SlideShare a Scribd company logo
Probability & Counting
         Techniques
2007 Extension 1 HSC Q5b)
Mr and Mrs Roberts and their four children go to the theatre. They are
randomly allocated six adjacent seats in a single row.
What is the probability that the four children are allocated seats next to
each other?
Probability & Counting
         Techniques
2007 Extension 1 HSC Q5b)
Mr and Mrs Roberts and their four children go to the theatre. They are
randomly allocated six adjacent seats in a single row.
What is the probability that the four children are allocated seats next to
each other?




                                      3!4!
 P(children sit next to each other) 
                                       6!
Probability & Counting
         Techniques
2007 Extension 1 HSC Q5b)
Mr and Mrs Roberts and their four children go to the theatre. They are
randomly allocated six adjacent seats in a single row.
What is the probability that the four children are allocated seats next to
each other?




                                      3!4!
 P(children sit next to each other) 
                                       6!
                                              ways of arranging 6 people
Probability & Counting
         Techniques
2007 Extension 1 HSC Q5b)
Mr and Mrs Roberts and their four children go to the theatre. They are
randomly allocated six adjacent seats in a single row.
What is the probability that the four children are allocated seats next to
each other?
      ways of arranging 3 objects
  i.e 2 adults + 1 group of 4 children

                                      3!4!
 P(children sit next to each other) 
                                       6!
                                              ways of arranging 6 people
Probability & Counting
         Techniques
2007 Extension 1 HSC Q5b)
Mr and Mrs Roberts and their four children go to the theatre. They are
randomly allocated six adjacent seats in a single row.
What is the probability that the four children are allocated seats next to
each other?
      ways of arranging 3 objects
  i.e 2 adults + 1 group of 4 children       ways of arranging 4 children

                                      3!4!
 P(children sit next to each other) 
                                       6!
                                              ways of arranging 6 people
Probability & Counting
         Techniques
2007 Extension 1 HSC Q5b)
Mr and Mrs Roberts and their four children go to the theatre. They are
randomly allocated six adjacent seats in a single row.
What is the probability that the four children are allocated seats next to
each other?
      ways of arranging 3 objects
  i.e 2 adults + 1 group of 4 children       ways of arranging 4 children

                                      3!4!
 P(children sit next to each other) 
                                       6!
                                              ways of arranging 6 people
                                      1
                                    
                                      5
2007 Extension 2 HSC Q5a)
  A bag contains 12 red marbles and 12 yellow marbles. Six marbles
   are selected at random without replacement.
(i) Calculate the probability that exactly three of the selected marbles
    are red. Give your answer correct to two decimal places.
2007 Extension 2 HSC Q5a)
  A bag contains 12 red marbles and 12 yellow marbles. Six marbles
   are selected at random without replacement.
(i) Calculate the probability that exactly three of the selected marbles
    are red. Give your answer correct to two decimal places.
               12
                 C3  12C3
    P(3 red)      24
                     C6
2007 Extension 2 HSC Q5a)
  A bag contains 12 red marbles and 12 yellow marbles. Six marbles
   are selected at random without replacement.
(i) Calculate the probability that exactly three of the selected marbles
    are red. Give your answer correct to two decimal places.
               12
                 C3  12C3
    P(3 red)      24
                     C6
              0.3595
              0.36 (to 2 dp)
2007 Extension 2 HSC Q5a)
  A bag contains 12 red marbles and 12 yellow marbles. Six marbles
   are selected at random without replacement.
(i) Calculate the probability that exactly three of the selected marbles
    are red. Give your answer correct to two decimal places.
                 12
                   C3  12C3
    P(3 red)       24
                      C6
               0.3595
               0.36 (to 2 dp)
(ii) Hence, or otherwise, calculate the probability that more than three
     of the selected marbles are red. Give your answer correct to two
     decimal places.
2007 Extension 2 HSC Q5a)
  A bag contains 12 red marbles and 12 yellow marbles. Six marbles
   are selected at random without replacement.
(i) Calculate the probability that exactly three of the selected marbles
    are red. Give your answer correct to two decimal places.
                 12
                   C3  12C3
    P(3 red)       24
                      C6
               0.3595
               0.36 (to 2 dp)
(ii) Hence, or otherwise, calculate the probability that more than three
     of the selected marbles are red. Give your answer correct to two
     decimal places.
    P( 3 red)  P (4 red)  P (5 red)+P (6 red)
2007 Extension 2 HSC Q5a)
  A bag contains 12 red marbles and 12 yellow marbles. Six marbles
   are selected at random without replacement.
(i) Calculate the probability that exactly three of the selected marbles
    are red. Give your answer correct to two decimal places.
                 12
                   C3  12C3
    P(3 red)         24
                        C6
               0.3595
               0.36 (to 2 dp)
(ii) Hence, or otherwise, calculate the probability that more than three
     of the selected marbles are red. Give your answer correct to two
     decimal places.
    P( 3 red)  P (4 red)  P (5 red)+P (6 red)
                    12
                      C4  12C2  12C5  12C1  12C6  12C0
                                    24
                                       C6
2007 Extension 2 HSC Q5a)
  A bag contains 12 red marbles and 12 yellow marbles. Six marbles
   are selected at random without replacement.
(i) Calculate the probability that exactly three of the selected marbles
    are red. Give your answer correct to two decimal places.
                 12
                   C3  12C3
    P(3 red)         24
                        C6
               0.3595
               0.36 (to 2 dp)
(ii) Hence, or otherwise, calculate the probability that more than three
     of the selected marbles are red. Give your answer correct to two
     decimal places.
    P( 3 red)  P (4 red)  P (5 red)+P (6 red)
                    12
                      C4  12C2  12C5  12C1  12C6  12C0
                                    24
                                       C6
                 0.3202
                 0.32 (to 2 dp)
OR
     P( 3 red)  1  P (3 red)  P ( 3 red)
OR
     P( 3 red)  1  P (3 red)  P ( 3 red)
                 1  P (3 red)  P ( 3 yellow)
OR
     P( 3 red)  1  P (3 red)  P ( 3 red)
                 1  P (3 red)  P ( 3 yellow)
                  1  P (3 red)  P ( 3 red)
OR
      P( 3 red)  1  P (3 red)  P ( 3 red)
                   1  P (3 red)  P ( 3 yellow)
                   1  P (3 red)  P ( 3 red)
     2 P ( 3 red)  1  P(3 red)
OR
      P( 3 red)  1  P (3 red)  P ( 3 red)
                  1  P (3 red)  P ( 3 yellow)
                   1  P (3 red)  P ( 3 red)
     2 P ( 3 red)  1  P(3 red)
                      1
       P( 3 red)  1  P(3 red)
                      2
OR
      P( 3 red)  1  P (3 red)  P ( 3 red)
                  1  P (3 red)  P ( 3 yellow)
                   1  P (3 red)  P ( 3 red)
     2 P ( 3 red)  1  P(3 red)
                      1
       P( 3 red)  1  P(3 red)
                      2
                      1
                    1  0.3595
                      2
OR
      P( 3 red)  1  P (3 red)  P ( 3 red)
                  1  P (3 red)  P ( 3 yellow)
                   1  P (3 red)  P ( 3 red)
     2 P ( 3 red)  1  P(3 red)
                      1
       P( 3 red)  1  P(3 red)
                      2
                      1
                    1  0.3595
                      2
                   0.3202
                   0.32 (to 2 dp)
2006 Extension 2 HSC Q5d)
In a chess match between the Home team and the Away team, a game is
played on board 1, board 2, board 3 and board 4.
On each board, the probability that the Home team wins is 0.2, the
probability of a draw is 0.6 and the probability that the Home team loses
is 0.2.
The results are recorded by listing the outcomes of the games for the
Home team in board order. For example, if the Home team wins on
board 2, draws on board 2, loses on board 3 and draws on board 4, the
result is recorded as WDLD.
2006 Extension 2 HSC Q5d)
In a chess match between the Home team and the Away team, a game is
played on board 1, board 2, board 3 and board 4.
On each board, the probability that the Home team wins is 0.2, the
probability of a draw is 0.6 and the probability that the Home team loses
is 0.2.
The results are recorded by listing the outcomes of the games for the
Home team in board order. For example, if the Home team wins on
board 2, draws on board 2, loses on board 3 and draws on board 4, the
result is recorded as WDLD.
(i) How many different recordings are possible?
2006 Extension 2 HSC Q5d)
In a chess match between the Home team and the Away team, a game is
played on board 1, board 2, board 3 and board 4.
On each board, the probability that the Home team wins is 0.2, the
probability of a draw is 0.6 and the probability that the Home team loses
is 0.2.
The results are recorded by listing the outcomes of the games for the
Home team in board order. For example, if the Home team wins on
board 2, draws on board 2, loses on board 3 and draws on board 4, the
result is recorded as WDLD.
(i) How many different recordings are possible?
             Recordings  3  3  3  3
2006 Extension 2 HSC Q5d)
In a chess match between the Home team and the Away team, a game is
played on board 1, board 2, board 3 and board 4.
On each board, the probability that the Home team wins is 0.2, the
probability of a draw is 0.6 and the probability that the Home team loses
is 0.2.
The results are recorded by listing the outcomes of the games for the
Home team in board order. For example, if the Home team wins on
board 2, draws on board 2, loses on board 3 and draws on board 4, the
result is recorded as WDLD.
(i) How many different recordings are possible?
             Recordings  3  3  3  3
                           81
2006 Extension 2 HSC Q5d)
In a chess match between the Home team and the Away team, a game is
played on board 1, board 2, board 3 and board 4.
On each board, the probability that the Home team wins is 0.2, the
probability of a draw is 0.6 and the probability that the Home team loses
is 0.2.
The results are recorded by listing the outcomes of the games for the
Home team in board order. For example, if the Home team wins on
board 2, draws on board 2, loses on board 3 and draws on board 4, the
result is recorded as WDLD.
(i) How many different recordings are possible?
                 Recordings  3  3  3  3
                              81
(ii) Calculate the probability of the result which is recorded as WDLD.
2006 Extension 2 HSC Q5d)
In a chess match between the Home team and the Away team, a game is
played on board 1, board 2, board 3 and board 4.
On each board, the probability that the Home team wins is 0.2, the
probability of a draw is 0.6 and the probability that the Home team loses
is 0.2.
The results are recorded by listing the outcomes of the games for the
Home team in board order. For example, if the Home team wins on
board 2, draws on board 2, loses on board 3 and draws on board 4, the
result is recorded as WDLD.
(i) How many different recordings are possible?
                 Recordings  3  3  3  3
                              81
(ii) Calculate the probability of the result which is recorded as WDLD.
                 P  WDLD   0.2  0.6  0.2  0.6
2006 Extension 2 HSC Q5d)
In a chess match between the Home team and the Away team, a game is
played on board 1, board 2, board 3 and board 4.
On each board, the probability that the Home team wins is 0.2, the
probability of a draw is 0.6 and the probability that the Home team loses
is 0.2.
The results are recorded by listing the outcomes of the games for the
Home team in board order. For example, if the Home team wins on
board 2, draws on board 2, loses on board 3 and draws on board 4, the
result is recorded as WDLD.
(i) How many different recordings are possible?
                 Recordings  3  3  3  3
                              81
(ii) Calculate the probability of the result which is recorded as WDLD.
                 P  WDLD   0.2  0.6  0.2  0.6
                              0.144
1
(iii) Teams score 1 point for each game won,      a point for each game
      drawn and 0 points for each game lost. 2
      What is the probability that the Home team scores more points than
      the Away team?
1
(iii) Teams score 1 point for each game won,      a point for each game
      drawn and 0 points for each game lost. 2
      What is the probability that the Home team scores more points than
      the Away team?
 first calculate probability of equal points
1
(iii) Teams score 1 point for each game won,      a point for each game
      drawn and 0 points for each game lost. 2
      What is the probability that the Home team scores more points than
      the Away team?
 first calculate probability of equal points
P  4 draws   0.64
              0.1296
1
(iii) Teams score 1 point for each game won,      a point for each game
      drawn and 0 points for each game lost. 2
      What is the probability that the Home team scores more points than
      the Away team?
 first calculate probability of equal points
P  4 draws   0.64
              0.1296
                                       4!
 P  2 wins, 2 losses   0.2  0.2 
                           2      2

                                      2!2!
                         0.0096
1
(iii) Teams score 1 point for each game won,      a point for each game
      drawn and 0 points for each game lost. 2
      What is the probability that the Home team scores more points than
      the Away team?
 first calculate probability of equal points
P  4 draws   0.64
              0.1296                        ways of arranging WWLL
                                       4!
 P  2 wins, 2 losses   0.2  0.2 
                           2      2

                                      2!2!
                         0.0096
1
(iii) Teams score 1 point for each game won,      a point for each game
      drawn and 0 points for each game lost. 2
      What is the probability that the Home team scores more points than
      the Away team?
 first calculate probability of equal points
P  4 draws   0.64
              0.1296                            ways of arranging WWLL
                                       4!
 P  2 wins, 2 losses   0.2  0.2 
                            2      2

                                      2!2!
                         0.0096
                                                 4!
 P 1 win, 1 loss, 2 draws   0.2  0.2  0.6 
                                             2

                                                 2!
                              0.1728
1
(iii) Teams score 1 point for each game won,      a point for each game
      drawn and 0 points for each game lost. 2
      What is the probability that the Home team scores more points than
      the Away team?
 first calculate probability of equal points
P  4 draws   0.64
              0.1296                            ways of arranging WWLL
                                       4!
 P  2 wins, 2 losses   0.2  0.2 
                            2      2

                                      2!2!
                         0.0096                      ways of arranging WLDD
                                                 4!
 P 1 win, 1 loss, 2 draws   0.2  0.2  0.6 
                                             2

                                                 2!
                              0.1728
1
(iii) Teams score 1 point for each game won,      a point for each game
      drawn and 0 points for each game lost. 2
      What is the probability that the Home team scores more points than
      the Away team?
 first calculate probability of equal points
P  4 draws   0.64
              0.1296                            ways of arranging WWLL
                                       4!
 P  2 wins, 2 losses   0.2  0.2 
                            2      2

                                      2!2!
                         0.0096                      ways of arranging WLDD
                                                 4!
 P 1 win, 1 loss, 2 draws   0.2  0.2  0.6 
                                             2

                                                 2!
                              0.1728
P  equal points   0.1296  0.0096  0.1728
                   0.312
P  unequal points   1  0.312
                     0.688
P  unequal points   1  0.312
                     0.688
As the probabilities are equally likely for the Home and Away teams,
then either the Home team has more points or the Away team has more
points.
P  unequal points   1  0.312
                     0.688
As the probabilities are equally likely for the Home and Away teams,
then either the Home team has more points or the Away team has more
points.
                                       1
        P  Home team more points   P  unequal points 
                                       2
P  unequal points   1  0.312
                     0.688
As the probabilities are equally likely for the Home and Away teams,
then either the Home team has more points or the Away team has more
points.
                                       1
        P  Home team more points   P  unequal points 
                                       2
                                       1
                                       0.688
                                       2
                                      0.344
2002 Extension 2 HSC Q4c)
From a pack of nine cards numbered 1, 2, 3, …, 9, three cards are
drawn at random and laid on a table from left to right.
2002 Extension 2 HSC Q4c)
From a pack of nine cards numbered 1, 2, 3, …, 9, three cards are
drawn at random and laid on a table from left to right.
(i) What is the probability that the number exceeds 400?
2002 Extension 2 HSC Q4c)
From a pack of nine cards numbered 1, 2, 3, …, 9, three cards are
drawn at random and laid on a table from left to right.
(i) What is the probability that the number exceeds 400?
                 6
     P( 400) 
                 9
2002 Extension 2 HSC Q4c)
From a pack of nine cards numbered 1, 2, 3, …, 9, three cards are
drawn at random and laid on a table from left to right.
(i) What is the probability that the number exceeds 400?
                 6           it is the same as saying; “what is the
     P( 400) 
                 9         probability of the first number being >4”
2002 Extension 2 HSC Q4c)
From a pack of nine cards numbered 1, 2, 3, …, 9, three cards are
drawn at random and laid on a table from left to right.
(i) What is the probability that the number exceeds 400?
                 6           it is the same as saying; “what is the
     P( 400) 
                 9         probability of the first number being >4”
                 2
               
                 3
2002 Extension 2 HSC Q4c)
From a pack of nine cards numbered 1, 2, 3, …, 9, three cards are
drawn at random and laid on a table from left to right.
(i) What is the probability that the number exceeds 400?
                 6           it is the same as saying; “what is the
     P( 400) 
                 9         probability of the first number being >4”
                 2
               
                 3
(ii) What is the probability that the digits are drawn in descending
     order?
2002 Extension 2 HSC Q4c)
From a pack of nine cards numbered 1, 2, 3, …, 9, three cards are
drawn at random and laid on a table from left to right.
(i) What is the probability that the number exceeds 400?
                 6           it is the same as saying; “what is the
     P( 400) 
                 9         probability of the first number being >4”
                 2
               
                 3
(ii) What is the probability that the digits are drawn in descending
     order?
     total arrangements of 3 digits  3!
2002 Extension 2 HSC Q4c)
From a pack of nine cards numbered 1, 2, 3, …, 9, three cards are
drawn at random and laid on a table from left to right.
(i) What is the probability that the number exceeds 400?
                 6           it is the same as saying; “what is the
     P( 400) 
                 9         probability of the first number being >4”
                 2
               
                 3
(ii) What is the probability that the digits are drawn in descending
     order?
     total arrangements of 3 digits  3!
                                     6
2002 Extension 2 HSC Q4c)
From a pack of nine cards numbered 1, 2, 3, …, 9, three cards are
drawn at random and laid on a table from left to right.
(i) What is the probability that the number exceeds 400?
                 6           it is the same as saying; “what is the
     P( 400) 
                 9         probability of the first number being >4”
                 2
               
                 3
(ii) What is the probability that the digits are drawn in descending
     order?
     total arrangements of 3 digits  3!
                                     6
  Only one arrangement will be in descending order
2002 Extension 2 HSC Q4c)
From a pack of nine cards numbered 1, 2, 3, …, 9, three cards are
drawn at random and laid on a table from left to right.
(i) What is the probability that the number exceeds 400?
                 6           it is the same as saying; “what is the
     P( 400) 
                 9         probability of the first number being >4”
                 2
               
                 3
(ii) What is the probability that the digits are drawn in descending
     order?
     total arrangements of 3 digits  3!
                                     6
  Only one arrangement will be in descending order
                                     1
            P  descending order  
                                     6
2002 Extension 2 HSC Q4c)
From a pack of nine cards numbered 1, 2, 3, …, 9, three cards are
drawn at random and laid on a table from left to right.
(i) What is the probability that the number exceeds 400?
                 6           it is the same as saying; “what is the
     P( 400) 
                 9         probability of the first number being >4”
                 2
               
                 3
(ii) What is the probability that the digits are drawn in descending
     order?
     total arrangements of 3 digits  3!
                                     6
  Only one arrangement will be in descending order
                                     1
            P  descending order  
                                     6              Exercise 10H; odd

More Related Content

PPTX
power point basket dinda
PDF
Pembahasan soal un kimia sma 2013
PPTX
Giảng A1 200.pptx
PDF
12X1 T09 07 arrangements in a circle
PPT
Common problems with email
PPTX
linear equation and gaussian elimination
PDF
Module - 1 Discrete Mathematics and Graph Theory
PPTX
Gaussian Elimination Method
power point basket dinda
Pembahasan soal un kimia sma 2013
Giảng A1 200.pptx
12X1 T09 07 arrangements in a circle
Common problems with email
linear equation and gaussian elimination
Module - 1 Discrete Mathematics and Graph Theory
Gaussian Elimination Method

Viewers also liked (20)

PPT
Factoring Quadratics
PPTX
Week 2 applying for jobs
PPTX
7.5 graphing square root and cube root functions
PPTX
Chapter 2 notes new book
PDF
Notes Day 6: Bernoulli Trials
PPT
Cyberbullying class 97
PPT
Cartoon
PPTX
Plumbing night 1 legal forms of business
PPTX
Plumbing night 2 types of plumbing businesses
PPTX
Understanding Computers: Today and Tomorrow, 13th Edition Chapter 7 - Compute...
PPTX
Statr session 25 and 26
PPTX
Statr sessions 9 to 10
PDF
Notes Day 6: Prove that sides are in proportion
PPTX
Statr sessions 7 to 8
PDF
Alg2 Notes Unit 1 Day 6
PPT
Probability 3.4
PDF
Class notes for discovering transformation of the parent graph for the square...
PPTX
Investments handout
PPTX
Wiki assignment
PDF
Probability Day 3 - Permutations and Combinations
Factoring Quadratics
Week 2 applying for jobs
7.5 graphing square root and cube root functions
Chapter 2 notes new book
Notes Day 6: Bernoulli Trials
Cyberbullying class 97
Cartoon
Plumbing night 1 legal forms of business
Plumbing night 2 types of plumbing businesses
Understanding Computers: Today and Tomorrow, 13th Edition Chapter 7 - Compute...
Statr session 25 and 26
Statr sessions 9 to 10
Notes Day 6: Prove that sides are in proportion
Statr sessions 7 to 8
Alg2 Notes Unit 1 Day 6
Probability 3.4
Class notes for discovering transformation of the parent graph for the square...
Investments handout
Wiki assignment
Probability Day 3 - Permutations and Combinations
Ad

Similar to 12X1 T09 06 probability & counting techniques (14)

PDF
12X1 T09 06 probability and counting techniques (2010)
PDF
Pre-Cal 40S May 28, 2009
PPT
tree diagrams
PPTX
Permutation and combination
PPT
Question 6 Solution
PPT
Question 6 Solution
PDF
Probability Modul
DOCX
Assignmen ts --x
PPTX
2_Computing-Probabilities_statsandprobs.pptx
PDF
Applied Math 40S March 5, 2008
PPTX
Extra Questions PhajajksjakksikakaiPT.pptx
PPTX
Probability Assignment Help
PPTX
powerpoints on probability of simple events.pptx
PDF
Worksheet works theoretical_probability_1
12X1 T09 06 probability and counting techniques (2010)
Pre-Cal 40S May 28, 2009
tree diagrams
Permutation and combination
Question 6 Solution
Question 6 Solution
Probability Modul
Assignmen ts --x
2_Computing-Probabilities_statsandprobs.pptx
Applied Math 40S March 5, 2008
Extra Questions PhajajksjakksikakaiPT.pptx
Probability Assignment Help
powerpoints on probability of simple events.pptx
Worksheet works theoretical_probability_1
Ad

More from Nigel Simmons (20)

PPT
Goodbye slideshare UPDATE
PPT
Goodbye slideshare
PDF
12 x1 t02 02 integrating exponentials (2014)
PDF
11 x1 t01 03 factorising (2014)
PDF
11 x1 t01 02 binomial products (2014)
PDF
12 x1 t02 01 differentiating exponentials (2014)
PDF
11 x1 t01 01 algebra & indices (2014)
PDF
12 x1 t01 03 integrating derivative on function (2013)
PDF
12 x1 t01 02 differentiating logs (2013)
PDF
12 x1 t01 01 log laws (2013)
PDF
X2 t02 04 forming polynomials (2013)
PDF
X2 t02 03 roots & coefficients (2013)
PDF
X2 t02 02 multiple roots (2013)
PDF
X2 t02 01 factorising complex expressions (2013)
PDF
11 x1 t16 07 approximations (2013)
PDF
11 x1 t16 06 derivative times function (2013)
PDF
11 x1 t16 05 volumes (2013)
PDF
11 x1 t16 04 areas (2013)
PDF
11 x1 t16 03 indefinite integral (2013)
PDF
11 x1 t16 02 definite integral (2013)
Goodbye slideshare UPDATE
Goodbye slideshare
12 x1 t02 02 integrating exponentials (2014)
11 x1 t01 03 factorising (2014)
11 x1 t01 02 binomial products (2014)
12 x1 t02 01 differentiating exponentials (2014)
11 x1 t01 01 algebra & indices (2014)
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 01 log laws (2013)
X2 t02 04 forming polynomials (2013)
X2 t02 03 roots & coefficients (2013)
X2 t02 02 multiple roots (2013)
X2 t02 01 factorising complex expressions (2013)
11 x1 t16 07 approximations (2013)
11 x1 t16 06 derivative times function (2013)
11 x1 t16 05 volumes (2013)
11 x1 t16 04 areas (2013)
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 02 definite integral (2013)

Recently uploaded (20)

DOC
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PDF
RMMM.pdf make it easy to upload and study
PDF
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
PPTX
Cell Structure & Organelles in detailed.
PPTX
Cell Types and Its function , kingdom of life
PDF
Classroom Observation Tools for Teachers
PDF
Yogi Goddess Pres Conference Studio Updates
PDF
Trump Administration's workforce development strategy
PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
PDF
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
PDF
O7-L3 Supply Chain Operations - ICLT Program
PPTX
Microbial diseases, their pathogenesis and prophylaxis
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PDF
01-Introduction-to-Information-Management.pdf
PDF
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
PPTX
Pharmacology of Heart Failure /Pharmacotherapy of CHF
PDF
Complications of Minimal Access Surgery at WLH
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PDF
VCE English Exam - Section C Student Revision Booklet
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
RMMM.pdf make it easy to upload and study
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
Cell Structure & Organelles in detailed.
Cell Types and Its function , kingdom of life
Classroom Observation Tools for Teachers
Yogi Goddess Pres Conference Studio Updates
Trump Administration's workforce development strategy
2.FourierTransform-ShortQuestionswithAnswers.pdf
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
O7-L3 Supply Chain Operations - ICLT Program
Microbial diseases, their pathogenesis and prophylaxis
Supply Chain Operations Speaking Notes -ICLT Program
01-Introduction-to-Information-Management.pdf
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
Pharmacology of Heart Failure /Pharmacotherapy of CHF
Complications of Minimal Access Surgery at WLH
Module 4: Burden of Disease Tutorial Slides S2 2025
VCE English Exam - Section C Student Revision Booklet

12X1 T09 06 probability & counting techniques

  • 1. Probability & Counting Techniques 2007 Extension 1 HSC Q5b) Mr and Mrs Roberts and their four children go to the theatre. They are randomly allocated six adjacent seats in a single row. What is the probability that the four children are allocated seats next to each other?
  • 2. Probability & Counting Techniques 2007 Extension 1 HSC Q5b) Mr and Mrs Roberts and their four children go to the theatre. They are randomly allocated six adjacent seats in a single row. What is the probability that the four children are allocated seats next to each other? 3!4! P(children sit next to each other)  6!
  • 3. Probability & Counting Techniques 2007 Extension 1 HSC Q5b) Mr and Mrs Roberts and their four children go to the theatre. They are randomly allocated six adjacent seats in a single row. What is the probability that the four children are allocated seats next to each other? 3!4! P(children sit next to each other)  6! ways of arranging 6 people
  • 4. Probability & Counting Techniques 2007 Extension 1 HSC Q5b) Mr and Mrs Roberts and their four children go to the theatre. They are randomly allocated six adjacent seats in a single row. What is the probability that the four children are allocated seats next to each other? ways of arranging 3 objects i.e 2 adults + 1 group of 4 children 3!4! P(children sit next to each other)  6! ways of arranging 6 people
  • 5. Probability & Counting Techniques 2007 Extension 1 HSC Q5b) Mr and Mrs Roberts and their four children go to the theatre. They are randomly allocated six adjacent seats in a single row. What is the probability that the four children are allocated seats next to each other? ways of arranging 3 objects i.e 2 adults + 1 group of 4 children ways of arranging 4 children 3!4! P(children sit next to each other)  6! ways of arranging 6 people
  • 6. Probability & Counting Techniques 2007 Extension 1 HSC Q5b) Mr and Mrs Roberts and their four children go to the theatre. They are randomly allocated six adjacent seats in a single row. What is the probability that the four children are allocated seats next to each other? ways of arranging 3 objects i.e 2 adults + 1 group of 4 children ways of arranging 4 children 3!4! P(children sit next to each other)  6! ways of arranging 6 people 1  5
  • 7. 2007 Extension 2 HSC Q5a) A bag contains 12 red marbles and 12 yellow marbles. Six marbles are selected at random without replacement. (i) Calculate the probability that exactly three of the selected marbles are red. Give your answer correct to two decimal places.
  • 8. 2007 Extension 2 HSC Q5a) A bag contains 12 red marbles and 12 yellow marbles. Six marbles are selected at random without replacement. (i) Calculate the probability that exactly three of the selected marbles are red. Give your answer correct to two decimal places. 12 C3  12C3 P(3 red)  24 C6
  • 9. 2007 Extension 2 HSC Q5a) A bag contains 12 red marbles and 12 yellow marbles. Six marbles are selected at random without replacement. (i) Calculate the probability that exactly three of the selected marbles are red. Give your answer correct to two decimal places. 12 C3  12C3 P(3 red)  24 C6  0.3595  0.36 (to 2 dp)
  • 10. 2007 Extension 2 HSC Q5a) A bag contains 12 red marbles and 12 yellow marbles. Six marbles are selected at random without replacement. (i) Calculate the probability that exactly three of the selected marbles are red. Give your answer correct to two decimal places. 12 C3  12C3 P(3 red)  24 C6  0.3595  0.36 (to 2 dp) (ii) Hence, or otherwise, calculate the probability that more than three of the selected marbles are red. Give your answer correct to two decimal places.
  • 11. 2007 Extension 2 HSC Q5a) A bag contains 12 red marbles and 12 yellow marbles. Six marbles are selected at random without replacement. (i) Calculate the probability that exactly three of the selected marbles are red. Give your answer correct to two decimal places. 12 C3  12C3 P(3 red)  24 C6  0.3595  0.36 (to 2 dp) (ii) Hence, or otherwise, calculate the probability that more than three of the selected marbles are red. Give your answer correct to two decimal places. P( 3 red)  P (4 red)  P (5 red)+P (6 red)
  • 12. 2007 Extension 2 HSC Q5a) A bag contains 12 red marbles and 12 yellow marbles. Six marbles are selected at random without replacement. (i) Calculate the probability that exactly three of the selected marbles are red. Give your answer correct to two decimal places. 12 C3  12C3 P(3 red)  24 C6  0.3595  0.36 (to 2 dp) (ii) Hence, or otherwise, calculate the probability that more than three of the selected marbles are red. Give your answer correct to two decimal places. P( 3 red)  P (4 red)  P (5 red)+P (6 red) 12 C4  12C2  12C5  12C1  12C6  12C0  24 C6
  • 13. 2007 Extension 2 HSC Q5a) A bag contains 12 red marbles and 12 yellow marbles. Six marbles are selected at random without replacement. (i) Calculate the probability that exactly three of the selected marbles are red. Give your answer correct to two decimal places. 12 C3  12C3 P(3 red)  24 C6  0.3595  0.36 (to 2 dp) (ii) Hence, or otherwise, calculate the probability that more than three of the selected marbles are red. Give your answer correct to two decimal places. P( 3 red)  P (4 red)  P (5 red)+P (6 red) 12 C4  12C2  12C5  12C1  12C6  12C0  24 C6  0.3202  0.32 (to 2 dp)
  • 14. OR P( 3 red)  1  P (3 red)  P ( 3 red)
  • 15. OR P( 3 red)  1  P (3 red)  P ( 3 red)  1  P (3 red)  P ( 3 yellow)
  • 16. OR P( 3 red)  1  P (3 red)  P ( 3 red)  1  P (3 red)  P ( 3 yellow)  1  P (3 red)  P ( 3 red)
  • 17. OR P( 3 red)  1  P (3 red)  P ( 3 red)  1  P (3 red)  P ( 3 yellow)  1  P (3 red)  P ( 3 red) 2 P ( 3 red)  1  P(3 red)
  • 18. OR P( 3 red)  1  P (3 red)  P ( 3 red)  1  P (3 red)  P ( 3 yellow)  1  P (3 red)  P ( 3 red) 2 P ( 3 red)  1  P(3 red) 1 P( 3 red)  1  P(3 red) 2
  • 19. OR P( 3 red)  1  P (3 red)  P ( 3 red)  1  P (3 red)  P ( 3 yellow)  1  P (3 red)  P ( 3 red) 2 P ( 3 red)  1  P(3 red) 1 P( 3 red)  1  P(3 red) 2 1  1  0.3595 2
  • 20. OR P( 3 red)  1  P (3 red)  P ( 3 red)  1  P (3 red)  P ( 3 yellow)  1  P (3 red)  P ( 3 red) 2 P ( 3 red)  1  P(3 red) 1 P( 3 red)  1  P(3 red) 2 1  1  0.3595 2  0.3202  0.32 (to 2 dp)
  • 21. 2006 Extension 2 HSC Q5d) In a chess match between the Home team and the Away team, a game is played on board 1, board 2, board 3 and board 4. On each board, the probability that the Home team wins is 0.2, the probability of a draw is 0.6 and the probability that the Home team loses is 0.2. The results are recorded by listing the outcomes of the games for the Home team in board order. For example, if the Home team wins on board 2, draws on board 2, loses on board 3 and draws on board 4, the result is recorded as WDLD.
  • 22. 2006 Extension 2 HSC Q5d) In a chess match between the Home team and the Away team, a game is played on board 1, board 2, board 3 and board 4. On each board, the probability that the Home team wins is 0.2, the probability of a draw is 0.6 and the probability that the Home team loses is 0.2. The results are recorded by listing the outcomes of the games for the Home team in board order. For example, if the Home team wins on board 2, draws on board 2, loses on board 3 and draws on board 4, the result is recorded as WDLD. (i) How many different recordings are possible?
  • 23. 2006 Extension 2 HSC Q5d) In a chess match between the Home team and the Away team, a game is played on board 1, board 2, board 3 and board 4. On each board, the probability that the Home team wins is 0.2, the probability of a draw is 0.6 and the probability that the Home team loses is 0.2. The results are recorded by listing the outcomes of the games for the Home team in board order. For example, if the Home team wins on board 2, draws on board 2, loses on board 3 and draws on board 4, the result is recorded as WDLD. (i) How many different recordings are possible? Recordings  3  3  3  3
  • 24. 2006 Extension 2 HSC Q5d) In a chess match between the Home team and the Away team, a game is played on board 1, board 2, board 3 and board 4. On each board, the probability that the Home team wins is 0.2, the probability of a draw is 0.6 and the probability that the Home team loses is 0.2. The results are recorded by listing the outcomes of the games for the Home team in board order. For example, if the Home team wins on board 2, draws on board 2, loses on board 3 and draws on board 4, the result is recorded as WDLD. (i) How many different recordings are possible? Recordings  3  3  3  3  81
  • 25. 2006 Extension 2 HSC Q5d) In a chess match between the Home team and the Away team, a game is played on board 1, board 2, board 3 and board 4. On each board, the probability that the Home team wins is 0.2, the probability of a draw is 0.6 and the probability that the Home team loses is 0.2. The results are recorded by listing the outcomes of the games for the Home team in board order. For example, if the Home team wins on board 2, draws on board 2, loses on board 3 and draws on board 4, the result is recorded as WDLD. (i) How many different recordings are possible? Recordings  3  3  3  3  81 (ii) Calculate the probability of the result which is recorded as WDLD.
  • 26. 2006 Extension 2 HSC Q5d) In a chess match between the Home team and the Away team, a game is played on board 1, board 2, board 3 and board 4. On each board, the probability that the Home team wins is 0.2, the probability of a draw is 0.6 and the probability that the Home team loses is 0.2. The results are recorded by listing the outcomes of the games for the Home team in board order. For example, if the Home team wins on board 2, draws on board 2, loses on board 3 and draws on board 4, the result is recorded as WDLD. (i) How many different recordings are possible? Recordings  3  3  3  3  81 (ii) Calculate the probability of the result which is recorded as WDLD. P  WDLD   0.2  0.6  0.2  0.6
  • 27. 2006 Extension 2 HSC Q5d) In a chess match between the Home team and the Away team, a game is played on board 1, board 2, board 3 and board 4. On each board, the probability that the Home team wins is 0.2, the probability of a draw is 0.6 and the probability that the Home team loses is 0.2. The results are recorded by listing the outcomes of the games for the Home team in board order. For example, if the Home team wins on board 2, draws on board 2, loses on board 3 and draws on board 4, the result is recorded as WDLD. (i) How many different recordings are possible? Recordings  3  3  3  3  81 (ii) Calculate the probability of the result which is recorded as WDLD. P  WDLD   0.2  0.6  0.2  0.6  0.144
  • 28. 1 (iii) Teams score 1 point for each game won, a point for each game drawn and 0 points for each game lost. 2 What is the probability that the Home team scores more points than the Away team?
  • 29. 1 (iii) Teams score 1 point for each game won, a point for each game drawn and 0 points for each game lost. 2 What is the probability that the Home team scores more points than the Away team? first calculate probability of equal points
  • 30. 1 (iii) Teams score 1 point for each game won, a point for each game drawn and 0 points for each game lost. 2 What is the probability that the Home team scores more points than the Away team? first calculate probability of equal points P  4 draws   0.64  0.1296
  • 31. 1 (iii) Teams score 1 point for each game won, a point for each game drawn and 0 points for each game lost. 2 What is the probability that the Home team scores more points than the Away team? first calculate probability of equal points P  4 draws   0.64  0.1296 4! P  2 wins, 2 losses   0.2  0.2  2 2 2!2!  0.0096
  • 32. 1 (iii) Teams score 1 point for each game won, a point for each game drawn and 0 points for each game lost. 2 What is the probability that the Home team scores more points than the Away team? first calculate probability of equal points P  4 draws   0.64  0.1296 ways of arranging WWLL 4! P  2 wins, 2 losses   0.2  0.2  2 2 2!2!  0.0096
  • 33. 1 (iii) Teams score 1 point for each game won, a point for each game drawn and 0 points for each game lost. 2 What is the probability that the Home team scores more points than the Away team? first calculate probability of equal points P  4 draws   0.64  0.1296 ways of arranging WWLL 4! P  2 wins, 2 losses   0.2  0.2  2 2 2!2!  0.0096 4! P 1 win, 1 loss, 2 draws   0.2  0.2  0.6  2 2!  0.1728
  • 34. 1 (iii) Teams score 1 point for each game won, a point for each game drawn and 0 points for each game lost. 2 What is the probability that the Home team scores more points than the Away team? first calculate probability of equal points P  4 draws   0.64  0.1296 ways of arranging WWLL 4! P  2 wins, 2 losses   0.2  0.2  2 2 2!2!  0.0096 ways of arranging WLDD 4! P 1 win, 1 loss, 2 draws   0.2  0.2  0.6  2 2!  0.1728
  • 35. 1 (iii) Teams score 1 point for each game won, a point for each game drawn and 0 points for each game lost. 2 What is the probability that the Home team scores more points than the Away team? first calculate probability of equal points P  4 draws   0.64  0.1296 ways of arranging WWLL 4! P  2 wins, 2 losses   0.2  0.2  2 2 2!2!  0.0096 ways of arranging WLDD 4! P 1 win, 1 loss, 2 draws   0.2  0.2  0.6  2 2!  0.1728 P  equal points   0.1296  0.0096  0.1728  0.312
  • 36. P  unequal points   1  0.312  0.688
  • 37. P  unequal points   1  0.312  0.688 As the probabilities are equally likely for the Home and Away teams, then either the Home team has more points or the Away team has more points.
  • 38. P  unequal points   1  0.312  0.688 As the probabilities are equally likely for the Home and Away teams, then either the Home team has more points or the Away team has more points. 1 P  Home team more points   P  unequal points  2
  • 39. P  unequal points   1  0.312  0.688 As the probabilities are equally likely for the Home and Away teams, then either the Home team has more points or the Away team has more points. 1 P  Home team more points   P  unequal points  2 1   0.688 2  0.344
  • 40. 2002 Extension 2 HSC Q4c) From a pack of nine cards numbered 1, 2, 3, …, 9, three cards are drawn at random and laid on a table from left to right.
  • 41. 2002 Extension 2 HSC Q4c) From a pack of nine cards numbered 1, 2, 3, …, 9, three cards are drawn at random and laid on a table from left to right. (i) What is the probability that the number exceeds 400?
  • 42. 2002 Extension 2 HSC Q4c) From a pack of nine cards numbered 1, 2, 3, …, 9, three cards are drawn at random and laid on a table from left to right. (i) What is the probability that the number exceeds 400? 6 P( 400)  9
  • 43. 2002 Extension 2 HSC Q4c) From a pack of nine cards numbered 1, 2, 3, …, 9, three cards are drawn at random and laid on a table from left to right. (i) What is the probability that the number exceeds 400? 6 it is the same as saying; “what is the P( 400)  9 probability of the first number being >4”
  • 44. 2002 Extension 2 HSC Q4c) From a pack of nine cards numbered 1, 2, 3, …, 9, three cards are drawn at random and laid on a table from left to right. (i) What is the probability that the number exceeds 400? 6 it is the same as saying; “what is the P( 400)  9 probability of the first number being >4” 2  3
  • 45. 2002 Extension 2 HSC Q4c) From a pack of nine cards numbered 1, 2, 3, …, 9, three cards are drawn at random and laid on a table from left to right. (i) What is the probability that the number exceeds 400? 6 it is the same as saying; “what is the P( 400)  9 probability of the first number being >4” 2  3 (ii) What is the probability that the digits are drawn in descending order?
  • 46. 2002 Extension 2 HSC Q4c) From a pack of nine cards numbered 1, 2, 3, …, 9, three cards are drawn at random and laid on a table from left to right. (i) What is the probability that the number exceeds 400? 6 it is the same as saying; “what is the P( 400)  9 probability of the first number being >4” 2  3 (ii) What is the probability that the digits are drawn in descending order? total arrangements of 3 digits  3!
  • 47. 2002 Extension 2 HSC Q4c) From a pack of nine cards numbered 1, 2, 3, …, 9, three cards are drawn at random and laid on a table from left to right. (i) What is the probability that the number exceeds 400? 6 it is the same as saying; “what is the P( 400)  9 probability of the first number being >4” 2  3 (ii) What is the probability that the digits are drawn in descending order? total arrangements of 3 digits  3! 6
  • 48. 2002 Extension 2 HSC Q4c) From a pack of nine cards numbered 1, 2, 3, …, 9, three cards are drawn at random and laid on a table from left to right. (i) What is the probability that the number exceeds 400? 6 it is the same as saying; “what is the P( 400)  9 probability of the first number being >4” 2  3 (ii) What is the probability that the digits are drawn in descending order? total arrangements of 3 digits  3! 6 Only one arrangement will be in descending order
  • 49. 2002 Extension 2 HSC Q4c) From a pack of nine cards numbered 1, 2, 3, …, 9, three cards are drawn at random and laid on a table from left to right. (i) What is the probability that the number exceeds 400? 6 it is the same as saying; “what is the P( 400)  9 probability of the first number being >4” 2  3 (ii) What is the probability that the digits are drawn in descending order? total arrangements of 3 digits  3! 6 Only one arrangement will be in descending order 1 P  descending order   6
  • 50. 2002 Extension 2 HSC Q4c) From a pack of nine cards numbered 1, 2, 3, …, 9, three cards are drawn at random and laid on a table from left to right. (i) What is the probability that the number exceeds 400? 6 it is the same as saying; “what is the P( 400)  9 probability of the first number being >4” 2  3 (ii) What is the probability that the digits are drawn in descending order? total arrangements of 3 digits  3! 6 Only one arrangement will be in descending order 1 P  descending order   6 Exercise 10H; odd