This document summarizes a research paper that proposes an improved K-means clustering algorithm to enhance accuracy and reduce computation time. The standard K-means algorithm randomly selects initial cluster centroids, affecting results. The proposed algorithm systematically determines initial centroids based on data point distances. It assigns data to the closest initial centroid to generate initial clusters. Iteratively, it calculates new centroids and reassigns data only if distances decrease, reducing unnecessary computations. Experiments on various datasets show the proposed algorithm achieves higher accuracy faster than standard K-means.
Related topics: