hours Marks: 35
Note:
1. Answer any five questions choosing at least two from each of the follow-
ing two group, i.e., A and B.
2. Each question carries 2 marks.
Group - A
(Real numbers, sets, polynomials, Quadratic Equations)
1. Find H.C.F. and L.C.M. of 220 and 284 by Prime factorisation method.
2. Check whetherA{x: x2
= 25 and 6x = 15} is an empty set or not? Justify your answer.
3. The sum of zeroes of a quadratic polynomial Kx2
–3x +1is 1, find the value of K.
4. Find two numbers where sum is 27 and product is 182.
Group - B
(Lineor Equations in two variables, Progressions, Co-ordinate Geometry)
5. Formulate a pair of linear equations in two variables “3 pens and 4 books together cost
Rs.50 where as 5 pens and 3 books together cost Rs. 54”.
6. In a nursary, there are 17 rose plants in the first row, 14 in the second row, 11 in the
third row and so on. It there are 2 rose plants in the last two, find how many rows of
rose plants are there in the nursary.
7. Find the point on the X-axis which is equidistant from (2 – 5) and (– 2, 9).
8. Verify that the points (1, 5), (2, 3) and (– 2, – 1) are colinear are not?
11
Section - II
Marks: 4 ´ 1 = 4
Note:
1. Answer any four of the following six questions.
2. Each question carries 1 mark.
9. Determine the value of log3
243
10. LetA= {1, 3, 5, 7}, B = {1, 2, 3, 4, 6} findA– B and B – A.
11. Give any two examples of disjoint sets from your daily life.
12. Find the zeroes of the polynomial P(y) = y2
–1.
13. Do the irrational numbers 2 , 8 , 18 , 32 ............. from an A.P.? If so, find
common difference.
14. What do you mean by “slope” of a straight line?
Section - III
Marks: 4 ´ 4 = 16
Note:
1. Answer any four questions, choosing two from each of the following
groups, i.e., A and B.
2. Each question carries 4 mark.
Group - A
(Real numbers, Sets, Polynomials, Quadratic Equations)
15. Prove that 3 is irrational by the method of contradiction.
16. Let A = {x : x is an even number}
B = {x : x is an odd number}
C = {x : x is a prime number}
D = {x : x is a multiple of 3}
Find (i) BA È (ii) BA Ç (iii) C – D (iv) CA Ç and describe the sets in
set builder form.
17. Find a quadratic polynominal whose sum of zeroes is
2
3-
and product is –1. How
many such polynomials you can find in this process?
18. Find the roots of the equation 5x2
– 6x– 2 = 0 by the method of completing the square.
12
Group - B
(Linear Equations in two variables, Progressions and co-ordinate Geometry)
19. Solve the euqations 2
32
=+
yx and 1
94
-=-
yx .
20. Check whether the given pair of linear equations represent intersecting, parallel or
co-incident lines. Find the solution if the equations are consistent.
(i) 3x + 2y = 5 (ii) 2x – 3y = 5
2x – 3y = 7 4x – 6y = 15
21. The number of bacteria in a certain culture triples every hour. If there were 50
bacteria present in the culture originally, what would be the number of bacteria in
3rd
hour? 5th
hour? 10th
hour? 11th
hour?
22. Find the area of triangle formed by the points (8, –5) (–2, –7) and (5, 1) by using
Heron’s formula.
Section - IV
(Polynomials, Linear Equations in two variables)
Marks: 5 ´ 2 = 10
Note:
1. Answer any one question from the following.
2. This question carries 5 marks.
23. Draw the graph of P(x) = x2
– 6x + 9 and find zeroes. Verify the zeroes of the
polynomial.
24. Solve the pair of linear equations graphically
2x – y = 5
3x + 2y = 11
13
Mathematics - Paper - I
(English Version)
Part A and B
Time: 2½ hours Max Marks: 50
Part - B
Time: 30 minutes Marks: 15
Note:
1. All questions are to be answered.
2. Each question carries ½ mark
3. Answer are to be written in the question paper only.
4. Marks will not be given for over - writing, re-writing or erased answers.
I. Write the Capital letters of the correct answer in the brackets provided against
each question. 10´ ½ = 5 marks
1. One of the following is an irrational number. ( )
A)
3
2
B)
25
16
C) 8 D) 04.0
2. The product of zeroes of the cubic polynomial 2 x3
–5 x2
–14 x+8 is ( )
A) – 4 B) 4 C) –7 D)
2
5
3. A pair of Linear equations which satisfies dependent system ( )
A) 2x + y – 5 = 0 ; 3x – 2y – 4 = 0
B) 3x + 4y = 2 ; 6x + 8y = 4
C) x + 2y = 3 ; 2x + 4y = 5
D) x + 2y – 30 = 0 ; 3x + 6y + 60 = 0
4. The n term of G.P. is an
= arn-1
where ‘r’represents ( )
A) Firs terms B) Common difference
C) Common ratio D) Radius
5. The number of two digit numbers which are divisible by 3 ( )
A) 30 B) 20 C) 29 D) 31
6. The euqation of the line which intersects X-axis at (3, 0) is ( )
A) x + 3 = 0 B) y + 3 = 0 C) x – 3 = 0 D) y – 3 = 0
7. The coordinates of the centre of the circle if the ends of the diameter are
(2, – 5) and (–2, 9) ( )
A) (0, 0) B) (2, –2) C) (–5, 9) D) (0, 2)
14
8. The point of intersection of the lines x = 2014 and y = 2015 is ( )
A) (2015, 2014) B) (2014, 2015) C) (0, 0) D) (1, 1)
9. Which of the following vertices form a triangle ( )
A) (1, 2), (1, 3), (1, 4) B) (5, 1), (6, 1), (7, 1)
C) (0, 0), ( –1, 0), (2, 0) D) (1, 2), (2, 3), (3, 4)
10. The slope of a ladder making an angle 300
with the floor ( )
A) 1 B)
3
1
C) 3 D)
2
1
II. Fill in the blanks with suitable answers 10´ ½ = 5 marks
11. The decimal form of 23
52
23
´
is ______________
12. The shaded region in the diagram represents ______________
A B
13. If
3
1
is one zero of 3x2
+ 5x– 2 then the other zero is ______________
14. The value of ‘K’ for which a pair of linear equations 3x+ 4y+ 2 = 0 and 9x+12y+K = 0
represent coincident lines is ______________
15. The quadratic equation having roots a and b is ______________
16. The sum of first 20 odd numbers is ______________
17. The distance between the origin to the point ( – 4, – 5) is ______________ units.
18. The centroid of the triangle whose vertices are (3, –5), (–7, 4) and (10, –2) is
______________
19. The distance between two points (x1
, y1
) and (x2
, y2
) on the line parallel to X-axis is
______________
20. The mid point of the line joining the points ( )16
4log,8
2log and ( )oo 0cos,90sin is
______________
900
300
15
For the following questions under Group-A choose the correct answer from the
master list Group-B and write the letter of the correct answer in the brackets
provided against each item. 10´ ½ = 5 marks
(i) Group - A Group - B
21. The logirithmic form of 210
= 1024 ( ) A) 4 (log5 + log2)
22. The Exponential form of 01.0
10log ( ) B) 0
23. The Expansion of log 10000 ( ) C) log4
24. The short form of log16 – 2 log2 ( ) D) 10log1024
2 =
25. The value of 1
1000log ( ) E) log8
F) log1000
G) – 2
H) log125 + log800
(ii) Group - A Group - B
26. Product of zeroes of x2
– 3 ( ) I)
2
3
27. Sum of zeroes of 2x3
– 3x2
– 14x+18 ( ) J) 3
28. The common root of 2x2
+ x –6 = 0 ( ) K) 0
and x2
– 3x– 10 = 0 is
29. The value of the polynomial ( ) L) 36
p(x) = 3x2
– 5x – 2 at x = 2
30. The discriment of quadratic equation ( ) M) – 2
x2
– 4x + 5 = 0
( ) N) – 3
( ) O) – 7
( ) P) – 4
1
Mathematics - Paper - II
Moder Paper
Weightage Tables
Table : 1 Weightage to Academic Standards
S. No. Academic Standards Weightage % Marks
1. Problem Solving 40 32
2. Reasoning & Proof 20 16
3. Communication 10 8
4. Connnections 15 12
5. Representation & Visualisation 15 11
Total 100% 79
Table : 2 Weightage to Areas
S. No. Area Weightage % Marks
1. Geometry 27 22
(i) Similar Triangles
(ii) Targents and Secauts to a circle
2. Mensuration 19 15
3. Trigonametry 29 23
(i) Trigonametry
(ii)Apps of Trigonametry
4 Statistics 25 19
(i) Statistics
(ii) Probability
100% 79
Table : 3 Weightage to difficulty level
S. No. Type Weightage % Marks
1 Easy 25% 20
2 Average 50% 39
3 Difficult 25% 20
100% 79
Table : 4 Weightage to type of questions
S. No. Type of Questions Weightage % Marks
1. LongAnswer 53% 42
2. ShortAnswer 20% 16
3. Very ShortAnswer 8% 06
4 Objective 19% 15
Total 100% 79
2
BluePrint(Paper-II)
ProblemSolvingReasoning&ProofCommunicationConnectionRepresentation
ContentESAVSAObjTotESAVSAObjTotESAVSAObjTotESAVSAObjTotESAVSAObjTotTot
Areas
Geometry(1)4
(1)2-
(1)½
-(1)4
(1)2
-(1)½
----(1)½
---(1)1
(1)½
-(1)5
--(1)½
-22
(Similar
Triangles&
Circles
Mensuration(1)4
(1)2
(1)1
(1)½
----(2)½
-(1)4
-----(1)2
-(1)½
------15
Trigonometry(1)5
(1)2-
(3)½
--(1)2
-(1)½
---(1)1
--(1)4
--(4)½
----(1)½
-23
(Trigonametry&(1)4
Applicationor
Trigonometry
Statistics-(1)2
(1)1
(2)½
-(1)4
-(1)1
(1)½
--(1)2
-(1)½
---(1)1
(2)½
-(1)4
--(2)½
-19
(Statistics&
Probability)
(1)5
(4)2
(2)1
(10)½
32(2)4
(2)2
(1)1
(6)½
16(1)4
(1)2
(1)1
(2)½
08(1)4
(1)2
(2)1
(8)½
12(1)5--
(4)½
1179
(4)3
(1)4
3
SSC Model Question Paper
Mathematics - Paper - II
(English Version)
Part A and B
Time: 2½ hours Max Marks: 50
Instructions:
1. Answer the questions under Part-A on a seperate answer book.
2. Write the answerws to the questions under Part-B on the question paper
itself and attach it to the answerbook of Part - A
Part-A
Section - I
Time: 2 hours Marks: 35
Note:
1. Answer any five questions choosing atleast two from each of the
following two groups i.e., A and B.
2. Each question carries 2 marks.
Group - A
(Similar triangles, Tangents and secants to a circle, mensuration)
1. Prove that the sum of the squares of the sides of a rhombus is equal to the sum of the
squares of its diagonals.
2. ATangent is drawn from a point which is 34 cms away from centre of a circle. If the
diameter of the circle is 34 cms, then find the length of the tangent.
3. Find the volume and the total surface area of a hemisphere of radius 3.5 cms.
4. An oil drum is in the shape of a cylinder having the following dimensions: diameter is
2m. and height is 7m. If the painter charges 3 per m2
. To paint the drum find the
charges to be paid to the painter.
Group - B
5. If ,
5
3
sin =q find the value of qq 22
tansec + .
6. Ravi is on the top of a 20m high building. Rahimis 20m. away fromthe bottomof the
building, Can Rahim able to see Ravi at 450
angle? Justify your answer.
7. A bagcontains 5 Red and 8 white balls. If a ball is drawn at Randomfromthe bag what
is the probability that it will be (i) white ball (ii) not a white ball.
8. Write the formula of median for a grouped data? Explain the symbols in words.
4
Section - II
Marks: 4 ´ 1 = 4
Note:
1. Answer any four of the following six questions.
2. Each question carries 1 mark.
9. Write the properties of similar triangles.
10. Find the area of required cloth to cover the heep of grain in conical shape, of whose
diameter is 8m and slant height of 3m.
11. Adie is thrown at once. Find the probability of getting an even prime number.
12. Find the mode of the data 5, 6, 9, 6, 12, 3 , 6. 11, 6 and 7.
13. Express tanq in terms of sinq .
14. A doctor observed that the pulse rate of 4 students is 72, 3 students is 78 and 2
students is 80. Find the mean of the pulse rate of the above students.
Section - III
Marks: 4 ´ 4 = 16
Note:
1. Answer any four questions, choosing two from each of the following
groups, i.e., A and B.
2. Each question carries 4 mark.
Group - A
15. A chord makes a right angle at the centre of a circle having a radius 10 cms. find
(i) Area of minor segment (ii) Area of major segment
16. State and prove pythogorus theroem.
17. Metallic spheres of radius 6 cm, 8cm and 10 cm. respectively are melted to form a
single solid sphere. Find the radius of the resulting sphere.
18. Find the ratio of surface areas of sphere and cylinder having same radius and height.
Comment on the result.
Group - B
19. If P=+ qq tansec then find the value of qSin in terms of ‘P’.
20. Aboat has to cross a river. It crosses the river by makingan angle of 600
with the bank
of the river, due to the streamof the river and travels distance of 600 mts., to reach the
another side of the river. What is the width of the river?
5
21. Two dice are rolled simultaneouly and counts are added (i) complete the table given
below.
Event 2 3 4 5 6 7 8 9 10 11 12
(sum of 2 dice)
Probability
36
1
36
5
(ii) Astudent argues that there are 11 posible out comes 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12.
Therefore each of themas a probability
11
1
. Do you agree with this argument . Justify
your answer.
22. Draw “OGIVE CURVE” of the following frequency distribution table.
Classes 0-20 20-40 40-60 60-80 80-100 100-120
Frequency 9 16 24 15 4 2
Section - IV
Marks: 5 ´ 2 = 10
Note:
1. Answer one question from the following.
2. Each question carries five marks.
23. Construct a triangle of sides 4 cm. 5 cm. and 6cm. Then construct a triangle similar to
it. Whose slides are
3
2
of the corresponding sides of the first triangle.
24. The angle of elevation of a jet plane from a point Aon the ground is 600
after a flight
of 15 seconds, the angle of elevation changes to 300
. If the jet plane is flying at a
constant height of 1500 3 meter, find the speed of a jet plane.
6
Mathematics - Paper-II
Part - B
(English Version)
Time: 30 min Max Marks: 15
Instructions:
1. The question paper carries
2
1
mark.
2. Answer are to be written is the question paper only.
3. All questions are to be answered.
4. Marks will not be awarded is case of any over writing or re-writing or
erased answers.
Part-B
10 ´
2
1
= 5 marks
I. Write the capital letters showing the answer in the brackets provided against each
question.
1. from the diagramLM || CB and LN CD the which ( )
of the following is true.
A)
ND
AN
MB
AM
= B)
AB
AM
ND
AN
= C)
ML
AM
NL
AN
= D)
AD
AN
MB
AM
=
2. The distance between the points ( qcos , 0 ) , (0, qsin ) ( )
A) 1 B) -1 C) 0 D) 1-
3. TheA.M. of 30 students is 42.Among them two got zero marks then A.M.
of remaining students ( )
A) 40 B) 42 C) 45 D) 28
4. The probability of getting kind or green card from the play cards (1 deek) ( )
A)
52
1
B)
13
1
C) 45 D) 28
5. The h indicates in Mode h
fff
ff
lZ ´÷÷
ø
ö
çç
è
æ
--
-
+=
10
0
2 ( )
A) Frequency B) Length of the CI
C
B
M
A
N
D
L
7
C) Lower boundary of mode class D) Mode
6. Which of the following is incorrect ( )
A) The ratio of surface areas of cylinder and core is 1:1
B) The ratio SA(Surface Area) of sphere and hemisphere is 2:1
C) The ratio TSA(Total Surface Area) of sphere and hemisphere is 2:1
D) The ratio of volumes of cylinder and core is 3:1
7. =
-
oo
oo
64tan.26tan
67sin23cos
( )
A) sin 90° B) tan 30° C) tan 0° D) cot 30°
8. Among the numbers 1, 2, 3, ............. 15 the probability of choosinga number
which is a multiple of 4 ( )
A)
15
4
B)
15
2
C)
5
1
D)
5
3
9. Which of the following representations
29
21
sin =q ( )
A) B)
C) D)
10. Gita said that the probability of impossible events is 1. Pravillika said that
probability of sure events is 0 andAtiya said that the probability of any
event lies in between 0 and 1. In the above with whom you will agree. ( )
A) Gita B) Pravillaka C)Atiya D) All the three
P
21
29
Q
R
q
E
21
29
D
F
q
C
29
21
A
B
q
Z
29
21
X
Y
q
8
II. Fill in the blanks with suitable words.
11. The angle between a tangent to a circle and the radius drawn at the plant of contact
is ______________
12. The ratio between Leteral surface area and total surface area of cube is ____________
13. A man goes to East and then to South. The trigonamentric ratio involved to find the
distance travelled from the starting point is ______________
20
14. 15 Fromthe figure the possible measures of central tendency
10 can be found is ______________
5
5 10 15 20
15. From the figure the probability to get yellow colour ball
is ______________
R = Red
Y = Yellow
16. The Medians of two similar Triangles are 3cm. and 5cm. Then the ratio of areas of
above two triangles is ______________
17. The area of the base of a cylander is 616 sq. cm. then its radius is ______________
18. The length of the chard making an angle 600
at the centre of the circle having radius
6 cm is ______________
19. Marks 10 20 30
No. of students 5 9 3
From the above data the value of median is ______________
20. A game of chance consists of spinning an arrow which
comes to rest at one of the numbers 1, 2, 3, 4, 5, 6, 7, 8
and these are equally likely outcomes. The possibility that the
arrow will point at a number greater than 2 is ______________
R
Y
R
Y
R R
1
2
3
45
6
7
8
9
Match the following 5´ ½ = 2½ marks
Group - A Group - B
21. In triangleABC, D and E are the ( ) A) 20
points onAB andAC and
EC
AE
DC
AD
= then
22. In triangle BED, ÐE = 90° and ( ) B) 4
ED2
= BD. CD then
23. Volume of a hemicphere is ( ) C)
3
77
2250 cm3
than its radius
24. The horizontel distance from the foot ( ) D) 15
of the leader having height 25m touches
the window at a height of 15m is
25. Two concentric circles of radii 5cm. ( ) E) DE || BC
and 3cm. are drawn. The length of the ( ) F) DE ^ BC
chord of larger circle touches to
small circle ( ) G) 8
( ) H)
7
22
Match the following 5´ ½ = 2½ marks
Group - A Group - B
26. If secq + tanq =
2
1
then ( ) I) 0
secq - tanq value
27. oooo
180cos........2cos1cos0cos ´´´´ ( ) J) 1
28. if
5
4
cos =A then sinAvalue ( ) K) 50°
29. The length of the shadow of a tower of ( ) L)
5
3
height 15m. at 7A.M. is 15 3 than the
angle made by sum with the earth
30. If tangents PAand PB from a point ( ) M) –
3
2
P to a circle with centre O are inclined ( ) N) 60°
to each other at an angle of 80° than ( ) O) 2
ÐPOA ( ) P) 3
1
|Ÿ<Še ÔásÁ>·Ü qeTÖH ç|ŸXø•|ŸçÔá+
jáTÖ“{Ù fÉdt¼
>·DìÔá+
ÔásÁ>·Ü: 10 yîTTÔáï+ eÖsÁTØT 25
dŸeTjáT+ : 45 “;
dŸÖ#áqT:
· ç|ŸXæ•|ŸçÔá+ eTÖ&ƒT ™d¿£ŒqT¢ ¿£*Ð –+³T+~.
™d¿£ŒHŽ ` 1
n“• ç|ŸXø•Å£” Èy‹TT sjáT+&. ç¿ì+<Š“eÇ‹&q HT>·T dŸeÖ<ó‘qeTT qT+& dŸ]jî®Tq
Èy‹TqT dŸÖº+#áT n¿£ŒsÁeTT (A / B /C / D)qT ‚eÇ‹&q çu²Â¿³¢ýË sjáT+&.
7 ´ 1 = 7 eÖsÁTØT
1. 156 jîTT¿£Ø ç|Ÿ<ó‘q ¿±sÁD²+¿£ ‹Ý sÁÖ|Ÿ+. ( )
A) 2 ´ 3´ 13 B) 22
´ 32
´ 13 C) 22
´ 3´ 13 D) 2 ´ 32
´ 13
2. 8x
= 2 jîTT¿£Ø dŸ+esÁZeÖq sÁÖ|ŸeTT. ( )
A) logx
8 = 2 B) log8
2 = x C) logx
2 = 8 D) log2
x = 8
3. 0.875 jîTT¿£Ø q
p
sÁÖ|ŸeTT. ( )
A) 3
2
7
B)
16
7
C)
8
3
D) 2
2
7
4. ¿ì+~ y“ýË dŸ+U²«¹sK™|Õ @ |ŸPsÁ’dŸ+K« eT<óŠ« 4
3
–+³T+~. ( )
A) 0 eT]jáTT 1 B) 1 eT]jáTT 2 C) 3 eT]jáTT 4 D) -1 eT]jáTT 1
5. A = {x / x ÿ¿£ u²T&ƒT} B = {x / x ÿ¿£ u²*¿£} nsTTq ( )
A) f=È BA B) q¹Ç BA C)A- B =A D)A- B = f
6. 2x-3 ‹VŸQ|Ÿ~ XøSq« $Te. ( )
A)
3
2
B)
2
3
C)
3
2-
D)
2
3-
7. ç¿ì+~ y“ýË @ ;JjáT dŸeÖdŸeTT ‹VŸQ|Ÿ~¿±<ŠT. ( )
A) - 2
2x B) 52 +x C)
x
x
1
+ D) 5-2x
2
™d¿£ŒHŽ ` II
5 ´ 2 = 10 eÖsÁTØT
n“• ç|ŸXø•Å£” Èy‹TT sjáT+&.
ç|ŸÜ ç|ŸXø•Å£” Âs+&ƒT eÖsÁTØT.
8. ¿ì+~ n¿£sÁD¡jáT dŸ+K«qT uó²>·VŸäsÁ+ #ûjáTÅ£”+&†Hû <ŠXæ+XøsÁÖ|Ÿ+ýË sjáT+&.
i)
25
13
ii)
110
143
9. log 2
3
y
x
qT $dŸï]+#áTeTT.
10. A = {1, 2, 5}, B = {2, 3, 4, 5} nsTTq BA È eT]jáTT BA Ç qT ¿£qT>=q+&.
11. ¿ì+~ y““ C²_Ԑ sÁÖ|Ÿ+ýË sjáT+&.
(i) A= {x / x ÎN, x<7}
(ii) B = {x / x nHû~ ‘School’ nHû |Ÿ<Š+ýË n¿£ŒsÁeTT}
12. P(x) = x-2 jîTT¿£Ø ç>±|˜t ^jáT+&. n~ X- n¿Œ±“• b#á³ K+&dŸTï+<à Ôî|Ÿ+&.
™d¿£ŒHŽ `III
2 ´ 4 = 8 marks
1. n“• ç|ŸXø•Å£” Èy‹TT sjáT+&.
2. ç|ŸÜ ç|ŸXø• qT+& ÿ¿£ <‘““ b+#áT¿Ã+&. ç|ŸÜ ç|ŸXø•Å£” 4 eÖsÁTØT
13. $sÁT<ŠÆÔá <‘Çs 2 qT ¿£sÁD¡jáT dŸ+K« n“ #áÖ|Ÿ+&.
(ýñ<‘)
523 - qT ¿£sÁDì n“ #áÖ|Ÿ+&.
14. x2
+5x+6 nHû ‹VŸQ|Ÿ~ XøSq« $TeT ¿£qT>=q+&. eT]jáTT XøSq« $TeT, >·TD¿± eT<óŠ«
dŸ+‹+<ó‘“• ÔîÎ+&.
(ýñ<‘)
3x3
+ x2
+ 2x+5 qT (3x-1) #û uó²Ð+#á+&. eT]jáTT uó²>·VŸäsÁ “jáTeÖ“• dŸ]#áÖ&ƒ+&.
3
Mathematics - Paper - I
(Telugu Version)
Part A and B
Time: 2½ hours Max Marks: 50
Instructions:
1. Answer the questions under Part-A on a seperate answer book.
2. Write the answerws to the questions under Part-B on the question paper
itself and attach it to the answerbook of Part - A
Part-A
Time: 2 hours Section - I Marks: 35
dŸÖ#áqT:
1. ‡ ç¿ì+<ŠqTq• A eT]jáTT B ç>·Ö|ŸÚýË ÿ¿=Ø¿£Ø <‘“ qT+& ¿£údŸ+ Âs+&ƒT ç|ŸXø• #=|ŸÚÎq
yîTTÔáï+ ×<ŠT ç|ŸXø•Å£” dŸeÖ<ó‘qeTTT çyjáT+&.
2. ç|ŸÜ ç|ŸXø•Å£” Âs+&ƒT eÖsÁTØT.
Group - A
(ydŸïe dŸ+K«T, dŸ$TÔáTT, ‹VŸQ|Ÿ<ŠTT, esÁZdŸMT¿£sÁD²T)
1. 220 eT]jáTT 284  >·.kÍ.¿±. eT]jáTT ¿£.kÍ.>·T.qT ç|Ÿ<ó‘q ¿±sÁD²+¿± ‹Ý |Ÿ<ŠÆÜýË ¿£qT>=q+&.
2. A {x: x2
= 25 eT]jáTT6x =15} nHû~ XøSq«dŸ$TÜ neÚHà ¿±<à #áÖ&ƒ+&. MT Èy‹TqT dŸeT]œ+#á+&.
3. Kx2
–3x +1nHû esÁZ ‹VŸQ|Ÿ~ XøSq«eTT yîTTÔáï+ 1 nsTTq K $Te b+Ôá?
4. yîTTÔáï+ 27 eT]jáTT ‹Ý+ 182 njûT«³T¢ Âs+&ƒT dŸ+K«qT ¿£qT>=q+&.
Group - B
(Âs+&ƒT #ásÁsXø—ýË ¹sFjáT dŸMT¿£sÁDeTT, çXâ&óƒTT, “sÁÖ|Ÿ¿£ C²«$TÜ)
5. 3 ¿£eTTT, 4 |ŸÚdŸï¿£eTT yîTTÔáï+ yî sÁÖ. 50 T. 5 ¿£eTTT, 3 |ŸÚdŸï¿£eTT yîTTÔáï+ yî sÁÖ.54T.
nqT <ŠÔï+Xæ“¿ì Âs+&ƒT #ásÁsXø—ýË ÿ¿£ ÈÔá ¹sFjáT dŸMT¿£sÁDeTTT sjáT+&.
6. ÿ¿£ qsÁà¯ýË 17 >·Tý²; yîTT¿£ØT yîTT<Š{ì esÁTdŸýË, 14 yîTT¿£ØT Âs+&ƒe esÁTdŸýË, 11 yîTT¿£ØT eTÖ&ƒe
esÁTdŸýË –q•$. n<û $<óŠ+>± ºe] esÁTdŸýË 2 yîTT¿£ØT –q•$. nsTTq € qsÁà¯ýË b“• esÁTdŸ
>·Tý²; yîTT¿£ØT –q•$.
7. X- n¿£Œ+™|Õ –+³Ö _+<ŠTeÚT (2 – 5) eT]jáTT (– 2, 9) Å£” dŸeÖq <ŠÖsÁ+ýËqTq• _+<ŠTeÚqT
¿£qT>=q+&.
8. (1, 5), (2, 3), (– 2, – 1) _+<ŠTeÚT dŸ¹sFjáÖT neÚԐjáÖ? ¿±<‘? dŸ]#áÖ&ƒ+&.
4
Section - II
Marks: 4 ´ 1 = 4
dŸÖ#áq:
1. ¿ì+~ y“ýË @yû“ HT>·T ç|ŸXø•Å£” dŸeÖ<ó‘qeTTT sjáT+&.
2. ç|ŸÜ ç|ŸXø•Å£” ÿ¿£ eÖsÁTØ.
9. log3
243 jîTT¿£Ø $TeqT “sÝ]+#á+&.
10. A= {1, 3, 5, 7}, B = {1, 2, 3, 4, 6} nsTTqA– B ¿£qT>=q+&.
11. MT <îÕq+~q J$Ôá+ qT+& $jáTT¿£ï dŸ$TÔáTÅ£” @yû“ Âs+&ƒT –<‘VŸ²sÁD*eÇ+&.
12. P(y) = y2
–1 ‹VŸQ|Ÿ~ jîTT¿£Ø XøSq«$TeT ¿£qT>=q+&..
13. 2 , 8 , 18 , 32 ....... nHû ¿£sÁD¡jáT dŸ+K«T ÿ¿£ n+¿£çXâ&ó“ @sÁÎsÁ#áT#áTq•y? nsTTq#Ã
kÍeÖq« uñ<óŠeTT ¿£qT>=q+&.
14. ÿ¿£ dŸsÁÞø¹sK yT n+fñ @$T{ì?
Section - III
Marks: 4 ´ 4 = 16
dŸÖ#áq:
1. ‡ ç¿ì+<ŠqTq• A eT]jáTT B ç>·Ö|ŸÚýË ÿ¿=Ø¿£Ø <‘“qT+& ¿£údŸ+ Âs+&ƒT ç|ŸXø• #=|ŸÚÎq
yîTTÔáï+ HT>·T ç|ŸXø•Å£” dŸeÖ<ó‘HeTTT çyjáTTeTT.
2. ç|ŸÜ ç|ŸXø•Å£” 4 eÖsÁTØT.
Group - A
(ydŸïe dŸ+K«T, dŸ$TÔáTT, ‹VŸQ|Ÿ<ŠTT, esÁZdŸMT¿£sÁD²T)
15. 3 qT ¿£sÁD¡jáT dŸ+K« n“ »$sÃ<ó‘uó²dŸ+µ <‘Çs “sÁÖ|¾+#á+&..
16. A = {x : x ÿ¿£ dŸ]dŸ+K«}
B = {x : x ÿ¿£ uñd¾ dŸ+K«}
C = {x : x ÿ¿£ ç|Ÿ<ó‘q dŸ+K«}
D = {x : x ÿ¿£ 3 jîTT¿£Ø >·TD¿£eTT} nsTTq
(i) BA È (ii) BA Ç (iii) C – D (iv) CA Ç qT ¿£qT>=q+&.
17. ÿ¿£ esÁZ ‹VŸQ|Ÿ~ jîTT¿£Ø XøSH« yîTTÔáïeTT eT]jáTT ‹ÝeTT esÁTdŸ>± 2
3-
eT]jáTT –1 nsTTq €
esÁZ‹VŸQ|Ÿ~“ ¿£qT>=qTeTT. ‡ ç¿£eT+ýË n³Te+{ì esÁZ ‹VŸQ|Ÿ<ŠTqT b“•+{ì“ ¿£qT>=q>·eÚ?
18. 5x2
– 6x– 2 = 0 esÁZdŸMT¿£sÁD eTÖeTTqT, esÁZeTTqT |ŸP]ï#ûjáTT |Ÿ<ŠÆÜ <‘Çs ¿£qT>=qTeTT.
5
Group - B
(Âs+&ƒT #ásÁsXø—ýË ¹sFjáT dŸMT¿£sÁDeTT, çXâ&óƒTT, eT]jáTT “sÁÖ|Ÿ¿£ C²«$TÜ)
19. 2
32
=+
yx eT]jáTT 1
94
-=-
yx .dŸMT¿£sÁD²qT kÍ~ó+#á+&.
20. ¿ì+~ dŸMT¿£sÁD² ÈÔá K+&ƒq¹sKý², dŸeÖ+ÔásÁ ¹sKý² ýñ<‘ @¿¡uó„$+#áT ¹sKý² dŸ]#áÖ&ƒ+&. €
dŸMT¿£sÁDeTTT dŸ+>·ÔáeTT nsTT“ y{ì kÍ<óŠq ¿£qT>=qTeTT.
(i) 3x + 2y = 5 (ii) 2x – 3y = 5
2x – 3y = 7 4x – 6y = 15
21. ç|ŸÜ >·+³Å£” 3 Âs³T¢ njûT« ÿ¿£ u²¿¡¼]jáÖ ¿£ÌsYýË yîTT<Š{ì >·+³ýË 50 u²«¿¡¼]jáÖT –q•
3e >·+³ýË eÚ+&û u²«¿¡¼]jáÖ dŸ+K« b+Ôá? 5e >·+³ýË eÚ+&û u²«¿¡¼]jáÖ dŸ+K« b+Ôá?
10 e >·+³ýË eÚ+&û u²«¿¡¼]jáÖ dŸ+K« b+Ôá?
22. ™V²sHŽ dŸÖçÔá+qT|ŸjîÖÐ+º (8, –5) (–2, –7) eT]jáTT (5, 1) _+<ŠTeÚq” osüT>± >·*Zq çÜuó„TÈ
yîÕXæ«+ ¿£qT>=q+&.
Section - IV
(‹VŸQ|Ÿ<ŠTT, Âs+&ƒT #ásÁsXø—ýË, ¹sFjáT dŸMT¿£sÁD²T)
Marks: 5 ´ 2 = 10
dŸÖ#áq:
1. ç¿ì+~ y“ýË @<à ÿ¿£ ç|ŸXø•Å£” dŸeÖ<ó‘qeTT çyjáTTeTT.
2. € ç|ŸXø•Å£” 5 eÖsÁTØT.
23. P(x) = x2
– 6x + 9 ‹VŸQ|Ÿ~¿ì ÔáÐq ¹sU² ºçÔáeTT ^º, XøSH«T ¿£qT>=q+&. |˜Ÿ*Ԑ“• dŸeT]œ+#á+&..
24. ¿ì+~ ÈÔá ¹sFjáT dŸMT¿£sÁD²qT ç>±|˜t |Ÿ<ŠÆÜýË kÍ~ó+#á+&.
2x – y = 5
3x + 2y = 11
6
Mathematics - Paper - I
(Telugu Version)
Parts A and B
Time: 2½ hours Max Marks: 50
>·eT“¿£:
‡ ç¿ì+~ ç|ŸXø•Å£” dŸeÖ<ó‘HqT b<ŠTsÁT>± >· U²°ýË çyd¾ Part-B ç|ŸXæ•|ŸçԐ“•
Part- A Èy‹T |ŸçԐ“¿ì ÈÔá#ûjáTTeTT.
Part - B
dŸeTjáT+: 30 “. eÖsÁTØT: 15
dŸÖ#áqT:
1. n“• ç|ŸXø•Å£” dŸeÖ<ó‘qeTTT çyjáTTeTT.
2. ç|ŸÜ ç|ŸXø•Å£” ½ eÖsÁTØ.
3. dŸeÖ<ó‘HeTTqT ç|ŸXø•|ŸçÔáeTTýËHû çyjáTTeTT.
4. ¿=fñ¼d¾çyjáT‹&q,~<ŠÝ‹&q ýñ<‘#î]|¾yûd¾çyjáT‹&q dŸeÖ<ó‘qeTTÅ£”eÖsÁTØT‚eÇ‹&ƒeÚ.
5. ‹VŸQÞèÕºÌÛ¿£ ç|ŸXø• dŸeÖ<ó‘qeTTT çyjáTT³Å£” ™|<ŠÝ n¿£ŒsÁeTT (€+>·¢ esÁ’eÖ)qT
–|ŸjîÖÐ+#áTeTT.
I. ‡ ~>·Te ç|ŸÜ ç|ŸXø•Å£” b<ŠTsÁT>± 4 Èy‹T©jáT‹&q$. y{ìýË dŸÂsÕq Èy‹T dŸÖº+#áT €+>·¢ ™|<ŠÝ
n¿£Œs“• € ç|ŸXø•¿<ŠTsÁT>± ‚eÇ‹&ƒ¦ çu²Â¿³¢ýË çyjáTTeTT. 10´ ½ = 5 eÖsÁTØT
1. ¿ì+~ y“ýË ¿£sÁD¡jáT dŸ+K« ( )
A)
3
2
B)
25
16
C) 8 D) 04.0
2. 2 x3
–5 x2
–14 x+8 nHû |˜ŸTq ‹VŸQ|Ÿ~ XøSH« ‹Ý+. ( )
A) – 4 B) 4 C) –7 D)
2
5
3. ç¿ì+~ y“ýË |ŸsÁdŸÎs<ó‘sÁ dŸMT¿£sÁD² e«edŸœqT dŸÖº+#áTq$. ( )
A) 2x + y – 5 = 0 ; 3x – 2y – 4 = 0
B) 3x + 4y = 2 ; 6x + 8y = 4
C) x + 2y = 3 ; 2x + 4y = 5
D) x + 2y – 30 = 0 ; 3x + 6y + 60 = 0
4. ÿ¿£ >·TDçXâ&ó n e |Ÿ<ŠeTT an
= arn-1
nsTTq ‘r’ dŸÖº+#áTq~. ( )
A) yîTT<Š{ì|Ÿ<Š+ B) kÍeÖq« uñ<óŠ+ C) kÍeÖq« “wŸÎÜï D) y«kÍsÁœeTT
7
5. 3#û “XâôwŸ+>± uó²Ð+|Ÿ‹&ƒT Âs+&ƒ+¿ dŸ+K«. ( )
A) 30 B) 20 C) -29 D) 31
6. X-n¿Œ±“• (3, 0) e<ŠÝ K+&+#áT ¹sU² dŸMT¿£sÁD+. ( )
A) x + 3 = 0 B) y + 3 = 0 C) x – 3 = 0 D) y – 3 = 0
7. ÿ¿£ eÔáï y«dŸ|ŸÚ ºe] _+<ŠTeÚT (2, – 5), (–2, 9) nsTTq €eÔáﹿ+ç<Š “sÁÖ|Ÿ¿±T ( )
A) (0, 0) B) (2, –2) C) (–5, 9) D) (0, 2)
8. x = 2014 eT]jáTT y = 2015 ¹sK K+&ƒq _+<ŠTeÚ. ( )
A) (2015, 2014) B) (2014, 2015) C) (0, 0) D) (1, 1)
9. ç¿ì+~ y“ýË @ _+<ŠTeÚT çÜuó„TC²“• @sÁÎsÁ#á>·eÚ? ( )
A) (1, 2), (1, 3), (1, 4) B) (5, 1), (6, 1), (7, 1)
C) (0, 0), ( –1, 0), (2, 0) D) (1, 2), (2, 3), (3, 4)
10. HûÔà ÿ¿£ “#îÌq 300
¿ÃDeTT #ûjáTT#áTq• n~ #ûjáTTyT ( )
A) 1 B)
3
1
C) 3 D)
2
1
II. dŸ]jî®Tq Èy‹TÔà U²°T |ŸP]+#á+&. 10´ ½ = 5 eÖsÁTØT
11. 23
52
23
´
jîTT¿£Ø <ŠXæ+Xø sÁÖ|Ÿ+ ______________
12. ¿ì+~ |Ÿ³+ýË w&Ž #ûjáT‹&q çbÍ+Ôá+ dŸÖº+#áTq~. ______________
A B
13. 3x2
+ 5x– 2 nHû ‹VŸQ|Ÿ~ ÿ¿£ XøSq«+ 3
1
nsTTq Âs+&Ã XøSq«+ ______________
14. 3x + 4y+ 2 = 0 eT]jáTT 9x +12y+K = 0 ¹sKT ÿ¿£ ÈÔá @¿¡uó„$+#áT ¹sKsTTq ‘K’ $Te
______________
15. a eT]jáTT b T eTÖý²T >· esÁZ dŸMT¿£sÁD+ ______________
16. yîTT<Š{ì 20 uñd¾ dŸ+K« yîTTÔáï+ ______________
17. eTÖ_+<ŠTeÚ qT+& ( – 4, – 5) _+<ŠTeÚÅ£” >· <ŠÖsÁ+ ______________
900
300
8
18. (3, –5), (–7, 4), (10, –2) osüT>· çÜuó„TÈ >·TsÁTÔáÇ ¹¿+ç<Š+ ______________
19. X-n¿£ŒeTTqÅ£” dŸeÖ+ÔásÁ+>± –+&û ¹sK™|Õ eÚq• (x1
, y1
) eT]jáTT (x2
, y2
) _+<ŠTeÚ eT<óŠ«
<ŠÖsÁ+____________
20. ( )16
4log,8
2log eT]jáTT ( )oo 0cos,90sin _+<ŠTeÚqT ¿£T|ŸÚ ¹sK eT<óŠ« _+<ŠTeÚ_____________
III) ç¿ì+<Š Group-A ýË ‚eÇ‹&q ç|ŸXø•Å£”, Group-B ýË“ dŸ]jî®Tq dŸeÖ<ó‘qeTTqT dŸÖº+#áT n¿£ŒsÁeTTqT
ç|ŸXø•¿<ŠTsÁT>± ‡jáT‹&q çu²Â¿³¢jáT+<ŠT >·T]ï+#áTeTT. 10´ ½ = 5 eÖsÁTØT
(i) Group - A Group - B
21. 210
= 1024 jîTT¿£Ø dŸ+esÁZeÖqsÁÖ|Ÿ+ ( ) A) 4 (log5 + log2)
22. 01.0
10log jîTT¿£Ø |˜ŸÖԐ+¿£sÁÖ|Ÿ+ ( ) B) 0
23. log 10000 jîTT¿£Ø $dŸïsÁD sÁÖ|Ÿ+ ( ) C) log4
24. log16 – 2 log2 jîTT¿£Ø dŸ+¿ìŒ|ŸïsÁÖ|Ÿ+ ( ) D) 10log1024
2 =
25. 1
1000log $Te ( ) E) log8
F) log1000
G) – 2
H) log125 + log800
(ii) Group - A Group - B
26. x2
– 3 ‹VŸQ|Ÿ~ XøSH« ‹Ý+ ( ) I)
2
3
27. 2x3
– 3x2
– 14x+ 8 XøSH« yîTTÔáï+ ( ) J) 3
28. 2x2
+ x –6 = 0 eT]jáTT x2
– 3x – 10 = 0 ( ) K) 0
dŸMT¿£sÁD² –eTˆ& eTÖ+
29. x = 2 e<ŠÝ p(x) = 3x2
– 5x – 2 jîTT¿£Ø $Te ( ) L) 36
30. x2
– 4x + 5 = 0 esÁZdŸMT¿£sÁD $#á¿£ŒDì ( ) M) – 2
( ) N) – 3
( ) O) – 7
( ) P) – 4
1
Mathematics - Paper - II
(Telugu Version)
Part A and B
Time: 2½ hours Max Marks: 50
Instructions:
1. Answer the questions under Part-A on a seperate answer book.
2. Write the answerws to the questions under Part-B on the question paper
itself and attach it to the answerbook of Part - A
Part-A
Section - I
Time: 2 hours Marks: 35
Note:
1. Answer any five questions choosing atleast two from each of the
following two group, i.e., A and B.
2. Each question carries 2 marks.
Group - A
(dŸsÁÖ|Ÿ çÜuó„TC²T, eÔï dŸÎsÁô¹sKT eT]jáTT #û<óŠq¹sKT, ¹¿ŒçÔá$TÜ)
1. ÿ¿£ s+‹dtýË uó„TC² esZ yîTTÔáï+, <‘“ ¿£s’ esZ yîTTÔáïeTTqÅ£” dŸeÖqeT“ #áÖ|ŸÚeTT.
2. 32 ™d+.MT. y«dŸ+>· eÔï“¿ì, eÔáﹿ+ç<Š+ qT+& 34 ™d+.MT. <ŠÖsÁ+ýË >· _+<ŠTeÚ qT+&
^jáT‹&q dŸÎsÁô¹sK bõ&ƒeÚ ¿£qT>=qTeTT.
3. y«kÍsÁœeTT 3.5 ™d+.MT. ¿£*Ðq nsÁœ>ÃÞøeTTjîTT¿£Ø dŸ+|ŸPsÁ’Ôá yîÕXæ«eTTqTeT]jáTT |˜ŸTq|Ÿ]eÖDeTTqT
¿£qT¿ÃØ+&.
4. dŸÖœbÍ¿±sÁ+ýË eÚq• qÖHî |ÓbÍ 2 MT³sÁ¢ uó„Ö y«kÍsÁœ+, 7 MT³sÁ¢ bÔáTï ¿£*ÐeÚq•~. #á<ŠsÁ|ŸÚ MT³sÁTÅ£”
sÁÖ. 3 e+ÔáTq sÁ+>·T yûjáTT³Å£” njûT« KsÁTÌ b+Ôá?
Group - B
(çÜ¿ÃD$TÜ, çÜ¿ÃD$TÜ nqTesÁïHT, dŸ+uó²e«Ôá, kÍ+K«¿£XæçdŸï+)
5. ,
5
3
sin =q nsTTq qq 22
tansec + .$Te b+Ôá?
6. sÁ$ 20 MT. bÔáTï>· uó„eq+™|Õ “‹& eÚH•&ƒT. € uó„eq+ n&ƒT>·T uó²>·+ qT+& 20 MT. <ŠÖsÁ+ýË >·
_+<ŠTeÚ e<ŠÝ>· sE 450
¿ÃD+Ôà sÁ$“ #áÖ&ƒ>·&†? ú dŸeÖ<ó‘H“• dŸeT]œ+#áTeTT.
7. ÿ¿£ dŸ+ºýË 5 bsÁT|ŸÚ, 8 ÔîT|ŸÚ ‹+ÔáTT>·eÚ. € dŸ+º qT+& jáÖ<ŠºÌ¿£+>± ÿ¿£ ‹+Ü“ rdï n~
(1) ÔîT|ŸÚ ‹+Ü njûT« (2) ÔîT|ŸÚ ‹+Ü ¿±Å£”+&† eÚ+&û dŸ+uó²e«Ôá b+Ôá?
8. ÿ¿£ e¯Z¿£Ôá <ŠÔï+XøeTTqÅ£” eT<óŠ«>·Ôá+ ¿£qT>=qT³Å£” dŸÖçÔá+ çyd¾, n+<ŠTýË“ |Ÿ<‘qT $e]+#á+&.
2
Section - II
Marks: 4 ´ 1 = 4
Note:
1. Answer any four of the following six questions.
2. Each question carries 1 mark.
9. Âs+&ƒT çÜuó„TC²T dŸsÁÖbÍT ¿±e&†“¿ì “jáTeÖqT MT kõ+Ôá eÖ³ýË çyjáT+&.
10. 8 MT³sÁ¢ y«dŸ+ 3 MT³sÁ¢ yTfÉÔáTï >· <ó‘q«|ŸÚ Å£”|ŸÎqT |ŸP]ï>± ¿£|ŸÎ&†“¿ì nedŸsÁeTjûT« >·T&ƒ¦
yîÕXæ«+ b+Ôá?
11. ÿ¿£ bͺ¿£qT ÿ¿£kÍ] <=]¢+ºq|ŸÚ&ƒT @sÁÎ&û |ŸsÁ«ekÍqeTTýË dŸ] ç|Ÿ<ó‘q dŸ+K« njûT« dŸ+uó²e«ÔáqT
¿£qT>=qTeTT.
12. 5, 6, 9, 6, 12, 3 , 6. 11, 6, 7  u²VŸQÞø¿£eTTqT ¿£qT>=qTeTT.
13. tanq qT sinq |Ÿ<‘ýË e«¿¡ï¿£]+#áTeTT.
14. 10 eT+~ $<‘«sÁTœ |ŸýÙà ¹s³TqT ÿ¿£ &†¿£¼sY >·eT“dï 72, 78, 80 |ŸýÙà ¿£*Zq $<‘«sÁTœ dŸ+K« esÁTdŸ>±
4, 3, 2 >± >·eT“+#á&ƒ+ È]Ðq~. nsTTq#à y] dŸ>·³T |ŸýÙàqT ¿£qT>=qeTT.
Section - III
Marks: 4 ´ 4 = 16
Note:
1. Answer any four questions, choosing two from each of the following
groups, i.e., A and B.
2. Each question carries 4 mark.
Group - A
(dŸsÁÖ|Ÿ çÜuó„TC²T, eÔï“¿ì dŸÎsÁô¹sKT eT]jáTT #û<óŠq ¹sKT, ¹¿ŒçÔá$TÜ )
15. 10 ™d+.MT. y«kÍsÁœ+>± >· eÔáï+ýË ÿ¿£ C²« ¹¿+ç<Š+ e<ŠÝ #ûjáTT ¿ÃD+ +‹¿ÃD+ nsTTq
(1) nÎeÔáïK+&ƒ+ (2) n~ó¿£eÔáï K+&ƒ+ yîÕXæ«+ ¿£qT>=qTeTT.
16. ™|Õ<¸‘>·sÁdt d¾<‘Ý+ÔáeTTqT ç|Ÿeº+º, “sÁÖ|¾+#áTeTT.
17. 6 ™d+.MT., 8 ™d+.MT., 10 ™d+.MT. y«kÍsœT>± >· |˜ŸTq >ÃÞøeTTT ¿£]Ð+º, ÿ¿£ ™|<ŠÝ |˜ŸTq >ÃÞø+>±
eÖ]Ìq <‘“ y«kÍsÁœeTT b+Ôá?
18. ÿ¹¿ y«kÍsÁœeTT, ÿ¹¿ bÔáTï ¿£*Ðq >ÃÞøeTT, dŸÖœ|ŸeTT jîTT¿£Ø –|Ÿ]Ôá yîÕXæý²« “wŸÎÜï“ ¿£qT>=qTeTT?
|˜Ÿ*ÔáeTTqT ú kõ+Ôá eÖ³ýË $e]+#áTeTT.
3
Group - B
19. If P=+ qq tansec nsTTq qSin $TeqT ‘P’ ýË ¿£qT>=qTeTT.
20. ÿ¿£ He ÿ¿£ q~“ <‘{²*à eÚ+~. qBç|ŸyVŸ²+ ¿±sÁD+>± € qB rsÁ+ýË 600
¿ÃD+ #ûdŸTïq•
eÖsÁZ+ýË € He 600 MT³sÁT¢ ç|ŸjáÖDì+º neÔá* rs“• #û]+~. €q~ yî&ƒýÉÎ+Ôá?
21. ÿ¹¿kÍ] Âs+&ƒT bͺ¿£qT <=]Z+º y{ì™|Õ dŸ+K«qT Å£L&q#à e#áTÌ (i) yîTTԐï dŸ+uó²e«ÔáqT ÔîT|ŸÚ
‡ ¿ì+~ |Ÿ{켿£qT |ŸP]+#áTeTT.
Âs+&ƒT bͺ¿£™|Õ 2 3 4 5 6 7 8 9 10 11 12
yîTTÔáï+ (|˜ŸT³q)
dŸ+uó²eÔá 36
1
36
5
(ii) ÿ¿£ $<‘«]œ ç|ŸjîÖ>·+ýË 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 nHû 11 |ŸsÁ«ekÍHTq•$. ¿±eÚq
ÿ¿=Ø¿£Ø |ŸsÁ«ekÍq+ dŸ+uó²e«Ôá 11
1
nH•sÁT. ‡ dŸeÖ<ó‘q+Ôà @¿¡uó„$dŸTïH•y? $e]+#á+&.
22. ‡ ç¿ì+~ båq'|ŸÚq« $uó²ÈH“¿ì z›yŽ eç¿£+^jáT+&.
ÔásÁ>·ÔáTT 0-20 20-40 40-60 60-80 80-100 100-120
båq'|ŸÚq«+ 9 16 24 15 4 2
Section - IV
Marks: 5 ´ 2 = 10
Note:
1. Answer any one of the following questions.
2. Each question carries five marks.
23. 4 ™d+.MT., 5 ™d+.MT., 6 ™d+.MT. uó„TC²T>± >· ÿ¿£ çÜuó„TÈ+ “]ˆ+º, <‘“¿ì dŸsÁÖ|Ÿ+>± 3
2
Âs³T¢
>· çÜuó„TC²“• “]ˆ+#áTeTT.
24. uó„Ö$T™|Õ qTq• A _+<ŠTeÚ qT+& ÿ¿£ CÉ{Ù $eÖH“• |Ÿ]o*dï 600
}sÁÆÇ ¿ÃD+ #ûdŸTï+~. 15 ™d¿£q¢
ÔásÇÔá <‘“ }sÁœÇ ¿ÃD+ 300
eÖsÁTÔáT+~. € CÉ{Ù $eÖq+ 1500 3 MT³sÁ¢ d¾œsÁ bÔáTïýË b>·TsÁTÔáÖ
eÚ+fñ <‘“ yû>±“• ¿£qT¿ÃØ+&.
4
Mathematics - Paper - II
Part - B
(Telugu Version)
Time: 30 min Max Marks: 15
Instructions:
1. n“• ç|ŸXø•Å£” dŸeÖ<ó‘q+ ¿£qT>=qTeTT.
2. ç|ŸÜ ç|ŸXø•Å£” 2
1
eÖsÁTØ.
3. dŸeÖ<ó‘HqT ç|ŸXø•|ŸçÔáeTTýËHû çyjáT+&.
4. ¿=fñ¼d¾ çyjáT‹&q, ~<ŠÝ‹&q, #î]|¾yûd¾ çyjáT‹&q dŸeÖ<ó‘HÅ£” eÖsÁTØT ‚eÇ‹&ƒeÚ.
5. ‹VŸQÞèպ̿£ ç|ŸXø• dŸeÖ<ó‘qeTTT çyjáTT³Å£” ™|<ŠÝ n¿£ŒsÁeTT (€+>·¢esÁ’eÖ)qT
–|ŸjîÖÐ+#áTeTT.
Part-B
10 ´
2
1
= 5 marks
I. ‡ ~>·Te ç|ŸÜç|ŸXø•Å£” b<ŠTsÁT>± 4 Èy‹T©jáT‹&q$. y{ìýË dŸÂsÕq Èy‹T dŸÖº+#áT €+>·¢ ™|<ŠÝ
n¿£Œs“• € ç|ŸXø•¿<ŠTsÁT>± ‚eÇ‹&ƒ¦ çu²Â¿³¢ýË çyjáTTeTT.
1. ç|Ÿ¿£Ø|Ÿ³+ýË LM || CB eT]jáTTLN || CD nsTTq ( )
¿ì+~ y“ýË dŸ]jî®Tq~.
A)
ND
AN
MB
AM
= B)
AB
AM
ND
AN
= C)
ML
AM
NL
AN
= D)
AD
AN
MB
AM
=
2. ( qcos , 0 ) , (0, qsin ) _+<ŠTeÚ eT<óŠ«<ŠÖsÁ+ ( )
A) 1 B) -1 C) 0 D) 1-
3. 30 eT+~ $<‘«sÁTœ dŸ>·³T 42. y]ýË ‚<ŠÝ]¿ì µ0» eÖsÁTØT eºÌq $TÐ*q
$<‘«sÁTœ dŸ>·³T ( )
A) 40 B) 42 C) 45 D) 28
4. ÿ¿£ |¿£ýË qT+& rd¾q eTT¿£Ø sE (ýñ<‘) sDì ¿±e&†“¿ì dŸ+uó²e«Ôá ( )
A)
52
1
B)
13
1
C) 45 D) 28
Ð
C
B
M
A
N
D
5
5. u²VŸQÞø¿£+ dŸÖçÔá+ h
fff
ff
lZ ´÷÷
ø
ö
çç
è
æ
--
-
+=
10
0
2 nsTTq h dŸÖº+#áTq~. ( )
A) båq'|ŸÚq«eTT B) ÔásÁ>·Ü bõ&ƒeÚ
C) ~>·Te VŸ²<ŠTÝ D) u²VŸQÞø¿£+
6. ‡ ç¿ì+~ y“ýË dŸ]¿±“~ ( )
A) dŸÖœ|ŸeTT, >ÃÞ² eç¿£Ôáý² yîÕXæ«eTT “wŸÎÜï 1:1
B) >ÃÞøeTT, nsÁœ>ÃÞ² eç¿£Ôá yîÕXæý²« “wŸÎÜï 2:1
C) >ÃÞøeTT, nsÁœ>ÃÞ² dŸ+|ŸPsÁ’Ôáý² yîÕXæý²« “wŸÎÜï 2:1
D) dŸÖœ|ŸeTT, Xø+Å£”eÚ |˜ŸTq|Ÿ]eÖD² “wŸÎÜï 3:1
7. oo
oo
64tan.26tan
67sin23cos -
$Te ( )
A) sin 90° B) tan 30° C) tan 0° D) cot 30°
8. 1, 2, 3, ............. 15 esÁÅ£” >· dŸ+K«ýË ÿ¿£ dŸ+K«qT jáÖ<ŠºÌ¿£+>± bqT•¿=q•|ŸÚÎ&ƒT
n~ 4 jîTT¿£Ø >·TDìÈeTT njûT« dŸ+uó²e«Ôá ( )
A)
15
4
B)
15
2
C)
5
1
D)
5
3
9. ç¿ì+~ +‹¿ÃD çÜuó„TC²ýË 29
21
sin =q qT dŸÖº+#áTq~. ( )
A) B)
C) D)
P
21
29
Q
R
q
E
21
29
D
F
q
C
29
21
A
B
q
Z
29
21
X
Y
q
6
10. ^Ôá ndŸ+uó„e |˜ŸT³q dŸ+uó²e«Ôá 1 n“, ç|Ÿe*¢¿£ KºÌÔá |˜ŸT³q dŸ+uó²e«Ôá 0 n“, nÜjáÖ @<û“
|˜ŸT³q dŸ+uó²e«Ôá 0, 1  eT<óŠ« eÚ+³T+<Š“ #îbÍÎsÁT. úeÚ be]Ôà @¿¡uó„$kÍïeÚ? ( )
A) ^Ôá B) ç|Ÿe*¢¿£ C) nÜjáÖ D) ™|Õ eTT>·TZsÁT
II. ç¿ì+~ U²°qT dŸÂsÕq dŸeÖ<ó‘qeTTÔà |ŸP]+#áTeTT.
11. ÿ¿£ eÔáï dŸÎsÁô¹sKÅ£”, dŸÎsÁô_+<ŠTeÚ qT+& ^ºq y«kÍsÁœeTTqÅ£” eT<óŠ« ¿ÃDeTT ______________
12. dŸeT|˜ŸTqeTT jîTT¿£Ø ç|Ÿ¿£ØÔá, dŸ+|ŸPsÁ’Ôá yîÕXæý²« “wŸÎÜï ____________
13. ÿ¿£ eT“w¾ çbÍsÁ+uó„ kÍœq+ qT+& ÔáÖsÁTÎqÅ£” yî[ß eTsÁý²<Š¿ìŒD²“¿ì ç|ŸjáÖD+ #ûd¾q|ŸÚ&ƒT ‹jáTT<û]q
kÍœq+ qT+& € eT“w¾ eÚq• <ŠÖs“• ¿£qT>=qT³Å£” –|ŸjîÖÐ+#áT “wŸÎÜï ______________
20
14. 15 ç|Ÿ¿£Ø |Ÿ³+ qT+& ¿£qT>=q>·*Zq ¹¿+çBjáTkÍœq¿=Ôá____________
5
5 10 15 20
15. ç|Ÿ¿£Ø |Ÿ³+ qT+& Y qT bõ+<Š>· dŸ+uó²e«Ôá ______________
R = bsÁT|ŸÚ ‹+Ü
Y = |ŸdŸT|ŸÚ|Ÿ#áÌ ‹+Ü
16. Âs+&ƒT dŸsÁÖ|Ÿ çÜuó„TC² eT<óŠ«>·ÔT esÁTdŸ>± 3 ™d+.MT., 5 ™d+.MT. nsTTq çÜuó„TÈ yîÕXæý²« “wŸÎÜï
______________
17. ÿ¿£ dŸÖœ|Ÿ+ uó„Ö yîÕXæ«+ 616 #á. ™d+.MT. nsTTq <‘“ y«kÍsÁœeTT ______________
18. 6 ™d+.MT. y«kÍsÁœ+ >·eÔáï+ýË ÿ¿£ C²« ¹¿+ç<Š+ e<ŠÝ 600
¿ÃD+ #ûd¾q C²« bõ&ƒeÚ______________
19. eÖsÁTØT 10 20 30
båq'|ŸÚq«+ 5 9 3
™|Õ <ŠÔï+XøeTTqÅ£” eT<óŠ«>·Ôá+ $Te ______________
20. ÿ¿£ €³jáT+<ŠT yû>·+>± çÜ|ŸÎ‹&q >·TsÁTï |Ÿ³+ýË #áÖ|Ÿ‹&q³T¢
1, 2, 3, 4, 5, 6, 7 ýñ¿£ 8 “ dŸÖºdŸÖï €>·TÔáT+~. n“•
|ŸsÁ«ekÍHT dŸeTdŸ+uó„eyîT®Ôû u²D+ >·TsÁTï 2 ¿£H• ™|<ŠÝ dŸ+K«qT
dŸÖº+#áT dŸ+uó²e«Ôá ______________
1
2
3
45
6
7
8
R
Y
Y
R R
7
Match the following 5´ ½ = 2½ marks
Group - A Group - B
21. D ABC ýË D, E T esÁTdŸ>± ( ) A) 20
AB, AC ™|Õ“ _+<ŠTeÚT eT]jáTT
EC
AE
DC
AD
= nsTTq
22. D BED +‹¿ÃD çÜuó„TÈ+ýË, ÐE = 90°, ( ) B) 4
ED2
= BD. CD nsTTq
23. nsÁÆ>ÃÞø |˜ŸTq|Ÿ]eÖD+ 2250 cm3
nsTTq ( ) C)
3
77
<‘“ y«kÍsÁœ+.
24. 25 MT. bõ&ƒeÚ>· “#îÌq >Ã&ƒ™|Õ 20 MT. ( ) D) 15
bÔáTïq eÚq• ¿ì{ì¿¡“ Ԑ¿ìq “#îÌq n&ƒT>·T
qT+& >Ã&ƒÅ£” >· <ŠÖsÁ+.
25. 5 ™d+.MT. eT]jáTT 3 ™d+.MT. y«kÍsœT ( ) E) DE || BC
>· Âs+&ƒT @¿£¹¿+ç<Š eÔïýË ºq• eÔï“• ( ) F) DE ^ BC
dŸÎ]ô+#û ™|<ŠÝ eÔáïeTT C²« bõ&ƒeÚ
( ) G) 8
( ) H)
7
22
Match the following 5´ ½ = 2½ marks
Group - A Group - B
26. secq + tanq =
2
1
nsTTq ( ) I) 0
secq - tanq $Te
27. oooo
180cos........2cos1cos0cos ´´´´ $Te ( ) J) 1
28.
5
4
cos =A nsTTqsin A $Te ( ) K) 50°
29. –<ŠjáT+ 7 >·+³Å£” 15MT. bÔáTï>· dŸï+uó„+ ( ) L)
5
3
ú&ƒ bõ&ƒeÚ 15 3 MT. nsTTq dŸÖsÁ«¿ìsÁD²T
uó„Ö$TÔÃ #ûjáTT¿ÃDeTT.
30. »Oµ ¹¿+ç<Š+>± >· eÔï“¿ì u²VŸ²«_+<ŠTeÚ P qT+& ( ) M)
3
2
^jáT‹&q dŸÎsÁô¹sKT PA eT]jáTT PB. y{ìeT<óŠ« ( ) N) 60°
¿ÃD+ 80° nsTTq ÐPOA $Te ( ) O) 2
( ) P) 3

More Related Content

PPTX
Proffessional qualities and competencies of mathematics teacher
PPT
Algebraic fractions
PPT
angles formed when two parallel lines are cut by a transversal.ppt
PDF
Lesson plan angle sum of triangle
PPTX
Advance organizer lesson plan
PPTX
algebraic expression class VIII
PDF
Math is Storytelling
PDF
Ch 8 decimals lesson plan
Proffessional qualities and competencies of mathematics teacher
Algebraic fractions
angles formed when two parallel lines are cut by a transversal.ppt
Lesson plan angle sum of triangle
Advance organizer lesson plan
algebraic expression class VIII
Math is Storytelling
Ch 8 decimals lesson plan

What's hot (20)

DOCX
CLASS VIII MATHS LESSON PLAN
PPTX
ppt on Triangles Class 9
PPT
Mathematics Curriculum: An Analysis
PPTX
Quadrilaterals
PPT
Congruent triangles
PPT
Factorisation
PDF
Lesson plan pdf
DOCX
Mathematics curriculum
PPTX
Problem solving in mathematics
PPTX
b.ed discussion lesson plan algebric equations by amit kumar sldav ambala
PPT
Congruence of triangles
PPTX
CLASS IX MATHS PPT
PPTX
PPT
Ppt On Lcm & Hcf Questions For Cat Preparation
PDF
Lesson plan - angle sum of triangle
PPTX
Pedagogical analysis in teaching mathematics
PDF
Notes and formulae mathematics
PPTX
Chapetr 1 real number class 10 th
PPTX
Exponents and powers nikita class 8
PPTX
Direct and inverse proportion
CLASS VIII MATHS LESSON PLAN
ppt on Triangles Class 9
Mathematics Curriculum: An Analysis
Quadrilaterals
Congruent triangles
Factorisation
Lesson plan pdf
Mathematics curriculum
Problem solving in mathematics
b.ed discussion lesson plan algebric equations by amit kumar sldav ambala
Congruence of triangles
CLASS IX MATHS PPT
Ppt On Lcm & Hcf Questions For Cat Preparation
Lesson plan - angle sum of triangle
Pedagogical analysis in teaching mathematics
Notes and formulae mathematics
Chapetr 1 real number class 10 th
Exponents and powers nikita class 8
Direct and inverse proportion
Ad

Viewers also liked (20)

PPT
Class 9 Lecture Notes
PPTX
Sample questions and answer for class 9 [Bangladesh]
PPTX
Class 9 & 10 Bangla 2nd Paper
PPTX
Class 9 & 10 bangla 2nd paper protibedon
PDF
Right form of verbs
PDF
Class 10 physical science question answer
PDF
Tenth class-state syllabus-model paper-em-ap-social studies
PDF
ssc physics bangla প্রথম অধ্যায় পদার্থবিজ্ঞানের ক্রমবিকাশ
PDF
Tenth class state syllabus-text book-em-ap-ts-social studies
PPTX
Sample questions and answers for class JSC students [Bangladesh]
PDF
Mathematics 2 theory part 1
PPTX
গদ্য নবম ও দশম শ্রেণি বহিপীর ৩৫
PDF
sakshi_verma
PDF
Cbse class 12 accountancy sample paper 01 (for 2012)
PDF
জীববিজ্ঞান শর্ট টেকনিক
PPT
Class 8 english 1st paper result of greed
DOC
Letter ---
PPT
Class 8 english announcement on board 1 lesson-5
PPT
Class 8 english announcements on board 2 lesson 6
PPTX
Class 8 english lesson 1 health
Class 9 Lecture Notes
Sample questions and answer for class 9 [Bangladesh]
Class 9 & 10 Bangla 2nd Paper
Class 9 & 10 bangla 2nd paper protibedon
Right form of verbs
Class 10 physical science question answer
Tenth class-state syllabus-model paper-em-ap-social studies
ssc physics bangla প্রথম অধ্যায় পদার্থবিজ্ঞানের ক্রমবিকাশ
Tenth class state syllabus-text book-em-ap-ts-social studies
Sample questions and answers for class JSC students [Bangladesh]
Mathematics 2 theory part 1
গদ্য নবম ও দশম শ্রেণি বহিপীর ৩৫
sakshi_verma
Cbse class 12 accountancy sample paper 01 (for 2012)
জীববিজ্ঞান শর্ট টেকনিক
Class 8 english 1st paper result of greed
Letter ---
Class 8 english announcement on board 1 lesson-5
Class 8 english announcements on board 2 lesson 6
Class 8 english lesson 1 health
Ad

Similar to 10th class maths model question paper (20)

PDF
Tenth class-state syllabus-model paper-em-ap-mathematics
PDF
Class_10_Maths.pdf
PDF
JEE1_This section contains FOUR (04) questions
PDF
Notes and Formulae Mathematics SPM
PDF
Mathematics formulas
PDF
Notes and-formulae-mathematics
PPT
Pp smi add. maths paper 1
PDF
Successful Minds,Making Mathematics number patterns &sequences Simple.
PDF
Ebook 1
PPT
Answering Techniques Ad Maths P1
PDF
Class 10 Cbse Maths 2010 Sample Paper Model 2
PPTX
Grade 9 - Quarter 1 EXAMINATION_MATH.pptx
PPT
6th. Grade-2 integers
PPT
Geo chapter01power point
PDF
Rumus matematik examonline spa
PPTX
Revised math 1
PPTX
Aieee mathematics- 2010
DOC
Dll wk-1-lc-1
DOC
Dll wk-1-lc-1
Tenth class-state syllabus-model paper-em-ap-mathematics
Class_10_Maths.pdf
JEE1_This section contains FOUR (04) questions
Notes and Formulae Mathematics SPM
Mathematics formulas
Notes and-formulae-mathematics
Pp smi add. maths paper 1
Successful Minds,Making Mathematics number patterns &sequences Simple.
Ebook 1
Answering Techniques Ad Maths P1
Class 10 Cbse Maths 2010 Sample Paper Model 2
Grade 9 - Quarter 1 EXAMINATION_MATH.pptx
6th. Grade-2 integers
Geo chapter01power point
Rumus matematik examonline spa
Revised math 1
Aieee mathematics- 2010
Dll wk-1-lc-1
Dll wk-1-lc-1

More from vivieksunder (11)

PDF
PDF
Ch 15 the laws of thermodynamics
PDF
Engineering thermodynamics-solutions-manual
PDF
Mathematics 1 formulae
PDF
Louro optics
PDF
Complete organic chemistry worksheet answers
PDF
18 dynamics applications of derivative -
PDF
07 vectors
PDF
01 sets, relations and functions
PDF
Lecture notes
DOCX
FORMULAS
Ch 15 the laws of thermodynamics
Engineering thermodynamics-solutions-manual
Mathematics 1 formulae
Louro optics
Complete organic chemistry worksheet answers
18 dynamics applications of derivative -
07 vectors
01 sets, relations and functions
Lecture notes
FORMULAS

Recently uploaded (20)

PPTX
Sports and Dance -lesson 3 powerpoint presentation
PPTX
ESD MODULE-5hdbdhbdbdbdbbdbdbbdndbdbdbdbbdbd
PPTX
Surgical thesis protocol formation ppt.pptx
PPTX
E-Commerce____Intermediate_Presentation.pptx
PPTX
Principles of Inheritance and variation class 12.pptx
PDF
Manager Resume for R, CL & Applying Online.pdf
PPTX
PMP (Project Management Professional) course prepares individuals
PPT
BCH3201 (Enzymes and biocatalysis)-JEB (1).ppt
PPTX
FINAL PPT.pptx cfyufuyfuyuy8ioyoiuvy ituyc utdfm v
PPTX
Autonomic_Nervous_SystemM_Drugs_PPT.pptx
PPTX
AREAS OF SPECIALIZATION AND CAREER OPPORTUNITIES FOR COMMUNICATORS AND JOURNA...
PPTX
Prokaryotes v Eukaryotes PowerPoint.pptx
PPTX
Definition and Relation of Food Science( Lecture1).pptx
PDF
Biography of Mohammad Anamul Haque Nayan
PDF
シュアーイノベーション採用ピッチ資料|Company Introduction & Recruiting Deck
PPTX
cse couse aefrfrqewrbqwrgbqgvq2w3vqbvq23rbgw3rnw345
DOCX
How to Become a Criminal Profiler or Behavioural Analyst.docx
PPTX
_+✅+JANUARY+2025+MONTHLY+CA.pptx current affairs
PDF
Entrepreneurship PowerPoint for students
PPTX
Nervous_System_Drugs_PPT.pptxXXXXXXXXXXXXXXXXX
Sports and Dance -lesson 3 powerpoint presentation
ESD MODULE-5hdbdhbdbdbdbbdbdbbdndbdbdbdbbdbd
Surgical thesis protocol formation ppt.pptx
E-Commerce____Intermediate_Presentation.pptx
Principles of Inheritance and variation class 12.pptx
Manager Resume for R, CL & Applying Online.pdf
PMP (Project Management Professional) course prepares individuals
BCH3201 (Enzymes and biocatalysis)-JEB (1).ppt
FINAL PPT.pptx cfyufuyfuyuy8ioyoiuvy ituyc utdfm v
Autonomic_Nervous_SystemM_Drugs_PPT.pptx
AREAS OF SPECIALIZATION AND CAREER OPPORTUNITIES FOR COMMUNICATORS AND JOURNA...
Prokaryotes v Eukaryotes PowerPoint.pptx
Definition and Relation of Food Science( Lecture1).pptx
Biography of Mohammad Anamul Haque Nayan
シュアーイノベーション採用ピッチ資料|Company Introduction & Recruiting Deck
cse couse aefrfrqewrbqwrgbqgvq2w3vqbvq23rbgw3rnw345
How to Become a Criminal Profiler or Behavioural Analyst.docx
_+✅+JANUARY+2025+MONTHLY+CA.pptx current affairs
Entrepreneurship PowerPoint for students
Nervous_System_Drugs_PPT.pptxXXXXXXXXXXXXXXXXX

10th class maths model question paper

  • 1. 1 Mathematics - Unit Test Moder Paper Weightage Tables Table : 1 Weightage to Academic Standards S. No. Academic Standards Weightage % Marks 1. Problem Solving 40 10 2. Reasoning & Proof 20 5 3. Communication 12 3 4. Connnections 16 4 5. Representation & Visualisation 12 3 Total 100% 25 Table : 2 Weightage to Content S. No. Chapter Weightage % Marks 1. Real numbers 48% 12 2. Sets 20% 5 3. Polynomials 32% 8 100% 25 Table : 3 Weightage to difficulty level S. No. Difficulty level Weightage % Marks 1. Easy 24% 06 2. Average 52% 13 3. Difficulty 24% 06 100% 25 Table : 4 Weightage to type of questions S. No. Type of Questions Weightage % No. of Questions Marks 1. Objective 28% 07 07 2. ShortAnswer 40% 05 10 3. Essay 32% 02 08 100% 14 25
  • 3. 3 Mathematics - Unit Test (Real numbers, sets, Pohynomials) Class: X Max Marks: 25 Time: 45 min Instructions: · The question paper consists of three sections. · All questions are compulsory. Section - I 7 ´ 1 = 7 marks Note: 1. Answer all the questions. Each question carries 1 mark. 2. Choose the correct anwer from the four alternatives given for each ques- tion and write capital letters A, B, C or D in the brackets. 1. The prime factorisation form of 156 ( ) A) 2 ´ 3´ 13 B) 22 ´ 32 ´ 13 C) 22 ´ 3´ 13 D) 2 ´ 32 ´ 13 2. The logarithemic form of 8x = 2 ( ) A) logx 8 = 2 B) log8 2 = x C) logx 2 = 8 D) log2 x = 8 3. The q p form of the decimal 0.875 ( ) A) 3 2 7 B) 16 7 C) 8 3 D) 2 2 7 4. Which of the following integers does 4 3 lies between ( ) A) 0 and 1 B) 1 and 2 C) 3 and 4 D) -1 and 1 5. A = {x / x is a boy} B = {x / x is a girl} them ( ) A) f=È BA B) q¹Ç BA C)A- B =A D)A- B = f 6. The zero of the polynomial 2x-3 ( ) A) 3 2 B) 2 3 C) 3 2- D) 2 3- 7. one of the following algebraic expression is not a polynomial ( ) A) - 2 2x B) 52 +x C) x x 1 + D) 5 - 2x
  • 4. 4 Section - II 5 ´ 2 = 10 marks Note: 1. Answer all the questions. 2. Each question carries 2 marks. 8. Write the following rationals as decimals without actual division i) 25 13 ii) 110 143 9. Expand log 2 3 y x 10. IfA= {1, 2, 3}, B = {2, 3, 4, 5} find BA È and BA Ç 11. Write the following sets in roster form (i)A= The set of natural numbers less than 7 (ii) B = {x : x is a letter in the word ‘School’} 12. Draw the graph of P(x) = x-2 and find where it interesects X-axis. Section - III 2 ´ 4 = 8 marks Note: 1. Answer all the questions, choosing one from each question. 2. Each question carries 4 marks. 13. Prove that 2 is irrational by the method of contradiction (or) Prove that 523 - is irrational. 14. Find the zeros of the quadratic polynomial x2 +5x+6 and verify the relationship between the zeroes and coefficients. Divide 3x3 + x2 + 2x+5by 3x-1 and verify the result with division algorithm.
  • 5. 5 X class Mathematics (2014-15) Unit wise Division of Syllabus Unit - I: 1. Real numbers 2. Sets 3. Polynomial Unit - II: 1. Similar Triangles 2. Linear Equations in 2 variables Unit - III: 1. Progressions 2. Tangents and secants to a circle Unit - IV: 1. Application of Trigonometry 2. Probatrility
  • 6. 6 X class Mathematics (2014-15) Chapter wise Division of Syllabus Under Paper I and Paper II Paper - I Paper - II 1. Real numbers 1. Similar Triangles (ydŸïe dŸ+K«T) (dŸsÁÖ|Ÿ çÜuó„TC²T) 2. Sets 2. Tangents and secants to a circle (dŸ$TÔáTT) (eÔï“¿ì dŸÎsÁô¹s¿£T eT]jáTT#óû<Šq ¹sKT) 3. Polynomials 3. Mensuration (‹VŸQ|Ÿ<ŠTT) (¹¿ŒçÔá$TÜ) 4. Pair of Linear equations in two variables 4. Trigonometry (Âs+&ƒT #ásÁsXø—ýË ¹s¿¡jáT dŸMT¿£sÁD² ÈÔá) (çÜ¿ÃD$TÜ) 5. Quadratic Equations 5. Applications of Trigonometry (esÁZ dŸMT¿£sÁD²T) (çÜ¿ÃD$TÜ nqTesÁïHT) 6. Progressions 6. Probability (çXâ&óƒTT) (dŸ+uó²e«Ôá) 7. Co-ordinate Geometry 7. Statastics (“sÁÖ|Ÿ¿£ ¹sU² >·DìÔá+) (kÍ+K«¿£ XæçdŸï+)
  • 7. 7 SSC Public Examinations - March - 2015 Model Paper - Mathematics Weightage Tables Paper - 1 Table - 1: Weightage to Academic Standards S. No. Academic Standards Weightage (%) Marks Paper-I 1. Problem Solving 40% 32 2. Reasoning and Proof 20% 16 Part A- 64 marks 3. Communication 10% 08 Part B- 15 marks 4. Connection 15% 12 5. Representation 15% 11 Total 100% 79 Including choice questions Table : 2 Weightage to Content S. No. CotentArea Weightage % Marks 1. Number System 24% 19 2. Algebra 60% 47 3. Co-ordinate Gemetry 16% 13 Total 100% 79 Table : 3 Weightage to difficulty level S. No. Difficulty level Weightage % Marks 1. Easy 25% 20 2. Average 50% 39 3. Difficulty 25% 20 Total 100% 79
  • 8. 8 Table - 4: Weightage to type of Questions S. No. Type of Questions Weightage (%) No. of Questions Marks 1. Objective type (½) 19% 30 15 2. Very short answer type (1) 08% 06 06 3. Short answer type (2) 20% 08 16 4. Essay type (4) 41% 08 32 5. Graph (5) 12% 02 10 Total 100% 54 79 Table - 5: Area wise, Standard wise Division of Question paper Q.No. Marks Area Ae. Std Q.No. Marks Area Ae. Std PART-A 1 2 Num.Sys. PS 28(4) ½ Algebra COM 2 2 Num.Sys. R/P 29(5) ½ Algebra CON 3 2 Algebra PS 30(6) ½ Algebra REP 4. 2 Algebra PS 31(7) ½ Co-Geo PS 5. 2 Algebra COM 32(8) ½ Co-Geo PS 6. 2 Algebra CON 33(9) ½ Co-Geo R/P 7. 2 Co-Geo PS 34(10) ½ Co-Geo CON 8 2 Co-Geo CON 35(11) ½ Num.Sys. R/P 9. 1 Num.Sys. PS 36(12) ½ Num.Sys. REP 10. 1 Num.Sys. PS 37(13) ½ Algebra PS 11. 1 Num.Sys. CON 38(14) ½ Algebra R/P 12. 1 Algebra PS 39(15) ½ Algebra COM 13. 1 Algebra CON 40(16) ½ Algebra CON 14. 1 Co-Geo COM 41(17) ½ Co-Geo PS 15. 4 Num. Sys 42(18) ½ Co-Geo PS 16. 4 Num. Sys PS 43(19) ½ Co-Geo COM 17. 4 Algebra R/P 44(20) ½ Co-Geo CON 18. 4 Algebra PS 45(21) ½ Num.Sys. COM 19. 4 Algebra PS 46(22) ½ Num.Sys. CON 20. 4 Algebra RP 47(23) ½ Num.Sys. COM 21. 4 Algebra CON. 48(24) ½ Num.Sys. COM 22. 4 Co-Geo PS 49(25) ½ Num.Sys. COM 23. 5 Algebra REP 50(26) ½ Algebra PS 24. 5 Algebra REP 51(27) ½ Algebra PS PART-B 25(1) ½ Num.Sys. PS 52(28) ½ Algebra PS 26(2) ½ Algebra PS 53(29) ½ Algebra PS 27(3) ½ Algebra R/P 51(30) ½ Algebra PS
  • 10. 10 Mathematics - Paper - I (English Version) Part A and B Time: 2½ hours Max Marks: 50 Instructions: 1. Answer the questions under Part-A on a seperate answer book. 2. Write the answerws to the questions under Part-B on the question paper itself and attach it to the answerbook of Part - A Part-A Section - I Time: 2 hours Marks: 35 Note: 1. Answer any five questions choosing at least two from each of the follow- ing two group, i.e., A and B. 2. Each question carries 2 marks. Group - A (Real numbers, sets, polynomials, Quadratic Equations) 1. Find H.C.F. and L.C.M. of 220 and 284 by Prime factorisation method. 2. Check whetherA{x: x2 = 25 and 6x = 15} is an empty set or not? Justify your answer. 3. The sum of zeroes of a quadratic polynomial Kx2 –3x +1is 1, find the value of K. 4. Find two numbers where sum is 27 and product is 182. Group - B (Lineor Equations in two variables, Progressions, Co-ordinate Geometry) 5. Formulate a pair of linear equations in two variables “3 pens and 4 books together cost Rs.50 where as 5 pens and 3 books together cost Rs. 54”. 6. In a nursary, there are 17 rose plants in the first row, 14 in the second row, 11 in the third row and so on. It there are 2 rose plants in the last two, find how many rows of rose plants are there in the nursary. 7. Find the point on the X-axis which is equidistant from (2 – 5) and (– 2, 9). 8. Verify that the points (1, 5), (2, 3) and (– 2, – 1) are colinear are not?
  • 11. 11 Section - II Marks: 4 ´ 1 = 4 Note: 1. Answer any four of the following six questions. 2. Each question carries 1 mark. 9. Determine the value of log3 243 10. LetA= {1, 3, 5, 7}, B = {1, 2, 3, 4, 6} findA– B and B – A. 11. Give any two examples of disjoint sets from your daily life. 12. Find the zeroes of the polynomial P(y) = y2 –1. 13. Do the irrational numbers 2 , 8 , 18 , 32 ............. from an A.P.? If so, find common difference. 14. What do you mean by “slope” of a straight line? Section - III Marks: 4 ´ 4 = 16 Note: 1. Answer any four questions, choosing two from each of the following groups, i.e., A and B. 2. Each question carries 4 mark. Group - A (Real numbers, Sets, Polynomials, Quadratic Equations) 15. Prove that 3 is irrational by the method of contradiction. 16. Let A = {x : x is an even number} B = {x : x is an odd number} C = {x : x is a prime number} D = {x : x is a multiple of 3} Find (i) BA È (ii) BA Ç (iii) C – D (iv) CA Ç and describe the sets in set builder form. 17. Find a quadratic polynominal whose sum of zeroes is 2 3- and product is –1. How many such polynomials you can find in this process? 18. Find the roots of the equation 5x2 – 6x– 2 = 0 by the method of completing the square.
  • 12. 12 Group - B (Linear Equations in two variables, Progressions and co-ordinate Geometry) 19. Solve the euqations 2 32 =+ yx and 1 94 -=- yx . 20. Check whether the given pair of linear equations represent intersecting, parallel or co-incident lines. Find the solution if the equations are consistent. (i) 3x + 2y = 5 (ii) 2x – 3y = 5 2x – 3y = 7 4x – 6y = 15 21. The number of bacteria in a certain culture triples every hour. If there were 50 bacteria present in the culture originally, what would be the number of bacteria in 3rd hour? 5th hour? 10th hour? 11th hour? 22. Find the area of triangle formed by the points (8, –5) (–2, –7) and (5, 1) by using Heron’s formula. Section - IV (Polynomials, Linear Equations in two variables) Marks: 5 ´ 2 = 10 Note: 1. Answer any one question from the following. 2. This question carries 5 marks. 23. Draw the graph of P(x) = x2 – 6x + 9 and find zeroes. Verify the zeroes of the polynomial. 24. Solve the pair of linear equations graphically 2x – y = 5 3x + 2y = 11
  • 13. 13 Mathematics - Paper - I (English Version) Part A and B Time: 2½ hours Max Marks: 50 Part - B Time: 30 minutes Marks: 15 Note: 1. All questions are to be answered. 2. Each question carries ½ mark 3. Answer are to be written in the question paper only. 4. Marks will not be given for over - writing, re-writing or erased answers. I. Write the Capital letters of the correct answer in the brackets provided against each question. 10´ ½ = 5 marks 1. One of the following is an irrational number. ( ) A) 3 2 B) 25 16 C) 8 D) 04.0 2. The product of zeroes of the cubic polynomial 2 x3 –5 x2 –14 x+8 is ( ) A) – 4 B) 4 C) –7 D) 2 5 3. A pair of Linear equations which satisfies dependent system ( ) A) 2x + y – 5 = 0 ; 3x – 2y – 4 = 0 B) 3x + 4y = 2 ; 6x + 8y = 4 C) x + 2y = 3 ; 2x + 4y = 5 D) x + 2y – 30 = 0 ; 3x + 6y + 60 = 0 4. The n term of G.P. is an = arn-1 where ‘r’represents ( ) A) Firs terms B) Common difference C) Common ratio D) Radius 5. The number of two digit numbers which are divisible by 3 ( ) A) 30 B) 20 C) 29 D) 31 6. The euqation of the line which intersects X-axis at (3, 0) is ( ) A) x + 3 = 0 B) y + 3 = 0 C) x – 3 = 0 D) y – 3 = 0 7. The coordinates of the centre of the circle if the ends of the diameter are (2, – 5) and (–2, 9) ( ) A) (0, 0) B) (2, –2) C) (–5, 9) D) (0, 2)
  • 14. 14 8. The point of intersection of the lines x = 2014 and y = 2015 is ( ) A) (2015, 2014) B) (2014, 2015) C) (0, 0) D) (1, 1) 9. Which of the following vertices form a triangle ( ) A) (1, 2), (1, 3), (1, 4) B) (5, 1), (6, 1), (7, 1) C) (0, 0), ( –1, 0), (2, 0) D) (1, 2), (2, 3), (3, 4) 10. The slope of a ladder making an angle 300 with the floor ( ) A) 1 B) 3 1 C) 3 D) 2 1 II. Fill in the blanks with suitable answers 10´ ½ = 5 marks 11. The decimal form of 23 52 23 ´ is ______________ 12. The shaded region in the diagram represents ______________ A B 13. If 3 1 is one zero of 3x2 + 5x– 2 then the other zero is ______________ 14. The value of ‘K’ for which a pair of linear equations 3x+ 4y+ 2 = 0 and 9x+12y+K = 0 represent coincident lines is ______________ 15. The quadratic equation having roots a and b is ______________ 16. The sum of first 20 odd numbers is ______________ 17. The distance between the origin to the point ( – 4, – 5) is ______________ units. 18. The centroid of the triangle whose vertices are (3, –5), (–7, 4) and (10, –2) is ______________ 19. The distance between two points (x1 , y1 ) and (x2 , y2 ) on the line parallel to X-axis is ______________ 20. The mid point of the line joining the points ( )16 4log,8 2log and ( )oo 0cos,90sin is ______________ 900 300
  • 15. 15 For the following questions under Group-A choose the correct answer from the master list Group-B and write the letter of the correct answer in the brackets provided against each item. 10´ ½ = 5 marks (i) Group - A Group - B 21. The logirithmic form of 210 = 1024 ( ) A) 4 (log5 + log2) 22. The Exponential form of 01.0 10log ( ) B) 0 23. The Expansion of log 10000 ( ) C) log4 24. The short form of log16 – 2 log2 ( ) D) 10log1024 2 = 25. The value of 1 1000log ( ) E) log8 F) log1000 G) – 2 H) log125 + log800 (ii) Group - A Group - B 26. Product of zeroes of x2 – 3 ( ) I) 2 3 27. Sum of zeroes of 2x3 – 3x2 – 14x+18 ( ) J) 3 28. The common root of 2x2 + x –6 = 0 ( ) K) 0 and x2 – 3x– 10 = 0 is 29. The value of the polynomial ( ) L) 36 p(x) = 3x2 – 5x – 2 at x = 2 30. The discriment of quadratic equation ( ) M) – 2 x2 – 4x + 5 = 0 ( ) N) – 3 ( ) O) – 7 ( ) P) – 4
  • 16. 1 Mathematics - Paper - II Moder Paper Weightage Tables Table : 1 Weightage to Academic Standards S. No. Academic Standards Weightage % Marks 1. Problem Solving 40 32 2. Reasoning & Proof 20 16 3. Communication 10 8 4. Connnections 15 12 5. Representation & Visualisation 15 11 Total 100% 79 Table : 2 Weightage to Areas S. No. Area Weightage % Marks 1. Geometry 27 22 (i) Similar Triangles (ii) Targents and Secauts to a circle 2. Mensuration 19 15 3. Trigonametry 29 23 (i) Trigonametry (ii)Apps of Trigonametry 4 Statistics 25 19 (i) Statistics (ii) Probability 100% 79 Table : 3 Weightage to difficulty level S. No. Type Weightage % Marks 1 Easy 25% 20 2 Average 50% 39 3 Difficult 25% 20 100% 79 Table : 4 Weightage to type of questions S. No. Type of Questions Weightage % Marks 1. LongAnswer 53% 42 2. ShortAnswer 20% 16 3. Very ShortAnswer 8% 06 4 Objective 19% 15 Total 100% 79
  • 18. 3 SSC Model Question Paper Mathematics - Paper - II (English Version) Part A and B Time: 2½ hours Max Marks: 50 Instructions: 1. Answer the questions under Part-A on a seperate answer book. 2. Write the answerws to the questions under Part-B on the question paper itself and attach it to the answerbook of Part - A Part-A Section - I Time: 2 hours Marks: 35 Note: 1. Answer any five questions choosing atleast two from each of the following two groups i.e., A and B. 2. Each question carries 2 marks. Group - A (Similar triangles, Tangents and secants to a circle, mensuration) 1. Prove that the sum of the squares of the sides of a rhombus is equal to the sum of the squares of its diagonals. 2. ATangent is drawn from a point which is 34 cms away from centre of a circle. If the diameter of the circle is 34 cms, then find the length of the tangent. 3. Find the volume and the total surface area of a hemisphere of radius 3.5 cms. 4. An oil drum is in the shape of a cylinder having the following dimensions: diameter is 2m. and height is 7m. If the painter charges 3 per m2 . To paint the drum find the charges to be paid to the painter. Group - B 5. If , 5 3 sin =q find the value of qq 22 tansec + . 6. Ravi is on the top of a 20m high building. Rahimis 20m. away fromthe bottomof the building, Can Rahim able to see Ravi at 450 angle? Justify your answer. 7. A bagcontains 5 Red and 8 white balls. If a ball is drawn at Randomfromthe bag what is the probability that it will be (i) white ball (ii) not a white ball. 8. Write the formula of median for a grouped data? Explain the symbols in words.
  • 19. 4 Section - II Marks: 4 ´ 1 = 4 Note: 1. Answer any four of the following six questions. 2. Each question carries 1 mark. 9. Write the properties of similar triangles. 10. Find the area of required cloth to cover the heep of grain in conical shape, of whose diameter is 8m and slant height of 3m. 11. Adie is thrown at once. Find the probability of getting an even prime number. 12. Find the mode of the data 5, 6, 9, 6, 12, 3 , 6. 11, 6 and 7. 13. Express tanq in terms of sinq . 14. A doctor observed that the pulse rate of 4 students is 72, 3 students is 78 and 2 students is 80. Find the mean of the pulse rate of the above students. Section - III Marks: 4 ´ 4 = 16 Note: 1. Answer any four questions, choosing two from each of the following groups, i.e., A and B. 2. Each question carries 4 mark. Group - A 15. A chord makes a right angle at the centre of a circle having a radius 10 cms. find (i) Area of minor segment (ii) Area of major segment 16. State and prove pythogorus theroem. 17. Metallic spheres of radius 6 cm, 8cm and 10 cm. respectively are melted to form a single solid sphere. Find the radius of the resulting sphere. 18. Find the ratio of surface areas of sphere and cylinder having same radius and height. Comment on the result. Group - B 19. If P=+ qq tansec then find the value of qSin in terms of ‘P’. 20. Aboat has to cross a river. It crosses the river by makingan angle of 600 with the bank of the river, due to the streamof the river and travels distance of 600 mts., to reach the another side of the river. What is the width of the river?
  • 20. 5 21. Two dice are rolled simultaneouly and counts are added (i) complete the table given below. Event 2 3 4 5 6 7 8 9 10 11 12 (sum of 2 dice) Probability 36 1 36 5 (ii) Astudent argues that there are 11 posible out comes 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12. Therefore each of themas a probability 11 1 . Do you agree with this argument . Justify your answer. 22. Draw “OGIVE CURVE” of the following frequency distribution table. Classes 0-20 20-40 40-60 60-80 80-100 100-120 Frequency 9 16 24 15 4 2 Section - IV Marks: 5 ´ 2 = 10 Note: 1. Answer one question from the following. 2. Each question carries five marks. 23. Construct a triangle of sides 4 cm. 5 cm. and 6cm. Then construct a triangle similar to it. Whose slides are 3 2 of the corresponding sides of the first triangle. 24. The angle of elevation of a jet plane from a point Aon the ground is 600 after a flight of 15 seconds, the angle of elevation changes to 300 . If the jet plane is flying at a constant height of 1500 3 meter, find the speed of a jet plane.
  • 21. 6 Mathematics - Paper-II Part - B (English Version) Time: 30 min Max Marks: 15 Instructions: 1. The question paper carries 2 1 mark. 2. Answer are to be written is the question paper only. 3. All questions are to be answered. 4. Marks will not be awarded is case of any over writing or re-writing or erased answers. Part-B 10 ´ 2 1 = 5 marks I. Write the capital letters showing the answer in the brackets provided against each question. 1. from the diagramLM || CB and LN CD the which ( ) of the following is true. A) ND AN MB AM = B) AB AM ND AN = C) ML AM NL AN = D) AD AN MB AM = 2. The distance between the points ( qcos , 0 ) , (0, qsin ) ( ) A) 1 B) -1 C) 0 D) 1- 3. TheA.M. of 30 students is 42.Among them two got zero marks then A.M. of remaining students ( ) A) 40 B) 42 C) 45 D) 28 4. The probability of getting kind or green card from the play cards (1 deek) ( ) A) 52 1 B) 13 1 C) 45 D) 28 5. The h indicates in Mode h fff ff lZ ´÷÷ ø ö çç è æ -- - += 10 0 2 ( ) A) Frequency B) Length of the CI C B M A N D L
  • 22. 7 C) Lower boundary of mode class D) Mode 6. Which of the following is incorrect ( ) A) The ratio of surface areas of cylinder and core is 1:1 B) The ratio SA(Surface Area) of sphere and hemisphere is 2:1 C) The ratio TSA(Total Surface Area) of sphere and hemisphere is 2:1 D) The ratio of volumes of cylinder and core is 3:1 7. = - oo oo 64tan.26tan 67sin23cos ( ) A) sin 90° B) tan 30° C) tan 0° D) cot 30° 8. Among the numbers 1, 2, 3, ............. 15 the probability of choosinga number which is a multiple of 4 ( ) A) 15 4 B) 15 2 C) 5 1 D) 5 3 9. Which of the following representations 29 21 sin =q ( ) A) B) C) D) 10. Gita said that the probability of impossible events is 1. Pravillika said that probability of sure events is 0 andAtiya said that the probability of any event lies in between 0 and 1. In the above with whom you will agree. ( ) A) Gita B) Pravillaka C)Atiya D) All the three P 21 29 Q R q E 21 29 D F q C 29 21 A B q Z 29 21 X Y q
  • 23. 8 II. Fill in the blanks with suitable words. 11. The angle between a tangent to a circle and the radius drawn at the plant of contact is ______________ 12. The ratio between Leteral surface area and total surface area of cube is ____________ 13. A man goes to East and then to South. The trigonamentric ratio involved to find the distance travelled from the starting point is ______________ 20 14. 15 Fromthe figure the possible measures of central tendency 10 can be found is ______________ 5 5 10 15 20 15. From the figure the probability to get yellow colour ball is ______________ R = Red Y = Yellow 16. The Medians of two similar Triangles are 3cm. and 5cm. Then the ratio of areas of above two triangles is ______________ 17. The area of the base of a cylander is 616 sq. cm. then its radius is ______________ 18. The length of the chard making an angle 600 at the centre of the circle having radius 6 cm is ______________ 19. Marks 10 20 30 No. of students 5 9 3 From the above data the value of median is ______________ 20. A game of chance consists of spinning an arrow which comes to rest at one of the numbers 1, 2, 3, 4, 5, 6, 7, 8 and these are equally likely outcomes. The possibility that the arrow will point at a number greater than 2 is ______________ R Y R Y R R 1 2 3 45 6 7 8
  • 24. 9 Match the following 5´ ½ = 2½ marks Group - A Group - B 21. In triangleABC, D and E are the ( ) A) 20 points onAB andAC and EC AE DC AD = then 22. In triangle BED, ÐE = 90° and ( ) B) 4 ED2 = BD. CD then 23. Volume of a hemicphere is ( ) C) 3 77 2250 cm3 than its radius 24. The horizontel distance from the foot ( ) D) 15 of the leader having height 25m touches the window at a height of 15m is 25. Two concentric circles of radii 5cm. ( ) E) DE || BC and 3cm. are drawn. The length of the ( ) F) DE ^ BC chord of larger circle touches to small circle ( ) G) 8 ( ) H) 7 22 Match the following 5´ ½ = 2½ marks Group - A Group - B 26. If secq + tanq = 2 1 then ( ) I) 0 secq - tanq value 27. oooo 180cos........2cos1cos0cos ´´´´ ( ) J) 1 28. if 5 4 cos =A then sinAvalue ( ) K) 50° 29. The length of the shadow of a tower of ( ) L) 5 3 height 15m. at 7A.M. is 15 3 than the angle made by sum with the earth 30. If tangents PAand PB from a point ( ) M) – 3 2 P to a circle with centre O are inclined ( ) N) 60° to each other at an angle of 80° than ( ) O) 2 ÐPOA ( ) P) 3
  • 25. 1 |Ÿ<Še ÔásÁ>·Ü qeTÖH ç|ŸXø•|ŸçÔá+ jáTÖ“{Ù fÉdt¼ >·DìÔá+ ÔásÁ>·Ü: 10 yîTTÔáï+ eÖsÁTØT 25 dŸeTjáT+ : 45 “; dŸÖ#áqT: · ç|ŸXæ•|ŸçÔá+ eTÖ&ƒT ™d¿£ŒqT¢ ¿£*Ð –+³T+~. ™d¿£ŒHŽ ` 1 n“• ç|ŸXø•Å£” Èy‹TT sjáT+&. ç¿ì+<Š“eÇ‹&q HT>·T dŸeÖ<ó‘qeTT qT+& dŸ]jî®Tq Èy‹TqT dŸÖº+#áT n¿£ŒsÁeTT (A / B /C / D)qT ‚eÇ‹&q çu²Â¿³¢ýË sjáT+&. 7 ´ 1 = 7 eÖsÁTØT 1. 156 jîTT¿£Ø ç|Ÿ<ó‘q ¿±sÁD²+¿£ ‹Ý sÁÖ|Ÿ+. ( ) A) 2 ´ 3´ 13 B) 22 ´ 32 ´ 13 C) 22 ´ 3´ 13 D) 2 ´ 32 ´ 13 2. 8x = 2 jîTT¿£Ø dŸ+esÁZeÖq sÁÖ|ŸeTT. ( ) A) logx 8 = 2 B) log8 2 = x C) logx 2 = 8 D) log2 x = 8 3. 0.875 jîTT¿£Ø q p sÁÖ|ŸeTT. ( ) A) 3 2 7 B) 16 7 C) 8 3 D) 2 2 7 4. ¿ì+~ y“ýË dŸ+U²«¹sK™|Õ @ |ŸPsÁ’dŸ+K« eT<óŠ« 4 3 –+³T+~. ( ) A) 0 eT]jáTT 1 B) 1 eT]jáTT 2 C) 3 eT]jáTT 4 D) -1 eT]jáTT 1 5. A = {x / x ÿ¿£ u²T&ƒT} B = {x / x ÿ¿£ u²*¿£} nsTTq ( ) A) f=È BA B) q¹Ç BA C)A- B =A D)A- B = f 6. 2x-3 ‹VŸQ|Ÿ~ XøSq« $Te. ( ) A) 3 2 B) 2 3 C) 3 2- D) 2 3- 7. ç¿ì+~ y“ýË @ ;JjáT dŸeÖdŸeTT ‹VŸQ|Ÿ~¿±<ŠT. ( ) A) - 2 2x B) 52 +x C) x x 1 + D) 5-2x
  • 26. 2 ™d¿£ŒHŽ ` II 5 ´ 2 = 10 eÖsÁTØT n“• ç|ŸXø•Å£” Èy‹TT sjáT+&. ç|ŸÜ ç|ŸXø•Å£” Âs+&ƒT eÖsÁTØT. 8. ¿ì+~ n¿£sÁD¡jáT dŸ+K«qT uó²>·VŸäsÁ+ #ûjáTÅ£”+&†Hû <ŠXæ+XøsÁÖ|Ÿ+ýË sjáT+&. i) 25 13 ii) 110 143 9. log 2 3 y x qT $dŸï]+#áTeTT. 10. A = {1, 2, 5}, B = {2, 3, 4, 5} nsTTq BA È eT]jáTT BA Ç qT ¿£qT>=q+&. 11. ¿ì+~ y““ C²_Ԑ sÁÖ|Ÿ+ýË sjáT+&. (i) A= {x / x ÎN, x<7} (ii) B = {x / x nHû~ ‘School’ nHû |Ÿ<Š+ýË n¿£ŒsÁeTT} 12. P(x) = x-2 jîTT¿£Ø ç>±|˜t ^jáT+&. n~ X- n¿Œ±“• b#á³ K+&dŸTï+<à Ôî|Ÿ+&. ™d¿£ŒHŽ `III 2 ´ 4 = 8 marks 1. n“• ç|ŸXø•Å£” Èy‹TT sjáT+&. 2. ç|ŸÜ ç|ŸXø• qT+& ÿ¿£ <‘““ b+#áT¿Ã+&. ç|ŸÜ ç|ŸXø•Å£” 4 eÖsÁTØT 13. $sÁT<ŠÆÔá <‘Çs 2 qT ¿£sÁD¡jáT dŸ+K« n“ #áÖ|Ÿ+&. (ýñ<‘) 523 - qT ¿£sÁDì n“ #áÖ|Ÿ+&. 14. x2 +5x+6 nHû ‹VŸQ|Ÿ~ XøSq« $TeT ¿£qT>=q+&. eT]jáTT XøSq« $TeT, >·TD¿± eT<óŠ« dŸ+‹+<ó‘“• ÔîÎ+&. (ýñ<‘) 3x3 + x2 + 2x+5 qT (3x-1) #û uó²Ð+#á+&. eT]jáTT uó²>·VŸäsÁ “jáTeÖ“• dŸ]#áÖ&ƒ+&.
  • 27. 3 Mathematics - Paper - I (Telugu Version) Part A and B Time: 2½ hours Max Marks: 50 Instructions: 1. Answer the questions under Part-A on a seperate answer book. 2. Write the answerws to the questions under Part-B on the question paper itself and attach it to the answerbook of Part - A Part-A Time: 2 hours Section - I Marks: 35 dŸÖ#áqT: 1. ‡ ç¿ì+<ŠqTq• A eT]jáTT B ç>·Ö|ŸÚýË ÿ¿=Ø¿£Ø <‘“ qT+& ¿£údŸ+ Âs+&ƒT ç|ŸXø• #=|ŸÚÎq yîTTÔáï+ ×<ŠT ç|ŸXø•Å£” dŸeÖ<ó‘qeTTT çyjáT+&. 2. ç|ŸÜ ç|ŸXø•Å£” Âs+&ƒT eÖsÁTØT. Group - A (ydŸïe dŸ+K«T, dŸ$TÔáTT, ‹VŸQ|Ÿ<ŠTT, esÁZdŸMT¿£sÁD²T) 1. 220 eT]jáTT 284 >·.kÍ.¿±. eT]jáTT ¿£.kÍ.>·T.qT ç|Ÿ<ó‘q ¿±sÁD²+¿± ‹Ý |Ÿ<ŠÆÜýË ¿£qT>=q+&. 2. A {x: x2 = 25 eT]jáTT6x =15} nHû~ XøSq«dŸ$TÜ neÚHà ¿±<à #áÖ&ƒ+&. MT Èy‹TqT dŸeT]œ+#á+&. 3. Kx2 –3x +1nHû esÁZ ‹VŸQ|Ÿ~ XøSq«eTT yîTTÔáï+ 1 nsTTq K $Te b+Ôá? 4. yîTTÔáï+ 27 eT]jáTT ‹Ý+ 182 njûT«³T¢ Âs+&ƒT dŸ+K«qT ¿£qT>=q+&. Group - B (Âs+&ƒT #ásÁsXø—ýË ¹sFjáT dŸMT¿£sÁDeTT, çXâ&óƒTT, “sÁÖ|Ÿ¿£ C²«$TÜ) 5. 3 ¿£eTTT, 4 |ŸÚdŸï¿£eTT yîTTÔáï+ yî sÁÖ. 50 T. 5 ¿£eTTT, 3 |ŸÚdŸï¿£eTT yîTTÔáï+ yî sÁÖ.54T. nqT <ŠÔï+Xæ“¿ì Âs+&ƒT #ásÁsXø—ýË ÿ¿£ ÈÔá ¹sFjáT dŸMT¿£sÁDeTTT sjáT+&. 6. ÿ¿£ qsÁà¯ýË 17 >·Tý²; yîTT¿£ØT yîTT<Š{ì esÁTdŸýË, 14 yîTT¿£ØT Âs+&ƒe esÁTdŸýË, 11 yîTT¿£ØT eTÖ&ƒe esÁTdŸýË –q•$. n<û $<óŠ+>± ºe] esÁTdŸýË 2 yîTT¿£ØT –q•$. nsTTq € qsÁà¯ýË b“• esÁTdŸ >·Tý²; yîTT¿£ØT –q•$. 7. X- n¿£Œ+™|Õ –+³Ö _+<ŠTeÚT (2 – 5) eT]jáTT (– 2, 9) Å£” dŸeÖq <ŠÖsÁ+ýËqTq• _+<ŠTeÚqT ¿£qT>=q+&. 8. (1, 5), (2, 3), (– 2, – 1) _+<ŠTeÚT dŸ¹sFjáÖT neÚԐjáÖ? ¿±<‘? dŸ]#áÖ&ƒ+&.
  • 28. 4 Section - II Marks: 4 ´ 1 = 4 dŸÖ#áq: 1. ¿ì+~ y“ýË @yû“ HT>·T ç|ŸXø•Å£” dŸeÖ<ó‘qeTTT sjáT+&. 2. ç|ŸÜ ç|ŸXø•Å£” ÿ¿£ eÖsÁTØ. 9. log3 243 jîTT¿£Ø $TeqT “sÝ]+#á+&. 10. A= {1, 3, 5, 7}, B = {1, 2, 3, 4, 6} nsTTqA– B ¿£qT>=q+&. 11. MT <îÕq+~q J$Ôá+ qT+& $jáTT¿£ï dŸ$TÔáTÅ£” @yû“ Âs+&ƒT –<‘VŸ²sÁD*eÇ+&. 12. P(y) = y2 –1 ‹VŸQ|Ÿ~ jîTT¿£Ø XøSq«$TeT ¿£qT>=q+&.. 13. 2 , 8 , 18 , 32 ....... nHû ¿£sÁD¡jáT dŸ+K«T ÿ¿£ n+¿£çXâ&ó“ @sÁÎsÁ#áT#áTq•y? nsTTq#à kÍeÖq« uñ<óŠeTT ¿£qT>=q+&. 14. ÿ¿£ dŸsÁÞø¹sK yT n+fñ @$T{ì? Section - III Marks: 4 ´ 4 = 16 dŸÖ#áq: 1. ‡ ç¿ì+<ŠqTq• A eT]jáTT B ç>·Ö|ŸÚýË ÿ¿=Ø¿£Ø <‘“qT+& ¿£údŸ+ Âs+&ƒT ç|ŸXø• #=|ŸÚÎq yîTTÔáï+ HT>·T ç|ŸXø•Å£” dŸeÖ<ó‘HeTTT çyjáTTeTT. 2. ç|ŸÜ ç|ŸXø•Å£” 4 eÖsÁTØT. Group - A (ydŸïe dŸ+K«T, dŸ$TÔáTT, ‹VŸQ|Ÿ<ŠTT, esÁZdŸMT¿£sÁD²T) 15. 3 qT ¿£sÁD¡jáT dŸ+K« n“ »$sÃ<ó‘uó²dŸ+µ <‘Çs “sÁÖ|¾+#á+&.. 16. A = {x : x ÿ¿£ dŸ]dŸ+K«} B = {x : x ÿ¿£ uñd¾ dŸ+K«} C = {x : x ÿ¿£ ç|Ÿ<ó‘q dŸ+K«} D = {x : x ÿ¿£ 3 jîTT¿£Ø >·TD¿£eTT} nsTTq (i) BA È (ii) BA Ç (iii) C – D (iv) CA Ç qT ¿£qT>=q+&. 17. ÿ¿£ esÁZ ‹VŸQ|Ÿ~ jîTT¿£Ø XøSH« yîTTÔáïeTT eT]jáTT ‹ÝeTT esÁTdŸ>± 2 3- eT]jáTT –1 nsTTq € esÁZ‹VŸQ|Ÿ~“ ¿£qT>=qTeTT. ‡ ç¿£eT+ýË n³Te+{ì esÁZ ‹VŸQ|Ÿ<ŠTqT b“•+{ì“ ¿£qT>=q>·eÚ? 18. 5x2 – 6x– 2 = 0 esÁZdŸMT¿£sÁD eTÖeTTqT, esÁZeTTqT |ŸP]ï#ûjáTT |Ÿ<ŠÆÜ <‘Çs ¿£qT>=qTeTT.
  • 29. 5 Group - B (Âs+&ƒT #ásÁsXø—ýË ¹sFjáT dŸMT¿£sÁDeTT, çXâ&óƒTT, eT]jáTT “sÁÖ|Ÿ¿£ C²«$TÜ) 19. 2 32 =+ yx eT]jáTT 1 94 -=- yx .dŸMT¿£sÁD²qT kÍ~ó+#á+&. 20. ¿ì+~ dŸMT¿£sÁD² ÈÔá K+&ƒq¹sKý², dŸeÖ+ÔásÁ ¹sKý² ýñ<‘ @¿¡uó„$+#áT ¹sKý² dŸ]#áÖ&ƒ+&. € dŸMT¿£sÁDeTTT dŸ+>·ÔáeTT nsTT“ y{ì kÍ<óŠq ¿£qT>=qTeTT. (i) 3x + 2y = 5 (ii) 2x – 3y = 5 2x – 3y = 7 4x – 6y = 15 21. ç|ŸÜ >·+³Å£” 3 Âs³T¢ njûT« ÿ¿£ u²¿¡¼]jáÖ ¿£ÌsYýË yîTT<Š{ì >·+³ýË 50 u²«¿¡¼]jáÖT –q• 3e >·+³ýË eÚ+&û u²«¿¡¼]jáÖ dŸ+K« b+Ôá? 5e >·+³ýË eÚ+&û u²«¿¡¼]jáÖ dŸ+K« b+Ôá? 10 e >·+³ýË eÚ+&û u²«¿¡¼]jáÖ dŸ+K« b+Ôá? 22. ™V²sHŽ dŸÖçÔá+qT|ŸjîÖÐ+º (8, –5) (–2, –7) eT]jáTT (5, 1) _+<ŠTeÚq” osüT>± >·*Zq çÜuó„TÈ yîÕXæ«+ ¿£qT>=q+&. Section - IV (‹VŸQ|Ÿ<ŠTT, Âs+&ƒT #ásÁsXø—ýË, ¹sFjáT dŸMT¿£sÁD²T) Marks: 5 ´ 2 = 10 dŸÖ#áq: 1. ç¿ì+~ y“ýË @<à ÿ¿£ ç|ŸXø•Å£” dŸeÖ<ó‘qeTT çyjáTTeTT. 2. € ç|ŸXø•Å£” 5 eÖsÁTØT. 23. P(x) = x2 – 6x + 9 ‹VŸQ|Ÿ~¿ì ÔáÐq ¹sU² ºçÔáeTT ^º, XøSH«T ¿£qT>=q+&. |˜Ÿ*Ԑ“• dŸeT]œ+#á+&.. 24. ¿ì+~ ÈÔá ¹sFjáT dŸMT¿£sÁD²qT ç>±|˜t |Ÿ<ŠÆÜýË kÍ~ó+#á+&. 2x – y = 5 3x + 2y = 11
  • 30. 6 Mathematics - Paper - I (Telugu Version) Parts A and B Time: 2½ hours Max Marks: 50 >·eT“¿£: ‡ ç¿ì+~ ç|ŸXø•Å£” dŸeÖ<ó‘HqT b<ŠTsÁT>± >· U²°ýË çyd¾ Part-B ç|ŸXæ•|ŸçԐ“• Part- A Èy‹T |ŸçԐ“¿ì ÈÔá#ûjáTTeTT. Part - B dŸeTjáT+: 30 “. eÖsÁTØT: 15 dŸÖ#áqT: 1. n“• ç|ŸXø•Å£” dŸeÖ<ó‘qeTTT çyjáTTeTT. 2. ç|ŸÜ ç|ŸXø•Å£” ½ eÖsÁTØ. 3. dŸeÖ<ó‘HeTTqT ç|ŸXø•|ŸçÔáeTTýËHû çyjáTTeTT. 4. ¿=fñ¼d¾çyjáT‹&q,~<ŠÝ‹&q ýñ<‘#î]|¾yûd¾çyjáT‹&q dŸeÖ<ó‘qeTTÅ£”eÖsÁTØT‚eÇ‹&ƒeÚ. 5. ‹VŸQÞèÕºÌÛ¿£ ç|ŸXø• dŸeÖ<ó‘qeTTT çyjáTT³Å£” ™|<ŠÝ n¿£ŒsÁeTT (€+>·¢ esÁ’eÖ)qT –|ŸjîÖÐ+#áTeTT. I. ‡ ~>·Te ç|ŸÜ ç|ŸXø•Å£” b<ŠTsÁT>± 4 Èy‹T©jáT‹&q$. y{ìýË dŸÂsÕq Èy‹T dŸÖº+#áT €+>·¢ ™|<ŠÝ n¿£Œs“• € ç|ŸXø•¿<ŠTsÁT>± ‚eÇ‹&ƒ¦ çu²Â¿³¢ýË çyjáTTeTT. 10´ ½ = 5 eÖsÁTØT 1. ¿ì+~ y“ýË ¿£sÁD¡jáT dŸ+K« ( ) A) 3 2 B) 25 16 C) 8 D) 04.0 2. 2 x3 –5 x2 –14 x+8 nHû |˜ŸTq ‹VŸQ|Ÿ~ XøSH« ‹Ý+. ( ) A) – 4 B) 4 C) –7 D) 2 5 3. ç¿ì+~ y“ýË |ŸsÁdŸÎs<ó‘sÁ dŸMT¿£sÁD² e«edŸœqT dŸÖº+#áTq$. ( ) A) 2x + y – 5 = 0 ; 3x – 2y – 4 = 0 B) 3x + 4y = 2 ; 6x + 8y = 4 C) x + 2y = 3 ; 2x + 4y = 5 D) x + 2y – 30 = 0 ; 3x + 6y + 60 = 0 4. ÿ¿£ >·TDçXâ&ó n e |Ÿ<ŠeTT an = arn-1 nsTTq ‘r’ dŸÖº+#áTq~. ( ) A) yîTT<Š{ì|Ÿ<Š+ B) kÍeÖq« uñ<óŠ+ C) kÍeÖq« “wŸÎÜï D) y«kÍsÁœeTT
  • 31. 7 5. 3#û “XâôwŸ+>± uó²Ð+|Ÿ‹&ƒT Âs+&ƒ+¿ dŸ+K«. ( ) A) 30 B) 20 C) -29 D) 31 6. X-n¿Œ±“• (3, 0) e<ŠÝ K+&+#áT ¹sU² dŸMT¿£sÁD+. ( ) A) x + 3 = 0 B) y + 3 = 0 C) x – 3 = 0 D) y – 3 = 0 7. ÿ¿£ eÔáï y«dŸ|ŸÚ ºe] _+<ŠTeÚT (2, – 5), (–2, 9) nsTTq €eÔáﹿ+ç<Š “sÁÖ|Ÿ¿±T ( ) A) (0, 0) B) (2, –2) C) (–5, 9) D) (0, 2) 8. x = 2014 eT]jáTT y = 2015 ¹sK K+&ƒq _+<ŠTeÚ. ( ) A) (2015, 2014) B) (2014, 2015) C) (0, 0) D) (1, 1) 9. ç¿ì+~ y“ýË @ _+<ŠTeÚT çÜuó„TC²“• @sÁÎsÁ#á>·eÚ? ( ) A) (1, 2), (1, 3), (1, 4) B) (5, 1), (6, 1), (7, 1) C) (0, 0), ( –1, 0), (2, 0) D) (1, 2), (2, 3), (3, 4) 10. HûÔà ÿ¿£ “#îÌq 300 ¿ÃDeTT #ûjáTT#áTq• n~ #ûjáTTyT ( ) A) 1 B) 3 1 C) 3 D) 2 1 II. dŸ]jî®Tq Èy‹TÔà U²°T |ŸP]+#á+&. 10´ ½ = 5 eÖsÁTØT 11. 23 52 23 ´ jîTT¿£Ø <ŠXæ+Xø sÁÖ|Ÿ+ ______________ 12. ¿ì+~ |Ÿ³+ýË w&Ž #ûjáT‹&q çbÍ+Ôá+ dŸÖº+#áTq~. ______________ A B 13. 3x2 + 5x– 2 nHû ‹VŸQ|Ÿ~ ÿ¿£ XøSq«+ 3 1 nsTTq Âs+&à XøSq«+ ______________ 14. 3x + 4y+ 2 = 0 eT]jáTT 9x +12y+K = 0 ¹sKT ÿ¿£ ÈÔá @¿¡uó„$+#áT ¹sKsTTq ‘K’ $Te ______________ 15. a eT]jáTT b T eTÖý²T >· esÁZ dŸMT¿£sÁD+ ______________ 16. yîTT<Š{ì 20 uñd¾ dŸ+K« yîTTÔáï+ ______________ 17. eTÖ_+<ŠTeÚ qT+& ( – 4, – 5) _+<ŠTeÚÅ£” >· <ŠÖsÁ+ ______________ 900 300
  • 32. 8 18. (3, –5), (–7, 4), (10, –2) osüT>· çÜuó„TÈ >·TsÁTÔáÇ ¹¿+ç<Š+ ______________ 19. X-n¿£ŒeTTqÅ£” dŸeÖ+ÔásÁ+>± –+&û ¹sK™|Õ eÚq• (x1 , y1 ) eT]jáTT (x2 , y2 ) _+<ŠTeÚ eT<óŠ« <ŠÖsÁ+____________ 20. ( )16 4log,8 2log eT]jáTT ( )oo 0cos,90sin _+<ŠTeÚqT ¿£T|ŸÚ ¹sK eT<óŠ« _+<ŠTeÚ_____________ III) ç¿ì+<Š Group-A ýË ‚eÇ‹&q ç|ŸXø•Å£”, Group-B ýË“ dŸ]jî®Tq dŸeÖ<ó‘qeTTqT dŸÖº+#áT n¿£ŒsÁeTTqT ç|ŸXø•¿<ŠTsÁT>± ‡jáT‹&q çu²Â¿³¢jáT+<ŠT >·T]ï+#áTeTT. 10´ ½ = 5 eÖsÁTØT (i) Group - A Group - B 21. 210 = 1024 jîTT¿£Ø dŸ+esÁZeÖqsÁÖ|Ÿ+ ( ) A) 4 (log5 + log2) 22. 01.0 10log jîTT¿£Ø |˜ŸÖԐ+¿£sÁÖ|Ÿ+ ( ) B) 0 23. log 10000 jîTT¿£Ø $dŸïsÁD sÁÖ|Ÿ+ ( ) C) log4 24. log16 – 2 log2 jîTT¿£Ø dŸ+¿ìŒ|ŸïsÁÖ|Ÿ+ ( ) D) 10log1024 2 = 25. 1 1000log $Te ( ) E) log8 F) log1000 G) – 2 H) log125 + log800 (ii) Group - A Group - B 26. x2 – 3 ‹VŸQ|Ÿ~ XøSH« ‹Ý+ ( ) I) 2 3 27. 2x3 – 3x2 – 14x+ 8 XøSH« yîTTÔáï+ ( ) J) 3 28. 2x2 + x –6 = 0 eT]jáTT x2 – 3x – 10 = 0 ( ) K) 0 dŸMT¿£sÁD² –eTˆ& eTÖ+ 29. x = 2 e<ŠÝ p(x) = 3x2 – 5x – 2 jîTT¿£Ø $Te ( ) L) 36 30. x2 – 4x + 5 = 0 esÁZdŸMT¿£sÁD $#á¿£ŒDì ( ) M) – 2 ( ) N) – 3 ( ) O) – 7 ( ) P) – 4
  • 33. 1 Mathematics - Paper - II (Telugu Version) Part A and B Time: 2½ hours Max Marks: 50 Instructions: 1. Answer the questions under Part-A on a seperate answer book. 2. Write the answerws to the questions under Part-B on the question paper itself and attach it to the answerbook of Part - A Part-A Section - I Time: 2 hours Marks: 35 Note: 1. Answer any five questions choosing atleast two from each of the following two group, i.e., A and B. 2. Each question carries 2 marks. Group - A (dŸsÁÖ|Ÿ çÜuó„TC²T, eÔï dŸÎsÁô¹sKT eT]jáTT #û<óŠq¹sKT, ¹¿ŒçÔá$TÜ) 1. ÿ¿£ s+‹dtýË uó„TC² esZ yîTTÔáï+, <‘“ ¿£s’ esZ yîTTÔáïeTTqÅ£” dŸeÖqeT“ #áÖ|ŸÚeTT. 2. 32 ™d+.MT. y«dŸ+>· eÔï“¿ì, eÔáﹿ+ç<Š+ qT+& 34 ™d+.MT. <ŠÖsÁ+ýË >· _+<ŠTeÚ qT+& ^jáT‹&q dŸÎsÁô¹sK bõ&ƒeÚ ¿£qT>=qTeTT. 3. y«kÍsÁœeTT 3.5 ™d+.MT. ¿£*Ðq nsÁœ>ÃÞøeTTjîTT¿£Ø dŸ+|ŸPsÁ’Ôá yîÕXæ«eTTqTeT]jáTT |˜ŸTq|Ÿ]eÖDeTTqT ¿£qT¿ÃØ+&. 4. dŸÖœbÍ¿±sÁ+ýË eÚq• qÖHî |ÓbÍ 2 MT³sÁ¢ uó„Ö y«kÍsÁœ+, 7 MT³sÁ¢ bÔáTï ¿£*ÐeÚq•~. #á<ŠsÁ|ŸÚ MT³sÁTÅ£” sÁÖ. 3 e+ÔáTq sÁ+>·T yûjáTT³Å£” njûT« KsÁTÌ b+Ôá? Group - B (çÜ¿ÃD$TÜ, çÜ¿ÃD$TÜ nqTesÁïHT, dŸ+uó²e«Ôá, kÍ+K«¿£XæçdŸï+) 5. , 5 3 sin =q nsTTq qq 22 tansec + .$Te b+Ôá? 6. sÁ$ 20 MT. bÔáTï>· uó„eq+™|Õ “‹& eÚH•&ƒT. € uó„eq+ n&ƒT>·T uó²>·+ qT+& 20 MT. <ŠÖsÁ+ýË >· _+<ŠTeÚ e<ŠÝ>· sE 450 ¿ÃD+Ôà sÁ$“ #áÖ&ƒ>·&†? ú dŸeÖ<ó‘H“• dŸeT]œ+#áTeTT. 7. ÿ¿£ dŸ+ºýË 5 bsÁT|ŸÚ, 8 ÔîT|ŸÚ ‹+ÔáTT>·eÚ. € dŸ+º qT+& jáÖ<ŠºÌ¿£+>± ÿ¿£ ‹+Ü“ rdï n~ (1) ÔîT|ŸÚ ‹+Ü njûT« (2) ÔîT|ŸÚ ‹+Ü ¿±Å£”+&† eÚ+&û dŸ+uó²e«Ôá b+Ôá? 8. ÿ¿£ e¯Z¿£Ôá <ŠÔï+XøeTTqÅ£” eT<óŠ«>·Ôá+ ¿£qT>=qT³Å£” dŸÖçÔá+ çyd¾, n+<ŠTýË“ |Ÿ<‘qT $e]+#á+&.
  • 34. 2 Section - II Marks: 4 ´ 1 = 4 Note: 1. Answer any four of the following six questions. 2. Each question carries 1 mark. 9. Âs+&ƒT çÜuó„TC²T dŸsÁÖbÍT ¿±e&†“¿ì “jáTeÖqT MT kõ+Ôá eÖ³ýË çyjáT+&. 10. 8 MT³sÁ¢ y«dŸ+ 3 MT³sÁ¢ yTfÉÔáTï >· <ó‘q«|ŸÚ Å£”|ŸÎqT |ŸP]ï>± ¿£|ŸÎ&†“¿ì nedŸsÁeTjûT« >·T&ƒ¦ yîÕXæ«+ b+Ôá? 11. ÿ¿£ bͺ¿£qT ÿ¿£kÍ] <=]¢+ºq|ŸÚ&ƒT @sÁÎ&û |ŸsÁ«ekÍqeTTýË dŸ] ç|Ÿ<ó‘q dŸ+K« njûT« dŸ+uó²e«ÔáqT ¿£qT>=qTeTT. 12. 5, 6, 9, 6, 12, 3 , 6. 11, 6, 7 u²VŸQÞø¿£eTTqT ¿£qT>=qTeTT. 13. tanq qT sinq |Ÿ<‘ýË e«¿¡ï¿£]+#áTeTT. 14. 10 eT+~ $<‘«sÁTœ |ŸýÙà ¹s³TqT ÿ¿£ &†¿£¼sY >·eT“dï 72, 78, 80 |ŸýÙà ¿£*Zq $<‘«sÁTœ dŸ+K« esÁTdŸ>± 4, 3, 2 >± >·eT“+#á&ƒ+ È]Ðq~. nsTTq#à y] dŸ>·³T |ŸýÙàqT ¿£qT>=qeTT. Section - III Marks: 4 ´ 4 = 16 Note: 1. Answer any four questions, choosing two from each of the following groups, i.e., A and B. 2. Each question carries 4 mark. Group - A (dŸsÁÖ|Ÿ çÜuó„TC²T, eÔï“¿ì dŸÎsÁô¹sKT eT]jáTT #û<óŠq ¹sKT, ¹¿ŒçÔá$TÜ ) 15. 10 ™d+.MT. y«kÍsÁœ+>± >· eÔáï+ýË ÿ¿£ C²« ¹¿+ç<Š+ e<ŠÝ #ûjáTT ¿ÃD+ +‹¿ÃD+ nsTTq (1) nÎeÔáïK+&ƒ+ (2) n~ó¿£eÔáï K+&ƒ+ yîÕXæ«+ ¿£qT>=qTeTT. 16. ™|Õ<¸‘>·sÁdt d¾<‘Ý+ÔáeTTqT ç|Ÿeº+º, “sÁÖ|¾+#áTeTT. 17. 6 ™d+.MT., 8 ™d+.MT., 10 ™d+.MT. y«kÍsœT>± >· |˜ŸTq >ÃÞøeTTT ¿£]Ð+º, ÿ¿£ ™|<ŠÝ |˜ŸTq >ÃÞø+>± eÖ]Ìq <‘“ y«kÍsÁœeTT b+Ôá? 18. ÿ¹¿ y«kÍsÁœeTT, ÿ¹¿ bÔáTï ¿£*Ðq >ÃÞøeTT, dŸÖœ|ŸeTT jîTT¿£Ø –|Ÿ]Ôá yîÕXæý²« “wŸÎÜï“ ¿£qT>=qTeTT? |˜Ÿ*ÔáeTTqT ú kõ+Ôá eÖ³ýË $e]+#áTeTT.
  • 35. 3 Group - B 19. If P=+ qq tansec nsTTq qSin $TeqT ‘P’ ýË ¿£qT>=qTeTT. 20. ÿ¿£ He ÿ¿£ q~“ <‘{²*à eÚ+~. qBç|ŸyVŸ²+ ¿±sÁD+>± € qB rsÁ+ýË 600 ¿ÃD+ #ûdŸTïq• eÖsÁZ+ýË € He 600 MT³sÁT¢ ç|ŸjáÖDì+º neÔá* rs“• #û]+~. €q~ yî&ƒýÉÎ+Ôá? 21. ÿ¹¿kÍ] Âs+&ƒT bͺ¿£qT <=]Z+º y{ì™|Õ dŸ+K«qT Å£L&q#à e#áTÌ (i) yîTTԐï dŸ+uó²e«ÔáqT ÔîT|ŸÚ ‡ ¿ì+~ |Ÿ{켿£qT |ŸP]+#áTeTT. Âs+&ƒT bͺ¿£™|Õ 2 3 4 5 6 7 8 9 10 11 12 yîTTÔáï+ (|˜ŸT³q) dŸ+uó²eÔá 36 1 36 5 (ii) ÿ¿£ $<‘«]œ ç|ŸjîÖ>·+ýË 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 nHû 11 |ŸsÁ«ekÍHTq•$. ¿±eÚq ÿ¿=Ø¿£Ø |ŸsÁ«ekÍq+ dŸ+uó²e«Ôá 11 1 nH•sÁT. ‡ dŸeÖ<ó‘q+Ôà @¿¡uó„$dŸTïH•y? $e]+#á+&. 22. ‡ ç¿ì+~ båq'|ŸÚq« $uó²ÈH“¿ì z›yŽ eç¿£+^jáT+&. ÔásÁ>·ÔáTT 0-20 20-40 40-60 60-80 80-100 100-120 båq'|ŸÚq«+ 9 16 24 15 4 2 Section - IV Marks: 5 ´ 2 = 10 Note: 1. Answer any one of the following questions. 2. Each question carries five marks. 23. 4 ™d+.MT., 5 ™d+.MT., 6 ™d+.MT. uó„TC²T>± >· ÿ¿£ çÜuó„TÈ+ “]ˆ+º, <‘“¿ì dŸsÁÖ|Ÿ+>± 3 2 Âs³T¢ >· çÜuó„TC²“• “]ˆ+#áTeTT. 24. uó„Ö$T™|Õ qTq• A _+<ŠTeÚ qT+& ÿ¿£ CÉ{Ù $eÖH“• |Ÿ]o*dï 600 }sÁÆÇ ¿ÃD+ #ûdŸTï+~. 15 ™d¿£q¢ ÔásÇÔá <‘“ }sÁœÇ ¿ÃD+ 300 eÖsÁTÔáT+~. € CÉ{Ù $eÖq+ 1500 3 MT³sÁ¢ d¾œsÁ bÔáTïýË b>·TsÁTÔáÖ eÚ+fñ <‘“ yû>±“• ¿£qT¿ÃØ+&.
  • 36. 4 Mathematics - Paper - II Part - B (Telugu Version) Time: 30 min Max Marks: 15 Instructions: 1. n“• ç|ŸXø•Å£” dŸeÖ<ó‘q+ ¿£qT>=qTeTT. 2. ç|ŸÜ ç|ŸXø•Å£” 2 1 eÖsÁTØ. 3. dŸeÖ<ó‘HqT ç|ŸXø•|ŸçÔáeTTýËHû çyjáT+&. 4. ¿=fñ¼d¾ çyjáT‹&q, ~<ŠÝ‹&q, #î]|¾yûd¾ çyjáT‹&q dŸeÖ<ó‘HÅ£” eÖsÁTØT ‚eÇ‹&ƒeÚ. 5. ‹VŸQÞèպ̿£ ç|ŸXø• dŸeÖ<ó‘qeTTT çyjáTT³Å£” ™|<ŠÝ n¿£ŒsÁeTT (€+>·¢esÁ’eÖ)qT –|ŸjîÖÐ+#áTeTT. Part-B 10 ´ 2 1 = 5 marks I. ‡ ~>·Te ç|ŸÜç|ŸXø•Å£” b<ŠTsÁT>± 4 Èy‹T©jáT‹&q$. y{ìýË dŸÂsÕq Èy‹T dŸÖº+#áT €+>·¢ ™|<ŠÝ n¿£Œs“• € ç|ŸXø•¿<ŠTsÁT>± ‚eÇ‹&ƒ¦ çu²Â¿³¢ýË çyjáTTeTT. 1. ç|Ÿ¿£Ø|Ÿ³+ýË LM || CB eT]jáTTLN || CD nsTTq ( ) ¿ì+~ y“ýË dŸ]jî®Tq~. A) ND AN MB AM = B) AB AM ND AN = C) ML AM NL AN = D) AD AN MB AM = 2. ( qcos , 0 ) , (0, qsin ) _+<ŠTeÚ eT<óŠ«<ŠÖsÁ+ ( ) A) 1 B) -1 C) 0 D) 1- 3. 30 eT+~ $<‘«sÁTœ dŸ>·³T 42. y]ýË ‚<ŠÝ]¿ì µ0» eÖsÁTØT eºÌq $TÐ*q $<‘«sÁTœ dŸ>·³T ( ) A) 40 B) 42 C) 45 D) 28 4. ÿ¿£ |¿£ýË qT+& rd¾q eTT¿£Ø sE (ýñ<‘) sDì ¿±e&†“¿ì dŸ+uó²e«Ôá ( ) A) 52 1 B) 13 1 C) 45 D) 28 Ð C B M A N D
  • 37. 5 5. u²VŸQÞø¿£+ dŸÖçÔá+ h fff ff lZ ´÷÷ ø ö çç è æ -- - += 10 0 2 nsTTq h dŸÖº+#áTq~. ( ) A) båq'|ŸÚq«eTT B) ÔásÁ>·Ü bõ&ƒeÚ C) ~>·Te VŸ²<ŠTÝ D) u²VŸQÞø¿£+ 6. ‡ ç¿ì+~ y“ýË dŸ]¿±“~ ( ) A) dŸÖœ|ŸeTT, >ÃÞ² eç¿£Ôáý² yîÕXæ«eTT “wŸÎÜï 1:1 B) >ÃÞøeTT, nsÁœ>ÃÞ² eç¿£Ôá yîÕXæý²« “wŸÎÜï 2:1 C) >ÃÞøeTT, nsÁœ>ÃÞ² dŸ+|ŸPsÁ’Ôáý² yîÕXæý²« “wŸÎÜï 2:1 D) dŸÖœ|ŸeTT, Xø+Å£”eÚ |˜ŸTq|Ÿ]eÖD² “wŸÎÜï 3:1 7. oo oo 64tan.26tan 67sin23cos - $Te ( ) A) sin 90° B) tan 30° C) tan 0° D) cot 30° 8. 1, 2, 3, ............. 15 esÁÅ£” >· dŸ+K«ýË ÿ¿£ dŸ+K«qT jáÖ<ŠºÌ¿£+>± bqT•¿=q•|ŸÚÎ&ƒT n~ 4 jîTT¿£Ø >·TDìÈeTT njûT« dŸ+uó²e«Ôá ( ) A) 15 4 B) 15 2 C) 5 1 D) 5 3 9. ç¿ì+~ +‹¿ÃD çÜuó„TC²ýË 29 21 sin =q qT dŸÖº+#áTq~. ( ) A) B) C) D) P 21 29 Q R q E 21 29 D F q C 29 21 A B q Z 29 21 X Y q
  • 38. 6 10. ^Ôá ndŸ+uó„e |˜ŸT³q dŸ+uó²e«Ôá 1 n“, ç|Ÿe*¢¿£ KºÌÔá |˜ŸT³q dŸ+uó²e«Ôá 0 n“, nÜjáÖ @<û“ |˜ŸT³q dŸ+uó²e«Ôá 0, 1 eT<óŠ« eÚ+³T+<Š“ #îbÍÎsÁT. úeÚ be]Ôà @¿¡uó„$kÍïeÚ? ( ) A) ^Ôá B) ç|Ÿe*¢¿£ C) nÜjáÖ D) ™|Õ eTT>·TZsÁT II. ç¿ì+~ U²°qT dŸÂsÕq dŸeÖ<ó‘qeTTÔà |ŸP]+#áTeTT. 11. ÿ¿£ eÔáï dŸÎsÁô¹sKÅ£”, dŸÎsÁô_+<ŠTeÚ qT+& ^ºq y«kÍsÁœeTTqÅ£” eT<óŠ« ¿ÃDeTT ______________ 12. dŸeT|˜ŸTqeTT jîTT¿£Ø ç|Ÿ¿£ØÔá, dŸ+|ŸPsÁ’Ôá yîÕXæý²« “wŸÎÜï ____________ 13. ÿ¿£ eT“w¾ çbÍsÁ+uó„ kÍœq+ qT+& ÔáÖsÁTÎqÅ£” yî[ß eTsÁý²<Š¿ìŒD²“¿ì ç|ŸjáÖD+ #ûd¾q|ŸÚ&ƒT ‹jáTT<û]q kÍœq+ qT+& € eT“w¾ eÚq• <ŠÖs“• ¿£qT>=qT³Å£” –|ŸjîÖÐ+#áT “wŸÎÜï ______________ 20 14. 15 ç|Ÿ¿£Ø |Ÿ³+ qT+& ¿£qT>=q>·*Zq ¹¿+çBjáTkÍœq¿=Ôá____________ 5 5 10 15 20 15. ç|Ÿ¿£Ø |Ÿ³+ qT+& Y qT bõ+<Š>· dŸ+uó²e«Ôá ______________ R = bsÁT|ŸÚ ‹+Ü Y = |ŸdŸT|ŸÚ|Ÿ#áÌ ‹+Ü 16. Âs+&ƒT dŸsÁÖ|Ÿ çÜuó„TC² eT<óŠ«>·ÔT esÁTdŸ>± 3 ™d+.MT., 5 ™d+.MT. nsTTq çÜuó„TÈ yîÕXæý²« “wŸÎÜï ______________ 17. ÿ¿£ dŸÖœ|Ÿ+ uó„Ö yîÕXæ«+ 616 #á. ™d+.MT. nsTTq <‘“ y«kÍsÁœeTT ______________ 18. 6 ™d+.MT. y«kÍsÁœ+ >·eÔáï+ýË ÿ¿£ C²« ¹¿+ç<Š+ e<ŠÝ 600 ¿ÃD+ #ûd¾q C²« bõ&ƒeÚ______________ 19. eÖsÁTØT 10 20 30 båq'|ŸÚq«+ 5 9 3 ™|Õ <ŠÔï+XøeTTqÅ£” eT<óŠ«>·Ôá+ $Te ______________ 20. ÿ¿£ €³jáT+<ŠT yû>·+>± çÜ|ŸÎ‹&q >·TsÁTï |Ÿ³+ýË #áÖ|Ÿ‹&q³T¢ 1, 2, 3, 4, 5, 6, 7 ýñ¿£ 8 “ dŸÖºdŸÖï €>·TÔáT+~. n“• |ŸsÁ«ekÍHT dŸeTdŸ+uó„eyîT®Ôû u²D+ >·TsÁTï 2 ¿£H• ™|<ŠÝ dŸ+K«qT dŸÖº+#áT dŸ+uó²e«Ôá ______________ 1 2 3 45 6 7 8 R Y Y R R
  • 39. 7 Match the following 5´ ½ = 2½ marks Group - A Group - B 21. D ABC ýË D, E T esÁTdŸ>± ( ) A) 20 AB, AC ™|Õ“ _+<ŠTeÚT eT]jáTT EC AE DC AD = nsTTq 22. D BED +‹¿ÃD çÜuó„TÈ+ýË, ÐE = 90°, ( ) B) 4 ED2 = BD. CD nsTTq 23. nsÁÆ>ÃÞø |˜ŸTq|Ÿ]eÖD+ 2250 cm3 nsTTq ( ) C) 3 77 <‘“ y«kÍsÁœ+. 24. 25 MT. bõ&ƒeÚ>· “#îÌq >Ã&ƒ™|Õ 20 MT. ( ) D) 15 bÔáTïq eÚq• ¿ì{ì¿¡“ Ԑ¿ìq “#îÌq n&ƒT>·T qT+& >Ã&ƒÅ£” >· <ŠÖsÁ+. 25. 5 ™d+.MT. eT]jáTT 3 ™d+.MT. y«kÍsœT ( ) E) DE || BC >· Âs+&ƒT @¿£¹¿+ç<Š eÔïýË ºq• eÔï“• ( ) F) DE ^ BC dŸÎ]ô+#û ™|<ŠÝ eÔáïeTT C²« bõ&ƒeÚ ( ) G) 8 ( ) H) 7 22 Match the following 5´ ½ = 2½ marks Group - A Group - B 26. secq + tanq = 2 1 nsTTq ( ) I) 0 secq - tanq $Te 27. oooo 180cos........2cos1cos0cos ´´´´ $Te ( ) J) 1 28. 5 4 cos =A nsTTqsin A $Te ( ) K) 50° 29. –<ŠjáT+ 7 >·+³Å£” 15MT. bÔáTï>· dŸï+uó„+ ( ) L) 5 3 ú&ƒ bõ&ƒeÚ 15 3 MT. nsTTq dŸÖsÁ«¿ìsÁD²T uó„Ö$TÔà #ûjáTT¿ÃDeTT. 30. »Oµ ¹¿+ç<Š+>± >· eÔï“¿ì u²VŸ²«_+<ŠTeÚ P qT+& ( ) M) 3 2 ^jáT‹&q dŸÎsÁô¹sKT PA eT]jáTT PB. y{ìeT<óŠ« ( ) N) 60° ¿ÃD+ 80° nsTTq ÐPOA $Te ( ) O) 2 ( ) P) 3