SlideShare a Scribd company logo
Integrating Trig
Integrating Trig
   cosax  b dx
Integrating Trig
                   1
                   sin ax  b   c
   cosax  b dx a
Integrating Trig
                   1
                   sin ax  b   c
   cosax  b dx a
   sinax  b dx
Integrating Trig
                     1
                    sin ax  b   c
   cosax  b dx a
                       1
   sinax  b dx   a cosax  b   c
Integrating Trig
                     1
                    sin ax  b   c
   cosax  b dx a
                       1
   sinax  b dx   a cosax  b   c
   sec 2 ax  b dx
Integrating Trig
                      1
   cosax  b dx a sin ax  b   c
                        1
   sinax  b dx   a cosax  b   c
                      1
   sec ax  b dx  a tanax  b   c
       2
Integrating Trig
                                   1
                cosax  b dx a sin ax  b   c
                                     1
                sinax  b dx   a cosax  b   c
                                   1
                sec ax  b dx  a tanax  b   c
                    2




e.g. i   sin 3 xdx
Integrating Trig
                                     1
                 cosax  b dx a  sin ax  b   c
                                       1
                  sinax  b dx   a cosax  b   c
                                     1
                  sec ax  b dx  a tanax  b   c
                      2



                          1
e.g. i   sin 3 xdx   cos 3 x  c
                          3
Integrating Trig
                                     1
                 cosax  b dx a  sin ax  b   c
                                       1
                  sinax  b dx   a cosax  b   c
                                     1
                  sec ax  b dx  a tanax  b   c
                      2



                          1
e.g. i   sin 3 xdx   cos 3 x  c
                          3
   ii   cos1  5 x dx
Integrating Trig
                                     1
                 cosax  b dx a  sin ax  b   c
                                       1
                  sinax  b dx   a cosax  b   c
                                     1
                  sec ax  b dx  a tanax  b   c
                      2



                          1
e.g. i   sin 3 xdx   cos 3 x  c
                          3
   ii   cos1  5 x dx   1 sin 1  5 x   c
                                5
Integrating Trig
                                     1
                 cosax  b dx a  sin ax  b   c
                                       1
                  sinax  b dx   a cosax  b   c
                                     1
                  sec ax  b dx  a tanax  b   c
                      2



                          1
e.g. i   sin 3 xdx   cos 3 x  c
                          3
   ii   cos1  5 x dx   1 sin 1  5 x   c
                                5

  iii   sec 2  x dx
                  
               2
Integrating Trig
                                     1
                 cosax  b dx a  sin ax  b   c
                                       1
                  sinax  b dx   a cosax  b   c
                                     1
                  sec ax  b dx  a tanax  b   c
                      2



                          1
e.g. i   sin 3 xdx   cos 3 x  c
                          3
   ii   cos1  5 x dx   1 sin 1  5 x   c
                                5
                x dx  2 tan x   c
  iii   sec               
             2

               2             2

     2
iv   sin 2 xdx
    
     6
                             
    2
                     1 cos 2 x  2
iv   sin 2 xdx              
                    2          
                                   6
    6
                          
    2
                     1 cos 2 x  2
iv   sin 2 xdx              
                    2          
                                   6
      6               1             
                     cos   cos 
                      2             3
                          
    2
                     1 cos 2 x  2
iv   sin 2 xdx              
                    2          
                                   6
      6               1             
                     cos   cos 
                      2             3
                      1       1
                     1  
                      2       2
                    3
                  
                    4
                        
                     1        2   v  Find the volume of the solid formed
    2
iv   sin 2 xdx   cos 2 x  
                    2                 when y  sin x between x  0
                                 6
      6               1           
                     cos   cos  and x  1 is rotated around the x axis.
                      2           3
                      1     1
                     1  
                      2     2
                    3
                  
                    4
                        
                     1        2   v  Find the volume of the solid formed
    2
iv   sin 2 xdx   cos 2 x  
                    2                 when y  sin x between x  0
                                 6
      6               1           
                     cos   cos  and x  1 is rotated around the x axis.
                      2           3
                      1     1              V    y 2 dx
                     1  
                      2     2                     1

                    3                              sin xdx
                                                   0
                    4
                        
                     1        2   v  Find the volume of the solid formed
    2
iv   sin 2 xdx   cos 2 x  
                    2                 when y  sin x between x  0
                                 6
      6               1           
                     cos   cos  and x  1 is rotated around the x axis.
                      2           3
                      1     1              V    y 2 dx
                     1 
                      2     2                     1

                    3                              sin xdx
                                                   0
                    4                                            1

                                                   cos x 
                                                        1
                                                     
                                                              0
                                                               
                        
                     1      2    v  Find the volume of the solid formed
    2
iv   sin 2 xdx   cos 2 x  
                    2                 when y  sin x between x  0
                                6
      6               1           
                     cos   cos  and x  1 is rotated around the x axis.
                      2           3
                      1     1              V    y 2 dx
                     1 
                      2     2                     1

                    3                              sin xdx
                                                   0
                    4                                            1

                                                   cos x 
                                                        1
                                                     
                                                              0
                                                               
                                                 cos   cos 0 
                                                  1  1
                                               2 units 3
                        
                     1      2    v  Find the volume of the solid formed
    2
iv   sin 2 xdx   cos 2 x  
                    2                 when y  sin x between x  0
                                6
      6               1           
                     cos   cos  and x  1 is rotated around the x axis.
                      2           3
                      1     1              V    y 2 dx
                     1 
                      2     2                     1

                    3                              sin xdx
                                                   0
                    4                                            1

                                                   cos x 
                                                        1
                                                     
                                                              0
                                                               
                                                 cos   cos 0 
                                                  1  1
                                               2 units 3
 vi   x sec 2 x 2 dx
                            
                     1      2    v  Find the volume of the solid formed
    2
iv   sin 2 xdx   cos 2 x  
                    2                 when y  sin x between x  0
                                6
      6               1           
                     cos   cos  and x  1 is rotated around the x axis.
                      2           3
                      1     1              V    y 2 dx
                     1 
                      2     2                     1

                    3                              sin xdx
                                                   0
                    4                                            1

                                                   cos x 
                                                        1
                                                     
                                                              0
                                                               
                                                 cos   cos 0 
                                                  1  1

                        1                      2 units 3
 vi   x sec x dx 
                        2
            2   2
                           2 x sec 2 x 2 dx
                         
                     1      2    v  Find the volume of the solid formed
    2
iv   sin 2 xdx   cos 2 x  
                    2                 when y  sin x between x  0
                                6
      6               1           
                     cos   cos  and x  1 is rotated around the x axis.
                      2           3
                      1     1              V    y 2 dx
                     1 
                      2     2                     1

                    3                              sin xdx
                                                   0
                    4                                            1

                                                   cos x 
                                                        1
                                                     
                                                              0
                                                               
                                                 cos   cos 0 
                                                  1  1

                     1                         2 units 3
 vi   x sec x dx 
                     2
            2   2
                        2 x sec 2 x 2 dx

                     1
                     tan x 2  c
                     2
vii   sin 2 xdx
vii   sin 2 xdx   cos2 
vii   sin xdx
          2
                   cos2  cos 2  sin 2 
vii   sin xdx
          2
                   cos2  cos 2  sin 2 
                                                    1
                          1  2 sin 2   sin 2   1  cos 2 
                                                    2
vii   sin xdx
          2
                   cos2  cos 2  sin 2 
                                                    1
                          1  2 sin 2   sin 2   1  cos 2 
                                                    2
                                                     1
                          2 cos 2   1  cos 2   1  cos 2 
                                                     2
vii   sin xdx
            2
                               cos2  cos 2  sin 2 
                                                                1
        1                             1  2 sin 2   sin 2   1  cos 2 
    
        2  1  cos 2 x dx                                    2
                                                                 1
                                      2 cos 2   1  cos 2   1  cos 2 
                                                                 2
vii   sin xdx
          2
                            cos2  cos 2  sin 2 
                                                             1
     1                             1  2 sin 2   sin 2   1  cos 2 
    
     2  1  cos 2 x dx                                    2
                                                              1
                                   2 cos 2   1  cos 2   1  cos 2 
      x  sin 2 x   c
     1       1                                               2
                       
     2       2        
     x 1
      sin 2 x  c
     2 4
vii   sin xdx
          2
                            cos2  cos 2  sin 2 
                                                             1
     1                             1  2 sin 2   sin 2   1  cos 2 
    
     2  1  cos 2 x dx                                    2
                                                              1
                                   2 cos 2   1  cos 2   1  cos 2 
      x  sin 2 x   c
     1       1                                               2
                       
     2       2        
     x 1
      sin 2 x  c
     2 4

 vii   tan xdx
vii   sin xdx
          2
                                 cos2  cos 2  sin 2 
                                                                  1
     1                                  1  2 sin 2   sin 2   1  cos 2 
    
     2  1  cos 2 x dx                                         2
                                                                   1
                                        2 cos 2   1  cos 2   1  cos 2 
      x  sin 2 x   c
     1       1                                                    2
                       
     2       2        
     x 1
      sin 2 x  c
     2 4

 vii   tan xdx   sin x dx
                     cos x
vii   sin xdx
          2
                                 cos2  cos 2  sin 2 
                                                                  1
     1                                  1  2 sin 2   sin 2   1  cos 2 
    
     2  1  cos 2 x dx                                         2
                                                                   1
                                        2 cos 2   1  cos 2   1  cos 2 
      x  sin 2 x   c
     1       1                                                    2
                       
     2       2        
     x 1
      sin 2 x  c
     2 4

 vii   tan xdx   sin x dx
                      cos x
                         sin x
                             dx
                        cos x
vii   sin xdx
          2
                                 cos2  cos 2  sin 2 
                                                                  1
     1                                  1  2 sin 2   sin 2   1  cos 2 
    
     2  1  cos 2 x dx                                         2
                                                                   1
                                        2 cos 2   1  cos 2   1  cos 2 
      x  sin 2 x   c
     1       1                                                    2
                       
     2       2        
     x 1
      sin 2 x  c
     2 4

 vii   tan xdx   sin x dx
                       cos x
                          sin x
                              dx
                         cos x
                     log cos x  c
vii   sin xdx
          2
                                 cos2  cos 2  sin 2 
                                                                  1
     1                                  1  2 sin 2   sin 2   1  cos 2 
    
     2  1  cos 2 x dx                                         2
                                                                   1
                                        2 cos 2   1  cos 2   1  cos 2 
      x  sin 2 x   c
     1       1                                                    2
                       
     2       2        
     x 1
      sin 2 x  c
     2 4

 vii   tan xdx   sin x dx
                       cos x
                          sin x
                              dx
                         cos x
                     log cos x  c
                    logcos x   c
                                 1


                    log sec x  c
π
    2
ix   cos x sin 7 xdx
     0
π
    2
ix   cos x sin 7 xdx   u  sin x
     0
π
    2
ix   cos x sin 7 xdx    u  sin x
     0                    du  cos xdx
π
    2
ix   cos x sin 7 xdx    u  sin x
     0                    du  cos xdx
                          x  0 ,u  0
                               
                          x       ,u 1
                               2
π
    2
ix   cos x sin 7 xdx    u  sin x
     0
         1                du  cos xdx
       u 7 du           x  0 ,u  0
         0                     
                          x       ,u 1
                               2
π
    2
ix   cos x sin 7 xdx    u  sin x
     0
         1                du  cos xdx
       u 7 du           x  0 ,u  0
         0                     
      1 8 
              1
                          x       ,u 1
      u                     2
      8  0
π
    2
ix   cos x sin 7 xdx    u  sin x
     0
         1                du  cos xdx
       u 7 du           x  0 ,u  0
         0                     
       1 8 
              1
                          x       ,u 1
      u                     2
       8  0
      18  0 
       1
       8
       1
     
       8
π
    2
ix   cos x sin 7 xdx                  u  sin x
     0
         1                              du  cos xdx
       u 7 du                         x  0 ,u  0
         0                                  
       1 8 
              1
                                   x  ,u 1
      u                              2
       8  0
      18  0 
       1
       8
       1
     
       8
                Exercise 14I; 2ace etc, 3ace etc, 4, 6, 8a, 9ac, 10a,
                            12ace, 13b(i), 14df, 15ace

                  Exercise 14J; 2b, 3bfh, 4a, 5ac, 7, 9, 10, 13, 14, 21, 26

More Related Content

PDF
X2 T05 02 trig integrals (2010)
PDF
X2 T05 05 trig substitutions (2010)
PDF
X2 T05 01 by parts (2010)
PDF
X2 T01 10 locus & complex numbers 1
PDF
X2 T04 01 integration by parts (12)
PDF
X2 T01 11 locus & complex numbers 2
PDF
We Are Back : la renaissance de la demoscene
DOCX
X2 T05 02 trig integrals (2010)
X2 T05 05 trig substitutions (2010)
X2 T05 01 by parts (2010)
X2 T01 10 locus & complex numbers 1
X2 T04 01 integration by parts (12)
X2 T01 11 locus & complex numbers 2
We Are Back : la renaissance de la demoscene

Viewers also liked (15)

PPTX
Binary multilevel software, matrix mlm software, online binary software, gene...
PPS
B-School Evaluation Matrix
PPT
Homomorphisms
PDF
KDD 2015勉強会_高橋
PPT
Null space, Rank and nullity theorem
PPTX
My Lecture Notes from Linear Algebra
PPTX
Lecture 8 nul col bases dim & rank - section 4-2, 4-3, 4-5 & 4-6
PPTX
Inverse Matrix & Determinants
PPT
Shubhanshu math project work , polynomial
PPTX
rank of matrix
PPT
Structures and Materials- Section 1 Statics
PPT
Linear Algebra and Matrix
PPT
Chapter 1(4)SCALAR AND VECTOR
PPT
BCG Matrix
Binary multilevel software, matrix mlm software, online binary software, gene...
B-School Evaluation Matrix
Homomorphisms
KDD 2015勉強会_高橋
Null space, Rank and nullity theorem
My Lecture Notes from Linear Algebra
Lecture 8 nul col bases dim & rank - section 4-2, 4-3, 4-5 & 4-6
Inverse Matrix & Determinants
Shubhanshu math project work , polynomial
rank of matrix
Structures and Materials- Section 1 Statics
Linear Algebra and Matrix
Chapter 1(4)SCALAR AND VECTOR
BCG Matrix
Ad

More from Nigel Simmons (20)

PPT
Goodbye slideshare UPDATE
PPT
Goodbye slideshare
PDF
12 x1 t02 02 integrating exponentials (2014)
PDF
11 x1 t01 03 factorising (2014)
PDF
11 x1 t01 02 binomial products (2014)
PDF
12 x1 t02 01 differentiating exponentials (2014)
PDF
11 x1 t01 01 algebra & indices (2014)
PDF
12 x1 t01 03 integrating derivative on function (2013)
PDF
12 x1 t01 02 differentiating logs (2013)
PDF
12 x1 t01 01 log laws (2013)
PDF
X2 t02 04 forming polynomials (2013)
PDF
X2 t02 03 roots & coefficients (2013)
PDF
X2 t02 02 multiple roots (2013)
PDF
X2 t02 01 factorising complex expressions (2013)
PDF
11 x1 t16 07 approximations (2013)
PDF
11 x1 t16 06 derivative times function (2013)
PDF
11 x1 t16 05 volumes (2013)
PDF
11 x1 t16 04 areas (2013)
PDF
11 x1 t16 03 indefinite integral (2013)
PDF
11 x1 t16 02 definite integral (2013)
Goodbye slideshare UPDATE
Goodbye slideshare
12 x1 t02 02 integrating exponentials (2014)
11 x1 t01 03 factorising (2014)
11 x1 t01 02 binomial products (2014)
12 x1 t02 01 differentiating exponentials (2014)
11 x1 t01 01 algebra & indices (2014)
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 01 log laws (2013)
X2 t02 04 forming polynomials (2013)
X2 t02 03 roots & coefficients (2013)
X2 t02 02 multiple roots (2013)
X2 t02 01 factorising complex expressions (2013)
11 x1 t16 07 approximations (2013)
11 x1 t16 06 derivative times function (2013)
11 x1 t16 05 volumes (2013)
11 x1 t16 04 areas (2013)
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 02 definite integral (2013)
Ad

Recently uploaded (6)

PDF
Materi seni rupa untuk sekolah dasar materi tentang seni rupa
PPTX
Madison dsfnsd dslsf sada;sdmas;ds;dls.pptx
PDF
Cold positive punishment of the student سزادانی ئەرێنی ساردی قوتابی.pdf
PPTX
Tahfidz Qur’an TIMING tampa musik bagian 2.pptx
PDF
15 AUG 2025 PS 15 AUG 2025 PS 15 AUG 2025 PS
PDF
فورمولر عمومی مضمون فزیک برای همه انجنیران
Materi seni rupa untuk sekolah dasar materi tentang seni rupa
Madison dsfnsd dslsf sada;sdmas;ds;dls.pptx
Cold positive punishment of the student سزادانی ئەرێنی ساردی قوتابی.pdf
Tahfidz Qur’an TIMING tampa musik bagian 2.pptx
15 AUG 2025 PS 15 AUG 2025 PS 15 AUG 2025 PS
فورمولر عمومی مضمون فزیک برای همه انجنیران

12X1 T03 04 integrating trig functions

  • 2. Integrating Trig  cosax  b dx
  • 3. Integrating Trig 1  sin ax  b   c  cosax  b dx a
  • 4. Integrating Trig 1  sin ax  b   c  cosax  b dx a  sinax  b dx
  • 5. Integrating Trig 1  sin ax  b   c  cosax  b dx a 1  sinax  b dx   a cosax  b   c
  • 6. Integrating Trig 1  sin ax  b   c  cosax  b dx a 1  sinax  b dx   a cosax  b   c  sec 2 ax  b dx
  • 7. Integrating Trig 1  cosax  b dx a sin ax  b   c 1  sinax  b dx   a cosax  b   c 1  sec ax  b dx  a tanax  b   c 2
  • 8. Integrating Trig 1  cosax  b dx a sin ax  b   c 1  sinax  b dx   a cosax  b   c 1  sec ax  b dx  a tanax  b   c 2 e.g. i   sin 3 xdx
  • 9. Integrating Trig 1  cosax  b dx a  sin ax  b   c 1  sinax  b dx   a cosax  b   c 1  sec ax  b dx  a tanax  b   c 2 1 e.g. i   sin 3 xdx   cos 3 x  c 3
  • 10. Integrating Trig 1  cosax  b dx a  sin ax  b   c 1  sinax  b dx   a cosax  b   c 1  sec ax  b dx  a tanax  b   c 2 1 e.g. i   sin 3 xdx   cos 3 x  c 3 ii   cos1  5 x dx
  • 11. Integrating Trig 1  cosax  b dx a  sin ax  b   c 1  sinax  b dx   a cosax  b   c 1  sec ax  b dx  a tanax  b   c 2 1 e.g. i   sin 3 xdx   cos 3 x  c 3 ii   cos1  5 x dx   1 sin 1  5 x   c 5
  • 12. Integrating Trig 1  cosax  b dx a  sin ax  b   c 1  sinax  b dx   a cosax  b   c 1  sec ax  b dx  a tanax  b   c 2 1 e.g. i   sin 3 xdx   cos 3 x  c 3 ii   cos1  5 x dx   1 sin 1  5 x   c 5 iii   sec 2  x dx   2
  • 13. Integrating Trig 1  cosax  b dx a  sin ax  b   c 1  sinax  b dx   a cosax  b   c 1  sec ax  b dx  a tanax  b   c 2 1 e.g. i   sin 3 xdx   cos 3 x  c 3 ii   cos1  5 x dx   1 sin 1  5 x   c 5  x dx  2 tan x   c iii   sec     2 2  2
  • 14. 2 iv   sin 2 xdx  6
  • 15.  2  1 cos 2 x  2 iv   sin 2 xdx      2  6 6
  • 16.  2  1 cos 2 x  2 iv   sin 2 xdx      2  6 6 1     cos   cos  2 3
  • 17.  2  1 cos 2 x  2 iv   sin 2 xdx      2  6 6 1     cos   cos  2 3 1 1    1   2 2 3  4
  • 18.   1 2 v  Find the volume of the solid formed 2 iv   sin 2 xdx   cos 2 x     2  when y  sin x between x  0 6 6 1     cos   cos  and x  1 is rotated around the x axis. 2 3 1 1    1   2 2 3  4
  • 19.   1 2 v  Find the volume of the solid formed 2 iv   sin 2 xdx   cos 2 x     2  when y  sin x between x  0 6 6 1     cos   cos  and x  1 is rotated around the x axis. 2 3 1 1 V    y 2 dx    1   2 2 1 3    sin xdx  0 4
  • 20.   1 2 v  Find the volume of the solid formed 2 iv   sin 2 xdx   cos 2 x     2  when y  sin x between x  0 6 6 1     cos   cos  and x  1 is rotated around the x axis. 2 3 1 1 V    y 2 dx    1  2 2 1 3    sin xdx  0 4 1    cos x  1    0 
  • 21.   1 2 v  Find the volume of the solid formed 2 iv   sin 2 xdx   cos 2 x     2  when y  sin x between x  0 6 6 1     cos   cos  and x  1 is rotated around the x axis. 2 3 1 1 V    y 2 dx    1  2 2 1 3    sin xdx  0 4 1    cos x  1    0   cos   cos 0    1  1  2 units 3
  • 22.   1 2 v  Find the volume of the solid formed 2 iv   sin 2 xdx   cos 2 x     2  when y  sin x between x  0 6 6 1     cos   cos  and x  1 is rotated around the x axis. 2 3 1 1 V    y 2 dx    1  2 2 1 3    sin xdx  0 4 1    cos x  1    0   cos   cos 0    1  1  2 units 3 vi   x sec 2 x 2 dx
  • 23.   1 2 v  Find the volume of the solid formed 2 iv   sin 2 xdx   cos 2 x     2  when y  sin x between x  0 6 6 1     cos   cos  and x  1 is rotated around the x axis. 2 3 1 1 V    y 2 dx    1  2 2 1 3    sin xdx  0 4 1    cos x  1    0   cos   cos 0    1  1 1  2 units 3 vi   x sec x dx  2 2 2 2 x sec 2 x 2 dx
  • 24.   1 2 v  Find the volume of the solid formed 2 iv   sin 2 xdx   cos 2 x     2  when y  sin x between x  0 6 6 1     cos   cos  and x  1 is rotated around the x axis. 2 3 1 1 V    y 2 dx    1  2 2 1 3    sin xdx  0 4 1    cos x  1    0   cos   cos 0    1  1 1  2 units 3 vi   x sec x dx  2 2 2 2 x sec 2 x 2 dx 1  tan x 2  c 2
  • 25. vii   sin 2 xdx
  • 26. vii   sin 2 xdx cos2 
  • 27. vii   sin xdx 2 cos2  cos 2  sin 2 
  • 28. vii   sin xdx 2 cos2  cos 2  sin 2  1  1  2 sin 2   sin 2   1  cos 2  2
  • 29. vii   sin xdx 2 cos2  cos 2  sin 2  1  1  2 sin 2   sin 2   1  cos 2  2 1  2 cos 2   1  cos 2   1  cos 2  2
  • 30. vii   sin xdx 2 cos2  cos 2  sin 2  1 1  1  2 sin 2   sin 2   1  cos 2   2  1  cos 2 x dx 2 1  2 cos 2   1  cos 2   1  cos 2  2
  • 31. vii   sin xdx 2 cos2  cos 2  sin 2  1 1  1  2 sin 2   sin 2   1  cos 2   2  1  cos 2 x dx 2 1  2 cos 2   1  cos 2   1  cos 2    x  sin 2 x   c 1 1 2  2 2  x 1   sin 2 x  c 2 4
  • 32. vii   sin xdx 2 cos2  cos 2  sin 2  1 1  1  2 sin 2   sin 2   1  cos 2   2  1  cos 2 x dx 2 1  2 cos 2   1  cos 2   1  cos 2    x  sin 2 x   c 1 1 2  2 2  x 1   sin 2 x  c 2 4 vii   tan xdx
  • 33. vii   sin xdx 2 cos2  cos 2  sin 2  1 1  1  2 sin 2   sin 2   1  cos 2   2  1  cos 2 x dx 2 1  2 cos 2   1  cos 2   1  cos 2    x  sin 2 x   c 1 1 2  2 2  x 1   sin 2 x  c 2 4 vii   tan xdx   sin x dx cos x
  • 34. vii   sin xdx 2 cos2  cos 2  sin 2  1 1  1  2 sin 2   sin 2   1  cos 2   2  1  cos 2 x dx 2 1  2 cos 2   1  cos 2   1  cos 2    x  sin 2 x   c 1 1 2  2 2  x 1   sin 2 x  c 2 4 vii   tan xdx   sin x dx cos x  sin x   dx cos x
  • 35. vii   sin xdx 2 cos2  cos 2  sin 2  1 1  1  2 sin 2   sin 2   1  cos 2   2  1  cos 2 x dx 2 1  2 cos 2   1  cos 2   1  cos 2    x  sin 2 x   c 1 1 2  2 2  x 1   sin 2 x  c 2 4 vii   tan xdx   sin x dx cos x  sin x   dx cos x   log cos x  c
  • 36. vii   sin xdx 2 cos2  cos 2  sin 2  1 1  1  2 sin 2   sin 2   1  cos 2   2  1  cos 2 x dx 2 1  2 cos 2   1  cos 2   1  cos 2    x  sin 2 x   c 1 1 2  2 2  x 1   sin 2 x  c 2 4 vii   tan xdx   sin x dx cos x  sin x   dx cos x   log cos x  c  logcos x   c 1  log sec x  c
  • 37. π 2 ix   cos x sin 7 xdx 0
  • 38. π 2 ix   cos x sin 7 xdx u  sin x 0
  • 39. π 2 ix   cos x sin 7 xdx u  sin x 0 du  cos xdx
  • 40. π 2 ix   cos x sin 7 xdx u  sin x 0 du  cos xdx x  0 ,u  0  x ,u 1 2
  • 41. π 2 ix   cos x sin 7 xdx u  sin x 0 1 du  cos xdx   u 7 du x  0 ,u  0 0  x ,u 1 2
  • 42. π 2 ix   cos x sin 7 xdx u  sin x 0 1 du  cos xdx   u 7 du x  0 ,u  0 0  1 8  1 x ,u 1  u  2 8  0
  • 43. π 2 ix   cos x sin 7 xdx u  sin x 0 1 du  cos xdx   u 7 du x  0 ,u  0 0  1 8  1 x ,u 1  u  2 8  0  18  0  1 8 1  8
  • 44. π 2 ix   cos x sin 7 xdx u  sin x 0 1 du  cos xdx   u 7 du x  0 ,u  0 0  1 8  1 x  ,u 1  u  2 8  0  18  0  1 8 1  8 Exercise 14I; 2ace etc, 3ace etc, 4, 6, 8a, 9ac, 10a, 12ace, 13b(i), 14df, 15ace Exercise 14J; 2b, 3bfh, 4a, 5ac, 7, 9, 10, 13, 14, 21, 26