This document summarizes a proposed computer-aided detection (CAD) system for segmenting tumors and extracting features from digital mammograms to help radiologists diagnose breast cancer. The proposed CAD system includes five stages: 1) collecting input images and extracting regions of interest, 2) enhancing the regions of interest, 3) segmenting the tumors, 4) filtering noises, and 5) extracting texture and statistical features. Texture features like Haralick features extracted from gray-level co-occurrence matrices are calculated to classify tumors as benign or malignant. The system is tested on mammogram images from the Mammographic Image Analysis Society database to evaluate the segmentation and feature extraction methods.