SlideShare a Scribd company logo
Tuning PID Controller
Institute of Industrial Control,
Zhejiang University, Hangzhou, P. R. China
2013/03/27
Single-loop PID Control System
ysp u(t)
+
_
ym(t)
+
+ y(t)
MV
DVs
Disturbance
Path
Sensor &
Transmitter
Final Control
Element
Control
Path
PID
Controller
Extended
Controlled Process
(广义对象)
Problem: For an unknown extended controlled process,
how to design and tune our PID controller ?
Proportional-Integral-Derivative
(PID) Controller
0
0
1 ( )
( ) ( ( ) ( ) ) ,
t
c d
i
de t
u t K e t e d T u
T dt
 
   

1
( ) (1 )
c c d
i
G s K T s
T s
   Td is the derivative time.
 Ideal PID Controller
 Industrial PID Controller (design and realization ?)
1 1
( ) 1
1
d
c c
d i
d
T s
G s K
T T s
s
A
 
 
 

 
 
 
 

 
 
The derivative
gain Ad = 10.
Problem Discussion
 Explain the function of PID controller for a
stable controlled process.
 Analyze the effect of PID parameter
changes on control performances
 How can we realize the industrial PID
controller in Simulink ?
 PID tuning example (See ../PIDControl
/PIDLoop.mdl )
Contents
 Selection of PID Controller Types (PID控制
器类型选择)
 Tuning of PID Controller Parameters (控制
器参数整定)
 Flow Control (流量控制)
 Level Control (液位控制)
 Reset Windup and Its Prevention (积分饱和
与防止)
 Summary
Type Selection of PID Controllers
*1: For some slow
processes with long time
constants, the derivative
action is suggested to use.
However, if there exists
strong measurement noises,
a first-order or average filter
should be added.
Please analyze the rule
of type selection ?
Controlled
Variable
Controller
Type
Temperature /
Composition
PID*1
Flow /
Pressure
/Liquid-Level
PI
Liquid-Level P
PID Tuning Concept
Process
Characteristics
Controller
Kc or PB,
Ti ,
Td
Offline Tuning Based on
Process Parameters: K, T,τ
 Step 1: switch the controller to manual mode,
change the output of controller in step form,
and record input/output data of controller.
 Step 2: obtain process characteristics: K, T,τ,
from the step response data.
 Step 3: set the PID parameters Kc, Ti , Td, and
switch the controller to automatic mode.
 Step 4: increase or decrease the gain Kc until
obtaining the satisfactory response.
0 10 20 30 40 50 60 70 80 90 100
54
56
58
60
62
%
Controller Output
0 10 20 30 40 50 60 70 80 90 100
66
68
70
72
74
76
78
80
%
Transmitter Output
Simulation of Offline Tuning
step 1: Step Testing
See ../PIDControl/PIDLoop.mdl
Process
Fluid
Fuel Oil
T(t)
u(t)
y(t) %, TO
%, CO ysp(t)
Ti (t)
TC
27
TT
27
Furnace
0 10 20 30 40 50 60 70 80 90 100
66
68
70
72
74
76
78
80
%
min
Transmitter Output
Step 2: Obtain Process Para.
T
t O 
 
632
.
0

 
O
O t
t
T 
 

 283
.
0
632
.
0
5
.
1
,%
,%
final initial
final initial
TO TO
TO
K
CO CO CO


 
 
Step 3: Obtain Initial PID Para.
(Ziegler-Nichols Method)
Controller Kc Ti Td
P
PI
PID
1 T
K 
   

   
   
0.9 T
K 
   

   
   
1.2 T
K 
   

   
   
3.33
2.0 0.5
Note: the above method was developed for 0 T

 
Initial Value
Step 3: Obtain Initial PID Para.
(Lambda Tuning Method)
Controller Kc Ti Td
P
PI T
PID T τ/2
1 T
K  
   

   

   
Note: the above method is not limited by the value of /T

1 T
K  
   

   

   
1 T
K  
   

   

   
0
 
 

0.2
 

0 50 100 150
59
59.5
60
60.5
61
61.5
62
62.5
63
Time, min
%
Output of Transmitter
Ziegler-Nichols method
Lambda tuning method
set point
Simulation Example #1
K = 1.75
T = 6.5,τ= 3.3 min
For PI Controller,
Z-N tuning: Kc = 1.0,
Ti = 11 min
Lambda tuning: Kc =
0.56, Ti = 6.5 min
0 50 100 150 200
59
59.5
60
60.5
61
61.5
62
62.5
63
Time, min
%
Output of Transmitter
Z-N tuning
Lambda tuning
set point
Simulation Example #2
K = 1.75
T = 6.5,τ= 6.3 min
For PI Controller,
Z-N tuning: Kc =
0.53, Ti = 20.8 min
Lambda tuning: Kc =
0.30, Ti = 6.5 min
Procedure of Online Tuning:
Ziegler-Nichols Technique
 Step 1: with the controller online (in
automatic mode), remove all the reset (Ti =
maximum) and derivative (Td = 0) modes.
Start with a small Kc value.
 Step 2: make a small set point or load
change and observe the response of CV.
 Step 3: if the response is not continuously
oscillatory, increase Kc, or decrease PB,
repeat step 2.
 Step 4: Repeat step 3 until a continuous
oscillatory response is obtained.
0 10 20 30 40 50
58
59
60
61
62
63
64
65
66
Time, min
%
Output of Transmitter
set point
Kc = 0.5
Kc = 1
Kc = 2
Kc = 4
Kc = 3.5
Tu
Ti = 6000 min, Td = 0 min
Example of Online Tuning
See ../PIDControl/PIDLoop.mdl
Process
Fluid
Fuel Oil
T(t)
u(t)
y(t) %, TO
%, CO ysp(t)
Ti (t)
TC
27
TT
27
Furnace
Online Tuning:
Ziegler-Nichols Technique
Controller Kc Ti Td
P 0.5Kcu
PI 0.45Kcu Tu /1.2
PID 0.65Kcu Tu /2 Tu /8
The gain that gives these continuous oscillations is the ultimate
gain (临界增益), Kcu. The period of the oscillations is called
the ultimate period (临界周期), Tu. the ultimate gain and the
ultimate period are the characteristics of the process being
tuned. The following formulas are then applied:
0 20 40 60 80 100
59
60
61
62
63
%
Output of Transmitter
0 20 40 60 80 100
40
60
80
100
Time, min
% Output of Controller
set point
Inlet temp. drops 5 Cent.
Kcu = 3.4, Tu = 11 min
PID: Kc = 2.2, Ti = 5.5 min, Td = 1.4 min
Online Tuning Result
See ../PIDControl/PIDLoop.mdl
Process
Fluid
Fuel Oil
T(t)
u(t)
y(t) %, TO
%, CO ysp(t)
Ti (t)
TC
27
TT
27
Furnace
0 10 20 30 40 50
58
59
60
61
62
63
64
65
66
Time, min
%
Output of Transmitter
set point
Kc = 0.5
Kc = 1
Kc = 2
Kc = 4
Kc = 3.5
Tu
Ti = 6000 min, Td = 0 min
Limitation of Online Tuning
Process
Fluid
Fuel Oil
T(t)
u(t)
y(t) %, TO
%, CO ysp(t)
Ti (t)
TC
27
TT
27
Furnace
Auto-tuning Based on Relay
Feedback (基于继电反馈的参数自整定)
PID
Auto
Tune
u
ysp
Controlled
Process
+ _
ym
e(t)
Relay
(+)
Here we suppose the process gain > 0
Relay Feedback Example
)
1
2
)(
1
5
(
)
2
exp(
0
.
2
)
(
)
(




s
s
s
s
U
s
Ym
The controlled process can
be described as
The amplitude of relay
controller is d = ±2.0
PID
Auto
Tune
u
ysp
Controlled
Process
+ _
ym
e(t)
Relay
(+)
Response of Relay Feedback
Oscillation period
TU & amplitude AY
(振荡周期与幅
度)?
0 5 10 15 20 25 30 35 40 45 50
58.5
59
59.5
60
60.5
61
61.5
Ym
0 5 10 15 20 25 30 35 40 45 50
47
48
49
50
51
52
53
U
min
See the detailed results:
../ PIDLoopAutoTuning.mdl
The Ultimate Gain (临界增益)
Kcu Calculation

/
4d
a 
Y
CU A
d
K

4

0 5 10 15 20 25 30 35 40 45 50
47
48
49
50
51
52
53
U
min
经FT变换可知,控制输出的一次谐波幅度为
而对应的控制器临界增益为

/
4d
Online Z-N Tuning Parameters
Controller Kc Ti Td
P 0.5Kcu
PI 0.45Kcu Tu /1.2
PID 0.65Kcu Tu /2 Tu /8
If we use a PID controller, then we select the
following parameters ……
Closed-loop Response of PID
Feedback System
0 20 40 60 80 100 120 140
60
65
70
75
Ym
0 20 40 60 80 100 120 140
40
60
80
100
U
min
Above auto-
tuning method
can be applied
to other
controlled
processes ?
Characteristics of Flow Loops
 Fast dynamic response
 Zero dead time, which results in an infinite
controller gain in every tuning equation
 Large measurement noise
 To decrease the change of control valve, a PI
controller is common used with very small
proportional action and a large integral action
to approximate an integral controller. (Why?)
0 20 40 60 80 100
45
50
55
60
65
%
Output of Transmitter
0 20 40 60 80 100
0
20
40
60
Time, min
%
Output of Controller
Kc = 4, Ti =2 min
Kc = 1, Ti = 0.5 min
Tuning Example of Flow Loops
u(t)
y(t)
% CO
% TO
ysp(t)
F(t)
FC
See ../PIDControl/FlowLoop.mdl
Please compare the proportional
gain with the integral gain
C201
FIC 102
C301
Product
LT
201
LC
201
LT
301
LC
301
FC 201 FC 302
Examples of Level Loops
Characteristics of Level Loops
 Very often levels are integrating
processes
 There are two types of possible control
objectives when the input flow varies:
(1) Tight Level Control;
(2) Average Level Control
(“液位均匀控制”)
Tight Level Control
 The objective is to control the level tightly at
set point, and the output flow can be allowed
to vary without limitation
 If a level process happens to be self-regulated,
and it is possible to obtain K, T andτ, the
above tuning techniques can be used directly
 If a level process is integrating, a PI controller
is common used with large proportional action
and a very small integral action
Average Level Control
 The objective is to smooth the output flow
from the tank, which feeds the downstream
unit, the level in the tank must be allowed to
“float” between a high and a low level
 A P controller is common used in Average Level
Control with a small proportional gain
 Tuning: the gain should be set to be as small
as possible, as long as the level changes
between a high and a low level for the
expected flow deviation from the average flow.
Example of Level Control
See ../PIDControl/
LevelLoop.mdl
u(t) % CO
% TO
h(t)
Fi(t)
Fo(t)
A
ysp
y(t)
LC
41
LT
41
Analysis of Average Level
Control Systems
Dynamic equation of the controlled
process:
where A is the area of the tank.
Suppose
LC
u(t)
y(t)
% CO
% TO
ysp(t)
h(t)
Fi(t)
Fo(t)
A
)
(
)
(
)
(
0 t
F
t
F
dt
t
dh
A i 

)
(
)
(
0 t
u
K
t
F V

,
)
(
)
(
max
h
t
h
t
y 
Analysis of Average Level
Control Systems (cont.)
For a proportional
controller, Gc = -Kc,
+
-
+
Gc
Fi (s)
-
Fo (s) h(s)
ysp
KV
u(s)
s
A
1
max
1
h
y(s)
1
1
1
)
(
)
(
max
max
max




s
K
K
Ah
s
Ah
K
K
s
Ah
K
K
s
F
s
F
V
C
V
C
V
C
i
o
1
1
1
1
1
)
(
)
(
max
max
max





s
K
K
Ah
K
K
s
Ah
K
K
s
Ah
s
F
s
y
V
C
V
C
V
C
i
Please analyze the
above models.
Ysp
Ym
Y
Uman
SW1
e u
PID Man/Auto
0.2
Kv
10
KT
1
10s
Gp
Fo
Fi
DU
Examples of Average Level
Control Systems
Please see ../PIDControl/ AverageLevelLoop.mdl
Simulation Results of
P-type Average Level Control
0 10 20 30 40 50 60 70 80 90 100
9
9.5
10
10.5
11
m3/hr
Fin, Fout
0 10 20 30 40 50 60 70 80 90 100
46
48
50
52
54
time, min
%
Ysp, Ym Kc = -0.5
Fin
Kc = -2.0
Reset Windup Problem
Please see the following simulation example
…/PIDControl/PidLoopwithLimit.mdl
+
-
+
+
d(t)
Controlled
Process ym(t)
ysp(t) e(t) uc
1
1
C
I
K
T s
 

 
 
up
Simulation Result with Reset
Windup in a Single-Loop System
Discussion:
Which difference
exists between
reset windup and
the open or
closed status of
the control valve
completely ?
The Principle of Preventing
Reset Windup
Principle: remove the reset or
integral action if the control
output is beyond the normal
operation range.
+
-
+
+
d(t)
A Controlled
Process ym(t)
ysp(t)
KC
+
+
1
1

s
TI
e(t) uc up










max
max
max
min
min
min
)
(
,
)
(
),
(
)
(
,
)
(
u
t
u
if
u
u
t
u
u
if
t
u
u
t
u
if
u
t
u
c
c
c
c
p
0 20 40 60 80 100 120 140 160 180 200
55
60
65
70
75
%
Ysp, Ym
0 20 40 60 80 100 120 140 160 180 200
0
50
100
150
%
time, min
Uc, Up
Anti-reset Windup Example
Industrial PID Controller
+
-
+
+
d(t)
A Controlled
Process ym(t)
ysp(t)
+
+
1
1

s
TI
1
1


s
A
T
s
T
K
D
D
D
C
PID Controller
e(t) uc up
KC
+
-
ysp(t)
+
+
1
1

s
TI
Derivative Action First
PID Controller
1
1


s
A
T
s
T
D
D
D
e(t) uc up +
+
d(t)
A Controlled
Process ym(t)
PID1
PID2
Summary
 Selection of PID Controller Types
 Tuning of PID Controller Parameters
 Tuning of PID Controller for Flow Loops
 Tight / Average Level Control
 Reset Windup and Its Prevention
Problem Discussion
 For an unknown stable temperature control system,
can you determine PID parameters in Offline and
Online tuning methods ?
 Please realize the industrial PID controller in
Simulink ?
 For the fast flow control loop, show me your tuning
principle and explain why.
 For the AVERAGE level control loop, show me your
tuning principle and explain why.
 Explain the existing reason of reset windup and
show me your prevention schemes
Exercise 3.1
A controlled process is shown in the Problem 2-1 (p.34) in
Automated Continuous Process Control.
(1) calculate its characteristics parameters K, T and τ;
(2) decide on the action of the valve and the controller;
(3) tune your PID controller.
Exercise 3.2

/
4d
a 
0 5 10 15 20 25 30 35 40 45 50
47
48
49
50
51
52
53
U
min
假设Relay(继电器法)镇定PID参数时,控制器输出如上图所
示,信号周期为Tu, 振幅为d=2。证明经傅立叶变换,控制输
出的一次谐波幅度为 
/
4d

More Related Content

PPTX
Control valve ppt
PDF
Bode Plots
PPTX
PID Controller
PDF
Dcs lec03 - z-analysis of discrete time control systems
PPTX
On off controller
PDF
Bode plot
PPTX
Tuning of pid controller
PPTX
VFD Basics.pptx
Control valve ppt
Bode Plots
PID Controller
Dcs lec03 - z-analysis of discrete time control systems
On off controller
Bode plot
Tuning of pid controller
VFD Basics.pptx

What's hot (20)

PDF
Basics instrumentation and control
PDF
Types of Controllers PID PD I PD
PPT
Chapter 8 Root Locus Techniques
PPT
Field transmitters
PPT
Process control
PPTX
Piping and instrumentation diagram (p&id)
PPT
Control actions
PDF
Class a amplifier
PPT
Pressure measurement
PPTX
Block Diagram For Control Systems.
PPTX
Control Systems Basics
PPTX
basic of open and closed loop control system
PPTX
Pressure measurement
PDF
Ziegler Nichols Method for PID Controller Tuning
PPT
Distributed Control System
PPT
digital control Chapter1 slide
PPTX
Proportional integral and derivative PID controller
PPTX
Chapter 1 basic components of control system
PPSX
Instrumentation measurement principles
Basics instrumentation and control
Types of Controllers PID PD I PD
Chapter 8 Root Locus Techniques
Field transmitters
Process control
Piping and instrumentation diagram (p&id)
Control actions
Class a amplifier
Pressure measurement
Block Diagram For Control Systems.
Control Systems Basics
basic of open and closed loop control system
Pressure measurement
Ziegler Nichols Method for PID Controller Tuning
Distributed Control System
digital control Chapter1 slide
Proportional integral and derivative PID controller
Chapter 1 basic components of control system
Instrumentation measurement principles
Ad

Similar to 1577320.ppt (20)

PPT
Pid controller by Mitesh Kumar
PPTX
PID control and Tuning for automation.pptx
PDF
Screenshot 2021-02-23 at 2.46.02 PM.pdf
PPTX
Design of PID CONTROLLER FOR ENGINEERING
PDF
pid controller
PDF
Paper id 21201482
PDF
Optimised control using Proportional-Integral-Derivative controller tuned usi...
PDF
6_P-I-D_Controller.pdf
PDF
6_P-I-D_Controller.pdf
PPTX
Controller tuning.pptx
PPTX
Week 14 pid may 24 2016 pe 3032
PPTX
Introduction to Process Control and PID controllers.pptx
PDF
Tuning for PID Controllers.pdf
PPT
Lecture2_3.ppt rosetta stone advanced login
PDF
Shams i ecr-with-cover-page-v2
PDF
PIDtutorial.pdf
PPTX
Chapter3 control system characteristics solution.pptx
PPTX
lecture_1_intrduction to mechatronics.pptx
PPTX
Tuning of pid
Pid controller by Mitesh Kumar
PID control and Tuning for automation.pptx
Screenshot 2021-02-23 at 2.46.02 PM.pdf
Design of PID CONTROLLER FOR ENGINEERING
pid controller
Paper id 21201482
Optimised control using Proportional-Integral-Derivative controller tuned usi...
6_P-I-D_Controller.pdf
6_P-I-D_Controller.pdf
Controller tuning.pptx
Week 14 pid may 24 2016 pe 3032
Introduction to Process Control and PID controllers.pptx
Tuning for PID Controllers.pdf
Lecture2_3.ppt rosetta stone advanced login
Shams i ecr-with-cover-page-v2
PIDtutorial.pdf
Chapter3 control system characteristics solution.pptx
lecture_1_intrduction to mechatronics.pptx
Tuning of pid
Ad

More from MuhammadMubeen58 (12)

PPT
3603939.ppt
PPT
3330716.ppt
PPT
2760114.ppt
PPT
2706264.ppt
PPT
1619494.ppt
PPT
1578385.ppt
PPT
1496818.ppt
PPT
1474058.ppt
PPT
1413570.ppt
PPT
223296.ppt
PPT
14446351.ppt
PPT
4470838.ppt
3603939.ppt
3330716.ppt
2760114.ppt
2706264.ppt
1619494.ppt
1578385.ppt
1496818.ppt
1474058.ppt
1413570.ppt
223296.ppt
14446351.ppt
4470838.ppt

Recently uploaded (20)

PDF
EXPLORING LEARNING ENGAGEMENT FACTORS INFLUENCING BEHAVIORAL, COGNITIVE, AND ...
PDF
Automation-in-Manufacturing-Chapter-Introduction.pdf
PPTX
Nature of X-rays, X- Ray Equipment, Fluoroscopy
PDF
Level 2 – IBM Data and AI Fundamentals (1)_v1.1.PDF
PPTX
Safety Seminar civil to be ensured for safe working.
PDF
SMART SIGNAL TIMING FOR URBAN INTERSECTIONS USING REAL-TIME VEHICLE DETECTI...
PDF
PREDICTION OF DIABETES FROM ELECTRONIC HEALTH RECORDS
PDF
Human-AI Collaboration: Balancing Agentic AI and Autonomy in Hybrid Systems
PDF
Categorization of Factors Affecting Classification Algorithms Selection
PDF
Exploratory_Data_Analysis_Fundamentals.pdf
PDF
Abrasive, erosive and cavitation wear.pdf
PPTX
Current and future trends in Computer Vision.pptx
PDF
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
PDF
Visual Aids for Exploratory Data Analysis.pdf
PPTX
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
PDF
COURSE DESCRIPTOR OF SURVEYING R24 SYLLABUS
PPT
Total quality management ppt for engineering students
PDF
Unit I ESSENTIAL OF DIGITAL MARKETING.pdf
PPT
introduction to datamining and warehousing
PDF
Soil Improvement Techniques Note - Rabbi
EXPLORING LEARNING ENGAGEMENT FACTORS INFLUENCING BEHAVIORAL, COGNITIVE, AND ...
Automation-in-Manufacturing-Chapter-Introduction.pdf
Nature of X-rays, X- Ray Equipment, Fluoroscopy
Level 2 – IBM Data and AI Fundamentals (1)_v1.1.PDF
Safety Seminar civil to be ensured for safe working.
SMART SIGNAL TIMING FOR URBAN INTERSECTIONS USING REAL-TIME VEHICLE DETECTI...
PREDICTION OF DIABETES FROM ELECTRONIC HEALTH RECORDS
Human-AI Collaboration: Balancing Agentic AI and Autonomy in Hybrid Systems
Categorization of Factors Affecting Classification Algorithms Selection
Exploratory_Data_Analysis_Fundamentals.pdf
Abrasive, erosive and cavitation wear.pdf
Current and future trends in Computer Vision.pptx
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
Visual Aids for Exploratory Data Analysis.pdf
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
COURSE DESCRIPTOR OF SURVEYING R24 SYLLABUS
Total quality management ppt for engineering students
Unit I ESSENTIAL OF DIGITAL MARKETING.pdf
introduction to datamining and warehousing
Soil Improvement Techniques Note - Rabbi

1577320.ppt

  • 1. Tuning PID Controller Institute of Industrial Control, Zhejiang University, Hangzhou, P. R. China 2013/03/27
  • 2. Single-loop PID Control System ysp u(t) + _ ym(t) + + y(t) MV DVs Disturbance Path Sensor & Transmitter Final Control Element Control Path PID Controller Extended Controlled Process (广义对象) Problem: For an unknown extended controlled process, how to design and tune our PID controller ?
  • 3. Proportional-Integral-Derivative (PID) Controller 0 0 1 ( ) ( ) ( ( ) ( ) ) , t c d i de t u t K e t e d T u T dt        1 ( ) (1 ) c c d i G s K T s T s    Td is the derivative time.  Ideal PID Controller  Industrial PID Controller (design and realization ?) 1 1 ( ) 1 1 d c c d i d T s G s K T T s s A                     The derivative gain Ad = 10.
  • 4. Problem Discussion  Explain the function of PID controller for a stable controlled process.  Analyze the effect of PID parameter changes on control performances  How can we realize the industrial PID controller in Simulink ?  PID tuning example (See ../PIDControl /PIDLoop.mdl )
  • 5. Contents  Selection of PID Controller Types (PID控制 器类型选择)  Tuning of PID Controller Parameters (控制 器参数整定)  Flow Control (流量控制)  Level Control (液位控制)  Reset Windup and Its Prevention (积分饱和 与防止)  Summary
  • 6. Type Selection of PID Controllers *1: For some slow processes with long time constants, the derivative action is suggested to use. However, if there exists strong measurement noises, a first-order or average filter should be added. Please analyze the rule of type selection ? Controlled Variable Controller Type Temperature / Composition PID*1 Flow / Pressure /Liquid-Level PI Liquid-Level P
  • 8. Offline Tuning Based on Process Parameters: K, T,τ  Step 1: switch the controller to manual mode, change the output of controller in step form, and record input/output data of controller.  Step 2: obtain process characteristics: K, T,τ, from the step response data.  Step 3: set the PID parameters Kc, Ti , Td, and switch the controller to automatic mode.  Step 4: increase or decrease the gain Kc until obtaining the satisfactory response.
  • 9. 0 10 20 30 40 50 60 70 80 90 100 54 56 58 60 62 % Controller Output 0 10 20 30 40 50 60 70 80 90 100 66 68 70 72 74 76 78 80 % Transmitter Output Simulation of Offline Tuning step 1: Step Testing See ../PIDControl/PIDLoop.mdl Process Fluid Fuel Oil T(t) u(t) y(t) %, TO %, CO ysp(t) Ti (t) TC 27 TT 27 Furnace
  • 10. 0 10 20 30 40 50 60 70 80 90 100 66 68 70 72 74 76 78 80 % min Transmitter Output Step 2: Obtain Process Para. T t O    632 . 0    O O t t T      283 . 0 632 . 0 5 . 1 ,% ,% final initial final initial TO TO TO K CO CO CO      
  • 11. Step 3: Obtain Initial PID Para. (Ziegler-Nichols Method) Controller Kc Ti Td P PI PID 1 T K               0.9 T K               1.2 T K               3.33 2.0 0.5 Note: the above method was developed for 0 T   
  • 12. Initial Value Step 3: Obtain Initial PID Para. (Lambda Tuning Method) Controller Kc Ti Td P PI T PID T τ/2 1 T K                 Note: the above method is not limited by the value of /T  1 T K                 1 T K                 0      0.2   
  • 13. 0 50 100 150 59 59.5 60 60.5 61 61.5 62 62.5 63 Time, min % Output of Transmitter Ziegler-Nichols method Lambda tuning method set point Simulation Example #1 K = 1.75 T = 6.5,τ= 3.3 min For PI Controller, Z-N tuning: Kc = 1.0, Ti = 11 min Lambda tuning: Kc = 0.56, Ti = 6.5 min
  • 14. 0 50 100 150 200 59 59.5 60 60.5 61 61.5 62 62.5 63 Time, min % Output of Transmitter Z-N tuning Lambda tuning set point Simulation Example #2 K = 1.75 T = 6.5,τ= 6.3 min For PI Controller, Z-N tuning: Kc = 0.53, Ti = 20.8 min Lambda tuning: Kc = 0.30, Ti = 6.5 min
  • 15. Procedure of Online Tuning: Ziegler-Nichols Technique  Step 1: with the controller online (in automatic mode), remove all the reset (Ti = maximum) and derivative (Td = 0) modes. Start with a small Kc value.  Step 2: make a small set point or load change and observe the response of CV.  Step 3: if the response is not continuously oscillatory, increase Kc, or decrease PB, repeat step 2.  Step 4: Repeat step 3 until a continuous oscillatory response is obtained.
  • 16. 0 10 20 30 40 50 58 59 60 61 62 63 64 65 66 Time, min % Output of Transmitter set point Kc = 0.5 Kc = 1 Kc = 2 Kc = 4 Kc = 3.5 Tu Ti = 6000 min, Td = 0 min Example of Online Tuning See ../PIDControl/PIDLoop.mdl Process Fluid Fuel Oil T(t) u(t) y(t) %, TO %, CO ysp(t) Ti (t) TC 27 TT 27 Furnace
  • 17. Online Tuning: Ziegler-Nichols Technique Controller Kc Ti Td P 0.5Kcu PI 0.45Kcu Tu /1.2 PID 0.65Kcu Tu /2 Tu /8 The gain that gives these continuous oscillations is the ultimate gain (临界增益), Kcu. The period of the oscillations is called the ultimate period (临界周期), Tu. the ultimate gain and the ultimate period are the characteristics of the process being tuned. The following formulas are then applied:
  • 18. 0 20 40 60 80 100 59 60 61 62 63 % Output of Transmitter 0 20 40 60 80 100 40 60 80 100 Time, min % Output of Controller set point Inlet temp. drops 5 Cent. Kcu = 3.4, Tu = 11 min PID: Kc = 2.2, Ti = 5.5 min, Td = 1.4 min Online Tuning Result See ../PIDControl/PIDLoop.mdl Process Fluid Fuel Oil T(t) u(t) y(t) %, TO %, CO ysp(t) Ti (t) TC 27 TT 27 Furnace
  • 19. 0 10 20 30 40 50 58 59 60 61 62 63 64 65 66 Time, min % Output of Transmitter set point Kc = 0.5 Kc = 1 Kc = 2 Kc = 4 Kc = 3.5 Tu Ti = 6000 min, Td = 0 min Limitation of Online Tuning Process Fluid Fuel Oil T(t) u(t) y(t) %, TO %, CO ysp(t) Ti (t) TC 27 TT 27 Furnace
  • 20. Auto-tuning Based on Relay Feedback (基于继电反馈的参数自整定) PID Auto Tune u ysp Controlled Process + _ ym e(t) Relay (+) Here we suppose the process gain > 0
  • 21. Relay Feedback Example ) 1 2 )( 1 5 ( ) 2 exp( 0 . 2 ) ( ) (     s s s s U s Ym The controlled process can be described as The amplitude of relay controller is d = ±2.0 PID Auto Tune u ysp Controlled Process + _ ym e(t) Relay (+)
  • 22. Response of Relay Feedback Oscillation period TU & amplitude AY (振荡周期与幅 度)? 0 5 10 15 20 25 30 35 40 45 50 58.5 59 59.5 60 60.5 61 61.5 Ym 0 5 10 15 20 25 30 35 40 45 50 47 48 49 50 51 52 53 U min See the detailed results: ../ PIDLoopAutoTuning.mdl
  • 23. The Ultimate Gain (临界增益) Kcu Calculation  / 4d a  Y CU A d K  4  0 5 10 15 20 25 30 35 40 45 50 47 48 49 50 51 52 53 U min 经FT变换可知,控制输出的一次谐波幅度为 而对应的控制器临界增益为  / 4d
  • 24. Online Z-N Tuning Parameters Controller Kc Ti Td P 0.5Kcu PI 0.45Kcu Tu /1.2 PID 0.65Kcu Tu /2 Tu /8 If we use a PID controller, then we select the following parameters ……
  • 25. Closed-loop Response of PID Feedback System 0 20 40 60 80 100 120 140 60 65 70 75 Ym 0 20 40 60 80 100 120 140 40 60 80 100 U min Above auto- tuning method can be applied to other controlled processes ?
  • 26. Characteristics of Flow Loops  Fast dynamic response  Zero dead time, which results in an infinite controller gain in every tuning equation  Large measurement noise  To decrease the change of control valve, a PI controller is common used with very small proportional action and a large integral action to approximate an integral controller. (Why?)
  • 27. 0 20 40 60 80 100 45 50 55 60 65 % Output of Transmitter 0 20 40 60 80 100 0 20 40 60 Time, min % Output of Controller Kc = 4, Ti =2 min Kc = 1, Ti = 0.5 min Tuning Example of Flow Loops u(t) y(t) % CO % TO ysp(t) F(t) FC See ../PIDControl/FlowLoop.mdl Please compare the proportional gain with the integral gain
  • 29. Characteristics of Level Loops  Very often levels are integrating processes  There are two types of possible control objectives when the input flow varies: (1) Tight Level Control; (2) Average Level Control (“液位均匀控制”)
  • 30. Tight Level Control  The objective is to control the level tightly at set point, and the output flow can be allowed to vary without limitation  If a level process happens to be self-regulated, and it is possible to obtain K, T andτ, the above tuning techniques can be used directly  If a level process is integrating, a PI controller is common used with large proportional action and a very small integral action
  • 31. Average Level Control  The objective is to smooth the output flow from the tank, which feeds the downstream unit, the level in the tank must be allowed to “float” between a high and a low level  A P controller is common used in Average Level Control with a small proportional gain  Tuning: the gain should be set to be as small as possible, as long as the level changes between a high and a low level for the expected flow deviation from the average flow.
  • 32. Example of Level Control See ../PIDControl/ LevelLoop.mdl u(t) % CO % TO h(t) Fi(t) Fo(t) A ysp y(t) LC 41 LT 41
  • 33. Analysis of Average Level Control Systems Dynamic equation of the controlled process: where A is the area of the tank. Suppose LC u(t) y(t) % CO % TO ysp(t) h(t) Fi(t) Fo(t) A ) ( ) ( ) ( 0 t F t F dt t dh A i   ) ( ) ( 0 t u K t F V  , ) ( ) ( max h t h t y 
  • 34. Analysis of Average Level Control Systems (cont.) For a proportional controller, Gc = -Kc, + - + Gc Fi (s) - Fo (s) h(s) ysp KV u(s) s A 1 max 1 h y(s) 1 1 1 ) ( ) ( max max max     s K K Ah s Ah K K s Ah K K s F s F V C V C V C i o 1 1 1 1 1 ) ( ) ( max max max      s K K Ah K K s Ah K K s Ah s F s y V C V C V C i Please analyze the above models.
  • 35. Ysp Ym Y Uman SW1 e u PID Man/Auto 0.2 Kv 10 KT 1 10s Gp Fo Fi DU Examples of Average Level Control Systems Please see ../PIDControl/ AverageLevelLoop.mdl
  • 36. Simulation Results of P-type Average Level Control 0 10 20 30 40 50 60 70 80 90 100 9 9.5 10 10.5 11 m3/hr Fin, Fout 0 10 20 30 40 50 60 70 80 90 100 46 48 50 52 54 time, min % Ysp, Ym Kc = -0.5 Fin Kc = -2.0
  • 37. Reset Windup Problem Please see the following simulation example …/PIDControl/PidLoopwithLimit.mdl + - + + d(t) Controlled Process ym(t) ysp(t) e(t) uc 1 1 C I K T s        up
  • 38. Simulation Result with Reset Windup in a Single-Loop System Discussion: Which difference exists between reset windup and the open or closed status of the control valve completely ?
  • 39. The Principle of Preventing Reset Windup Principle: remove the reset or integral action if the control output is beyond the normal operation range. + - + + d(t) A Controlled Process ym(t) ysp(t) KC + + 1 1  s TI e(t) uc up           max max max min min min ) ( , ) ( ), ( ) ( , ) ( u t u if u u t u u if t u u t u if u t u c c c c p
  • 40. 0 20 40 60 80 100 120 140 160 180 200 55 60 65 70 75 % Ysp, Ym 0 20 40 60 80 100 120 140 160 180 200 0 50 100 150 % time, min Uc, Up Anti-reset Windup Example
  • 41. Industrial PID Controller + - + + d(t) A Controlled Process ym(t) ysp(t) + + 1 1  s TI 1 1   s A T s T K D D D C PID Controller e(t) uc up KC + - ysp(t) + + 1 1  s TI Derivative Action First PID Controller 1 1   s A T s T D D D e(t) uc up + + d(t) A Controlled Process ym(t) PID1 PID2
  • 42. Summary  Selection of PID Controller Types  Tuning of PID Controller Parameters  Tuning of PID Controller for Flow Loops  Tight / Average Level Control  Reset Windup and Its Prevention
  • 43. Problem Discussion  For an unknown stable temperature control system, can you determine PID parameters in Offline and Online tuning methods ?  Please realize the industrial PID controller in Simulink ?  For the fast flow control loop, show me your tuning principle and explain why.  For the AVERAGE level control loop, show me your tuning principle and explain why.  Explain the existing reason of reset windup and show me your prevention schemes
  • 44. Exercise 3.1 A controlled process is shown in the Problem 2-1 (p.34) in Automated Continuous Process Control. (1) calculate its characteristics parameters K, T and τ; (2) decide on the action of the valve and the controller; (3) tune your PID controller.
  • 45. Exercise 3.2  / 4d a  0 5 10 15 20 25 30 35 40 45 50 47 48 49 50 51 52 53 U min 假设Relay(继电器法)镇定PID参数时,控制器输出如上图所 示,信号周期为Tu, 振幅为d=2。证明经傅立叶变换,控制输 出的一次谐波幅度为  / 4d