SlideShare a Scribd company logo
doc.: IEEE 802.15-06-0191-00-003c
Submission
March 2006
S. Emami
Slide 1
Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)
Submission Title: [Channel model based on IBM measured data]
Date Submitted: [March 2006]
Source: [Shahriar Emami, drsemami@yahoo.com ]
[Zhiguo Lai, University of Massachusetts, zhlai@ecs.umass.edu ]
[Brian Gaucher, IBM Research, bgaucher@us.ibm.com]
[Abbie Mathew, NewLANS, amathew@newlans.com]
Abstract: []
Purpose: [To update task group on channel modeling simulation work]
Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for
discussion and is not binding on the contributing individual(s) or organization(s). The material in this
document is subject to change in form and content after further study. The contributor(s) reserve(s) the
right to add, amend or withdraw material contained herein.
Release: The contributor acknowledges and accepts that this contribution becomes the property of
IEEE and may be made publicly available by P802.15.
doc.: IEEE 802.15-06-0191-00-003c
Submission
March 2006
S. Emami
Slide 2
Motivation
802.11n and UWB ----------------------> few hundred Mbps
Future applications require Gbps rate
- wireless Ethernet, wireless camcorder downloads and HDMI delivery
Significant amount of bandwidth is available at 60 GHz
- USA (57-64 GHz), Canada (57-64 GHz)
- Japan (59-66 GHz)
- Australia (59.4-62.9 GHz)
- South Korea
- Europe
IEEE 802.15.3c to develop PHY for 60 GHz application
doc.: IEEE 802.15-06-0191-00-003c
Submission
March 2006
S. Emami
Slide 3
Goal of developing such a channel model for comparing PHYs
Components of channel mode
- Large scale fading (path loss and shadowing)
- Small scale fading (amplitude statistics, PDP, delay spread)
The channel modeling sub-committee
doc.: IEEE 802.15-06-0191-00-003c
Submission
March 2006
S. Emami
Slide 4
The existing 60 GHz channel modeling
- Mostly focused on outdoor environment
- They limit themselves to one indoor environment
A channel model fit for a few indoor environments does not exist
doc.: IEEE 802.15-06-0191-00-003c
Submission
March 2006
S. Emami
Slide 5
IBM data base
The data base consists of measurements in three different environments namely
- office
- library/laboratory
- residential
Over 700 PDPs
Limitation: omni directional antennas on both ends
doc.: IEEE 802.15-06-0191-00-003c
Submission
March 2006
S. Emami
Slide 6
- path loss
- Shadowing
Average Path Loss
Path Loss
Large scale Fading










0
10
0 log
10
[dB]
)
(
[dB]
)
(
d
d
n
d
L
d
L
[dB]
[dB]
)
(
[dB]
)
( 
X
d
L
d
L 

doc.: IEEE 802.15-06-0191-00-003c
Submission
March 2006
S. Emami
Slide 7
where and are the predicted and the measured path losses at the
k-th location (totally M locations), respectively, and parameters through
are given by
MSE is minimized when
   
F
EL
Dn
CL
BnL
An
M
L
L
M
M
k
k
k







 

0
2
0
0
2
2
1
meas
pred
1
1
MSE
 


























M
k
k
M
k
k
M
k
k
k
M
k
k
M
k
k
L
F
L
E
d
d
L
D
M
C
d
d
B
d
d
A
1
2
meas
1
meas
1 0
10
meas
1 0
10
1
2
0
10
,
2
,
log
20
,
log
20
,
log
100
0
2
)
(
and
0
2
)
(
0
0
0 













E
Bn
CL
L
D
BL
An
n
Parameter Extraction
k
Lpred
k
Lmeas
doc.: IEEE 802.15-06-0191-00-003c
Submission
March 2006
S. Emami
Slide 8
n
Parameter Office Lib/lab Private house
L0 (dB) 71.21 71.53 80.00 (80.55)
1.62 1.42 1.30 (0.40)
σ (dB) 5.15 5.78 5.20 (4.66)
Table I: Path loss and large scale model parameters for the three different
environments
n
doc.: IEEE 802.15-06-0191-00-003c
Submission
March 2006
S. Emami
Slide 9
Figure 1: Path loss versus Tx-Rx separation
0.5 1 2 3 4 5 6 7 8 9 10
-90
-80
-70
-60
total
path
loss
(dB)
0.5 1 2 3 4 5 6 7 8 9 10
-90
-80
-70
-60
total
path
loss
(dB)
0.5 1 2 3 4 5 6 7 8 9 10
-95
-90
-85
-80
-75
-70
Tx-Rx separation (m)
total
path
loss
(dB)
measurement
MSE fitting
measurement
MSE fitting
measurement
MSE fitting
manual fitting
Office environment
Lib/lab environment
Private house environment
doc.: IEEE 802.15-06-0191-00-003c
Submission
March 2006
S. Emami
Slide 10
- Amplitude statistics
- Power delay profile
- Delay spread
PDP
- Single exponential decay
- Constant followed by exponential decay
Selected model
- Single cluster S-V model
- Rayleigh amplitude
- PDP







 
b
ns
/
b
if
0
if
)
(





 
C
e
B
A
Small Scale Fading
doc.: IEEE 802.15-06-0191-00-003c
Submission
March 2006
S. Emami
Slide 11
-0.02 -0.01 0 0.01 0.02 0.03
0
10
20
30
40
50
60
70
80
90
real part
-0.02 -0.01 0 0.01 0.02
0
10
20
30
40
50
60
70
imaginary part
0 0.005 0.01 0.015 0.02 0.025
0
10
20
30
40
50
60
70
80
magnitude
-200 -100 0 100 200
0
2
4
6
8
10
12
14
16
18
phase
Office001 CIR distribution
CIR Statistics
doc.: IEEE 802.15-06-0191-00-003c
Submission
March 2006
S. Emami
Slide 12
Parameter Optimization
Define two metrics: MSE(PDP) and MSE(RMS-DS)
MSE(PDP) The mean squared error (MSE) between the PDP of the
measurement set and that of the model
Objective:
To determine the parameter set that minimizes the two metrics jointly for a
given environment.
doc.: IEEE 802.15-06-0191-00-003c
Submission
March 2006
S. Emami
Slide 13
Figure 2: Metrics versus path density for the lib/lab environment
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
2
4
6
8
10
12
14
x 10
-3
MSE according to PDP
 (/ns)
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0
0.05
0.1
0.15
MSE according to RDS
 (/ns)
A = 0.1
A = 0.2
A = 0.3
A = 0.4
A = 0.1
A = 0.2
A = 0.3
A = 0.4
Lib/lab environment
maximum delay = 200 ns
PV
() = A when  < 0.5 ns
PV
() = 0.01 e-0.09
when  > 0.5 ns
doc.: IEEE 802.15-06-0191-00-003c
Submission
March 2006
S. Emami
Slide 14
Figure 3: Metrics versus path density for the lib/lab environment
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
2
4
6
8
10
12
14
x 10
-3
MSE according to PDP
 (/ns)
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0
0.05
0.1
0.15
0.2
MSE according to RDS
 (/ns)
B = 0.005
B = 0.010
B = 0.015
B = 0.020
B = 0.005
B = 0.010
B = 0.015
B = 0.020
Lib/lab environment
maximum delay = 200 ns
PV
() = 0.3 when  < 0.5 ns
PV
() = B e-0.09
when  > 0.5 ns
doc.: IEEE 802.15-06-0191-00-003c
Submission
March 2006
S. Emami
Slide 15
Figure 4: Metrics versus path density for the lib/lab environment
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0
0.005
0.01
0.015
MSE according to PDP
 (/ns)
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0
0.05
0.1
0.15
0.2
0.25
MSE according to RDS
 (/ns)
C = 0.05
C = 0.08
C = 0.09
C = 0.10
C = 0.15
C = 0.20
C = 0.05
C = 0.08
C = 0.09
C = 0.10
C = 0.15
C = 0.20
Lib/lab environment
maximum delay = 200 ns
PV
() = 0.3 when  < 0.5 ns
PV
() = 0.01 e-C
when  > 0.5 ns
doc.: IEEE 802.15-06-0191-00-003c
Submission
March 2006
S. Emami
Slide 16
Table II: Multipath model parameters for the three different environments
Parameters Office Lib/lab Private home
path density
 (1/ns) 0.50 0.10 0.30
maximum delay max
 (ns) 100 200 50
break point b
 (ns) 0.4 0.5 0.9
constant
A 0.3 0.3 0.6
multiplier
B 0.01 0.01 0.1
exponent
C 0.12 0.095 0.25
doc.: IEEE 802.15-06-0191-00-003c
Submission
March 2006
S. Emami
Slide 17
Figure 5: Average of Normalized PDPs (office environment)
doc.: IEEE 802.15-06-0191-00-003c
Submission
March 2006
S. Emami
Slide 18
Figure 6: Cumulative distribution of delay spread (office environment)
doc.: IEEE 802.15-06-0191-00-003c
Submission
March 2006
S. Emami
Slide 19
Figure 7: Average of Normalized PDPs (lib/lab environment)
0 5 10 15 20 25 30
-30
-25
-20
-15
-10
-5
delay in ns
mean
path
loss
in
dB
measurement
stochastic model
doc.: IEEE 802.15-06-0191-00-003c
Submission
March 2006
S. Emami
Slide 20
Figure 8: Cumulative distribution of delay spread (lib/lab environment)
0 5 10 15 20 25
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
delay in ns
cumulative
probability
measurement
stochastic model
doc.: IEEE 802.15-06-0191-00-003c
Submission
March 2006
S. Emami
Slide 21
Figure 9: Average of Normalized PDPs (private house)
0 5 10 15 20 25 30
-40
-35
-30
-25
-20
-15
-10
-5
delay in ns
mean
path
loss
in
dB
measurements
stochastic model
doc.: IEEE 802.15-06-0191-00-003c
Submission
March 2006
S. Emami
Slide 22
Figure 10: Cumulative distribution of delay spread (private house)
0 1 2 3 4 5 6 7 8 9 10
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
delay in ns
cumulative
probability
measurements
stochastic model

More Related Content

PDF
Molisch et al_ieee_antennas_prop_2006
PDF
15 04-0662-02-004a-channel-model-final-report-r1
PDF
Application of ML in physical layer
PDF
Wireless Communications Andrea Goldsmith, Stanford University.pdf
PPT
Lec03_Wireless Channel Parameterization_full_std2.ppt
PDF
Lec2WirelessChannelandRadioPropagation.pdf
PDF
IRJET- A Review Paper of Performance Analysis Slotted CSMA/CA
PPT
25143515-Wireless-Communication.ppt
Molisch et al_ieee_antennas_prop_2006
15 04-0662-02-004a-channel-model-final-report-r1
Application of ML in physical layer
Wireless Communications Andrea Goldsmith, Stanford University.pdf
Lec03_Wireless Channel Parameterization_full_std2.ppt
Lec2WirelessChannelandRadioPropagation.pdf
IRJET- A Review Paper of Performance Analysis Slotted CSMA/CA
25143515-Wireless-Communication.ppt

Similar to 15-06-0191-00-003c-channel-model-based-ibm-measured-data (1).ppt (20)

PPTX
Introduction to Wireless Communication
PDF
Performance Improvement of IEEE 802.22 WRAN Physical Layer
PDF
Performance Improvement of IEEE 802.22 WRAN Physical Layer
PDF
Performance Improvement of IEEE 802.22 WRAN Physical Layer
PPT
PDF
Iaetsd ber performance of cdma, wcdma, ieee802.11g in awgn
PDF
scope of layer in computer networking made by tafseer hussain
PDF
21 16133 paper 013 ijeecs(edit)new
PPT
Data communication VTU SYLLABUS Based presentation
PDF
Communication
PDF
80 152-157
PDF
ashkkadjhasjdhkae2312433521433.pdf
PDF
2015LISAT_pathloss1
PDF
Outdoor path loss models for ieee 802.16
PPTX
Evaluate and Analysis of MAC Protocols for VANET
PDF
Queue Size Trade Off with Modulation in 802.15.4 for Wireless Sensor Networks
PDF
Performance and interference analysis of 802.11 g wireless network
PPTX
IEEE 806.16
PDF
Dissertation wonchae kim
PPT
Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)
Introduction to Wireless Communication
Performance Improvement of IEEE 802.22 WRAN Physical Layer
Performance Improvement of IEEE 802.22 WRAN Physical Layer
Performance Improvement of IEEE 802.22 WRAN Physical Layer
Iaetsd ber performance of cdma, wcdma, ieee802.11g in awgn
scope of layer in computer networking made by tafseer hussain
21 16133 paper 013 ijeecs(edit)new
Data communication VTU SYLLABUS Based presentation
Communication
80 152-157
ashkkadjhasjdhkae2312433521433.pdf
2015LISAT_pathloss1
Outdoor path loss models for ieee 802.16
Evaluate and Analysis of MAC Protocols for VANET
Queue Size Trade Off with Modulation in 802.15.4 for Wireless Sensor Networks
Performance and interference analysis of 802.11 g wireless network
IEEE 806.16
Dissertation wonchae kim
Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)
Ad

More from robertodefazio3 (8)

PDF
Robotic Telesurgery Robotic surgery is : “ROBOT ASSISTED” SURGERY, Surgeon d...
PDF
Lezione X_Processing EMG.pdf-Overview of EMG processing techniques
PDF
Arduino 2- Slide descrizione Architettura
PDF
HL7 Training Presented By: Lucía Lapaz, Brittany Ersery & Jim Holsinger Envis...
PDF
Body Area Networks Body Area Networks By: Danny Leung
PPTX
Site Visit SAALUS project-wearable systems
PPTX
Immagini_rev2_image processing solutions
PPT
Body Area Networks for wearable applications
Robotic Telesurgery Robotic surgery is : “ROBOT ASSISTED” SURGERY, Surgeon d...
Lezione X_Processing EMG.pdf-Overview of EMG processing techniques
Arduino 2- Slide descrizione Architettura
HL7 Training Presented By: Lucía Lapaz, Brittany Ersery & Jim Holsinger Envis...
Body Area Networks Body Area Networks By: Danny Leung
Site Visit SAALUS project-wearable systems
Immagini_rev2_image processing solutions
Body Area Networks for wearable applications
Ad

Recently uploaded (20)

PDF
Operating System & Kernel Study Guide-1 - converted.pdf
PPTX
Lecture Notes Electrical Wiring System Components
PPTX
CYBER-CRIMES AND SECURITY A guide to understanding
PDF
Model Code of Practice - Construction Work - 21102022 .pdf
PPTX
bas. eng. economics group 4 presentation 1.pptx
PDF
Unit I ESSENTIAL OF DIGITAL MARKETING.pdf
PPTX
Construction Project Organization Group 2.pptx
PPT
introduction to datamining and warehousing
PDF
Digital Logic Computer Design lecture notes
PPTX
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
PPTX
Geodesy 1.pptx...............................................
PDF
R24 SURVEYING LAB MANUAL for civil enggi
PPTX
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
PPTX
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
PDF
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
PPTX
Foundation to blockchain - A guide to Blockchain Tech
PPTX
OOP with Java - Java Introduction (Basics)
PPTX
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
PDF
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
Operating System & Kernel Study Guide-1 - converted.pdf
Lecture Notes Electrical Wiring System Components
CYBER-CRIMES AND SECURITY A guide to understanding
Model Code of Practice - Construction Work - 21102022 .pdf
bas. eng. economics group 4 presentation 1.pptx
Unit I ESSENTIAL OF DIGITAL MARKETING.pdf
Construction Project Organization Group 2.pptx
introduction to datamining and warehousing
Digital Logic Computer Design lecture notes
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
Geodesy 1.pptx...............................................
R24 SURVEYING LAB MANUAL for civil enggi
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
Foundation to blockchain - A guide to Blockchain Tech
OOP with Java - Java Introduction (Basics)
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT

15-06-0191-00-003c-channel-model-based-ibm-measured-data (1).ppt

  • 1. doc.: IEEE 802.15-06-0191-00-003c Submission March 2006 S. Emami Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Channel model based on IBM measured data] Date Submitted: [March 2006] Source: [Shahriar Emami, drsemami@yahoo.com ] [Zhiguo Lai, University of Massachusetts, zhlai@ecs.umass.edu ] [Brian Gaucher, IBM Research, bgaucher@us.ibm.com] [Abbie Mathew, NewLANS, amathew@newlans.com] Abstract: [] Purpose: [To update task group on channel modeling simulation work] Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein. Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.
  • 2. doc.: IEEE 802.15-06-0191-00-003c Submission March 2006 S. Emami Slide 2 Motivation 802.11n and UWB ----------------------> few hundred Mbps Future applications require Gbps rate - wireless Ethernet, wireless camcorder downloads and HDMI delivery Significant amount of bandwidth is available at 60 GHz - USA (57-64 GHz), Canada (57-64 GHz) - Japan (59-66 GHz) - Australia (59.4-62.9 GHz) - South Korea - Europe IEEE 802.15.3c to develop PHY for 60 GHz application
  • 3. doc.: IEEE 802.15-06-0191-00-003c Submission March 2006 S. Emami Slide 3 Goal of developing such a channel model for comparing PHYs Components of channel mode - Large scale fading (path loss and shadowing) - Small scale fading (amplitude statistics, PDP, delay spread) The channel modeling sub-committee
  • 4. doc.: IEEE 802.15-06-0191-00-003c Submission March 2006 S. Emami Slide 4 The existing 60 GHz channel modeling - Mostly focused on outdoor environment - They limit themselves to one indoor environment A channel model fit for a few indoor environments does not exist
  • 5. doc.: IEEE 802.15-06-0191-00-003c Submission March 2006 S. Emami Slide 5 IBM data base The data base consists of measurements in three different environments namely - office - library/laboratory - residential Over 700 PDPs Limitation: omni directional antennas on both ends
  • 6. doc.: IEEE 802.15-06-0191-00-003c Submission March 2006 S. Emami Slide 6 - path loss - Shadowing Average Path Loss Path Loss Large scale Fading           0 10 0 log 10 [dB] ) ( [dB] ) ( d d n d L d L [dB] [dB] ) ( [dB] ) (  X d L d L  
  • 7. doc.: IEEE 802.15-06-0191-00-003c Submission March 2006 S. Emami Slide 7 where and are the predicted and the measured path losses at the k-th location (totally M locations), respectively, and parameters through are given by MSE is minimized when     F EL Dn CL BnL An M L L M M k k k           0 2 0 0 2 2 1 meas pred 1 1 MSE                             M k k M k k M k k k M k k M k k L F L E d d L D M C d d B d d A 1 2 meas 1 meas 1 0 10 meas 1 0 10 1 2 0 10 , 2 , log 20 , log 20 , log 100 0 2 ) ( and 0 2 ) ( 0 0 0               E Bn CL L D BL An n Parameter Extraction k Lpred k Lmeas
  • 8. doc.: IEEE 802.15-06-0191-00-003c Submission March 2006 S. Emami Slide 8 n Parameter Office Lib/lab Private house L0 (dB) 71.21 71.53 80.00 (80.55) 1.62 1.42 1.30 (0.40) σ (dB) 5.15 5.78 5.20 (4.66) Table I: Path loss and large scale model parameters for the three different environments n
  • 9. doc.: IEEE 802.15-06-0191-00-003c Submission March 2006 S. Emami Slide 9 Figure 1: Path loss versus Tx-Rx separation 0.5 1 2 3 4 5 6 7 8 9 10 -90 -80 -70 -60 total path loss (dB) 0.5 1 2 3 4 5 6 7 8 9 10 -90 -80 -70 -60 total path loss (dB) 0.5 1 2 3 4 5 6 7 8 9 10 -95 -90 -85 -80 -75 -70 Tx-Rx separation (m) total path loss (dB) measurement MSE fitting measurement MSE fitting measurement MSE fitting manual fitting Office environment Lib/lab environment Private house environment
  • 10. doc.: IEEE 802.15-06-0191-00-003c Submission March 2006 S. Emami Slide 10 - Amplitude statistics - Power delay profile - Delay spread PDP - Single exponential decay - Constant followed by exponential decay Selected model - Single cluster S-V model - Rayleigh amplitude - PDP          b ns / b if 0 if ) (        C e B A Small Scale Fading
  • 11. doc.: IEEE 802.15-06-0191-00-003c Submission March 2006 S. Emami Slide 11 -0.02 -0.01 0 0.01 0.02 0.03 0 10 20 30 40 50 60 70 80 90 real part -0.02 -0.01 0 0.01 0.02 0 10 20 30 40 50 60 70 imaginary part 0 0.005 0.01 0.015 0.02 0.025 0 10 20 30 40 50 60 70 80 magnitude -200 -100 0 100 200 0 2 4 6 8 10 12 14 16 18 phase Office001 CIR distribution CIR Statistics
  • 12. doc.: IEEE 802.15-06-0191-00-003c Submission March 2006 S. Emami Slide 12 Parameter Optimization Define two metrics: MSE(PDP) and MSE(RMS-DS) MSE(PDP) The mean squared error (MSE) between the PDP of the measurement set and that of the model Objective: To determine the parameter set that minimizes the two metrics jointly for a given environment.
  • 13. doc.: IEEE 802.15-06-0191-00-003c Submission March 2006 S. Emami Slide 13 Figure 2: Metrics versus path density for the lib/lab environment 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 2 4 6 8 10 12 14 x 10 -3 MSE according to PDP  (/ns) 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 MSE according to RDS  (/ns) A = 0.1 A = 0.2 A = 0.3 A = 0.4 A = 0.1 A = 0.2 A = 0.3 A = 0.4 Lib/lab environment maximum delay = 200 ns PV () = A when  < 0.5 ns PV () = 0.01 e-0.09 when  > 0.5 ns
  • 14. doc.: IEEE 802.15-06-0191-00-003c Submission March 2006 S. Emami Slide 14 Figure 3: Metrics versus path density for the lib/lab environment 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 2 4 6 8 10 12 14 x 10 -3 MSE according to PDP  (/ns) 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 MSE according to RDS  (/ns) B = 0.005 B = 0.010 B = 0.015 B = 0.020 B = 0.005 B = 0.010 B = 0.015 B = 0.020 Lib/lab environment maximum delay = 200 ns PV () = 0.3 when  < 0.5 ns PV () = B e-0.09 when  > 0.5 ns
  • 15. doc.: IEEE 802.15-06-0191-00-003c Submission March 2006 S. Emami Slide 15 Figure 4: Metrics versus path density for the lib/lab environment 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.005 0.01 0.015 MSE according to PDP  (/ns) 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 MSE according to RDS  (/ns) C = 0.05 C = 0.08 C = 0.09 C = 0.10 C = 0.15 C = 0.20 C = 0.05 C = 0.08 C = 0.09 C = 0.10 C = 0.15 C = 0.20 Lib/lab environment maximum delay = 200 ns PV () = 0.3 when  < 0.5 ns PV () = 0.01 e-C when  > 0.5 ns
  • 16. doc.: IEEE 802.15-06-0191-00-003c Submission March 2006 S. Emami Slide 16 Table II: Multipath model parameters for the three different environments Parameters Office Lib/lab Private home path density  (1/ns) 0.50 0.10 0.30 maximum delay max  (ns) 100 200 50 break point b  (ns) 0.4 0.5 0.9 constant A 0.3 0.3 0.6 multiplier B 0.01 0.01 0.1 exponent C 0.12 0.095 0.25
  • 17. doc.: IEEE 802.15-06-0191-00-003c Submission March 2006 S. Emami Slide 17 Figure 5: Average of Normalized PDPs (office environment)
  • 18. doc.: IEEE 802.15-06-0191-00-003c Submission March 2006 S. Emami Slide 18 Figure 6: Cumulative distribution of delay spread (office environment)
  • 19. doc.: IEEE 802.15-06-0191-00-003c Submission March 2006 S. Emami Slide 19 Figure 7: Average of Normalized PDPs (lib/lab environment) 0 5 10 15 20 25 30 -30 -25 -20 -15 -10 -5 delay in ns mean path loss in dB measurement stochastic model
  • 20. doc.: IEEE 802.15-06-0191-00-003c Submission March 2006 S. Emami Slide 20 Figure 8: Cumulative distribution of delay spread (lib/lab environment) 0 5 10 15 20 25 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 delay in ns cumulative probability measurement stochastic model
  • 21. doc.: IEEE 802.15-06-0191-00-003c Submission March 2006 S. Emami Slide 21 Figure 9: Average of Normalized PDPs (private house) 0 5 10 15 20 25 30 -40 -35 -30 -25 -20 -15 -10 -5 delay in ns mean path loss in dB measurements stochastic model
  • 22. doc.: IEEE 802.15-06-0191-00-003c Submission March 2006 S. Emami Slide 22 Figure 10: Cumulative distribution of delay spread (private house) 0 1 2 3 4 5 6 7 8 9 10 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 delay in ns cumulative probability measurements stochastic model

Editor's Notes