SlideShare a Scribd company logo
PEDAGOGY OF
MATHEMATICS – PART II
By
Dr. I. Uma Maheswari
Principal
Peniel Rural College of Education,Vemparali, Dindigul District
iuma_maheswari@yahoo.co.in
STD IX
CHAPTER 1 – SET LANGUAGE
Ex - 1.5
1e. Pedagogy of Mathematics (Part II) - Set language introduction and Ex.1.5
1e. Pedagogy of Mathematics (Part II) - Set language introduction and Ex.1.5
1e. Pedagogy of Mathematics (Part II) - Set language introduction and Ex.1.5
1e. Pedagogy of Mathematics (Part II) - Set language introduction and Ex.1.5
1e. Pedagogy of Mathematics (Part II) - Set language introduction and Ex.1.5
1e. Pedagogy of Mathematics (Part II) - Set language introduction and Ex.1.5
1e. Pedagogy of Mathematics (Part II) - Set language introduction and Ex.1.5
1e. Pedagogy of Mathematics (Part II) - Set language introduction and Ex.1.5
1e. Pedagogy of Mathematics (Part II) - Set language introduction and Ex.1.5
1e. Pedagogy of Mathematics (Part II) - Set language introduction and Ex.1.5
1e. Pedagogy of Mathematics (Part II) - Set language introduction and Ex.1.5
1e. Pedagogy of Mathematics (Part II) - Set language introduction and Ex.1.5
1e. Pedagogy of Mathematics (Part II) - Set language introduction and Ex.1.5
1e. Pedagogy of Mathematics (Part II) - Set language introduction and Ex.1.5
1e. Pedagogy of Mathematics (Part II) - Set language introduction and Ex.1.5
1e. Pedagogy of Mathematics (Part II) - Set language introduction and Ex.1.5
1e. Pedagogy of Mathematics (Part II) - Set language introduction and Ex.1.5
Solution :
(i) A - B = {4, 6, 3}
(ii) B - C = {-1, 5, 7}
(iii) A' U B'
A' = {-3, 0, 1, 2, 5, 7, 8}
B' = {-3, 0, 1, 2, 3, 4, 6}
A' U B' = {-3, 0, 1, 2, 3, 4, 5, 6, 7, 8}
(iv) A' n B'
A' n B' = {-3, 0, 1, 2}
(v) (B U C)'
B U C = {-3, -,2, -1, 0, 3, 5, 7, 8}
(B U C)' = {4, 6, 1, 2}
(vi) A − (B U C)
A = {-2, -1, 3, 4, 6} and B U C = {-3, -,2, -1, 0, 3, 5, 7, 8}
A − (B U C) = {4, 6}
(vii) A − (B n C)
B n C = {-2, 8}
A = {-2, -1, 3, 4, 6}
A − (B n C) = {-1, 3, 4, 6}
1e. Pedagogy of Mathematics (Part II) - Set language introduction and Ex.1.5
Solution :
(i) K U (L n M)
(L n M) = { b, c, d }
K U (L n M) = {a, b, c, d, e, f}
(ii) K n (L U M)
(L U M) = {a, b, c, d, g, h}
K n (L U M) = {a, b, d}
(iii) (K U L) n (K U M)
(K U L) = {a, b, c, d, e, f, g}
(K U M) = {a, b, c , d, e, f, h}
(K U L) n (K U M) = {a, b , c, d , e, f}
(iv) (K n L) U (K n M)
K = {a, b, d, e, f}, L = {b, c, d, g} and M = {a, b, c, d, h}
(K n L) = {b, d}
(K n M) = {a, b, d}
(K n L) U (K n M) = {a, b, d}
1e. Pedagogy of Mathematics (Part II) - Set language introduction and Ex.1.5
Solution :
A = {x : x ∊ Z,−2 < x ≤ 4}
A = {-1, 0, 1, 2, 3, 4}
B = {x : x ∈ W, x ≤ 5}
B = {0, 1, 2, 3, 4, 5}
C = {−4,−1, 0, 2, 3, 4}
A U (B n C) = (A U B) n (A U C)
(B n C) = {0, 2, 3, 4}
A U (B n C) = {-1, 0, 1, 2, 3, 4} ----(1)
(A U B) = {-1, 0, 1, 2, 3, 4, 5}
(A U C) = {-4, -1, 0, 1, 2, 3, 4}
(A U B) n (A U C) = {-1, 0, 1, 2, 3, 4}----(2)
(1) = (2)
1e. Pedagogy of Mathematics (Part II) - Set language introduction and Ex.1.5
Solution :
Hence proved.
1e. Pedagogy of Mathematics (Part II) - Set language introduction and Ex.1.5
Solution :
(B n C) = {a, d, g}
A - (B n C) = {b, c, e, h} ----(1)
(A − B) = {b, e, h}
(A − C) = {b, c}
(A − B) U (A−C) = {b, c, e, h} ----(2)
(1) = (2)
Hence proved
1e. Pedagogy of Mathematics (Part II) - Set language introduction and Ex.1.5
Solution :
A = {x : x = 6n, n ∈ W and n < 6}
A = {0, 6, 12, 18, 24, 30}
B = {x : x = 2n, n ∈ N and 2 < n ≤ 9}
B = {6, 8, 10, 12, 14, 16, 18}
and C = {x : x = 3n, n ∈ N and 4 ≤ n < 10}
C = {12, 15, 18, 21, 24, 27}
(B n C) = {12, 18}
A−(B n C) = {0, 6, 24, 30} ----(1)
(A − B) = {0, 24, 30}
(A − C) = {0, 6, 30}
(A − B) U (A − C) = {0, 6, 24, 30} ----(2)
1e. Pedagogy of Mathematics (Part II) - Set language introduction and Ex.1.5
Solution :
(B U C) = {-1, 0, 2, 5, 6, 7}
A − (B U C) = {-2, 1, 3} ----(1)
(A − B) = {-2, 1, 3}
(A − C) = {-2, 0, 1, 3}
(A − B) n (A − C) = {-2, 1, 3} ----(2)
(1) = (2)
Hence proved.
1e. Pedagogy of Mathematics (Part II) - Set language introduction and Ex.1.5
Solution :
A = {y : y = (a + 1)/2, a ∈ W and a ≤ 5}
A = {1/2, 3/2, 2, 5/2, 3}
B = {y : y = (2n - 1)/2, n ∈ W and n < 5}
B = {-1/2, 1/2, 3/2, 5/2, 7/2}
C = {-1, -1/2, 1, 3/2, 2}
A - (BUC) = (A - B) n (A - C)
B U C = {-1/2, -1, 1/2, 1, 3/2, 2, 5/2, 7/2}
A - (BU C) = {3} -----(1)
(A - B) = {2, 3}
(A - C) = {1/2, 5/2, 3}
(A - B) n (A - C) = {3} -----(2)
(1) = (2)
Hence proved.
1e. Pedagogy of Mathematics (Part II) - Set language introduction and Ex.1.5
Solution :
Verified
1e. Pedagogy of Mathematics (Part II) - Set language introduction and Ex.1.5
Solution :
De morgan's laws for complementation :
(i) (A U B)' = A' n B'
(ii) (A n B)' = A' U B'
A = {7, 8, 11, 12} and B = {4, 8, 12, 15},
U = {4, 7, 8, 10, 11, 12, 15, 16}
(i) (A U B) = {4, 7, 8, 11, 12, 15}
(A U B)' = {10, 16} ----(1)
A' = {4, 10, 15, 16}
B' = {7, 10, 11, 16}
A' n B' = {10, 16} ----(2)
Hence proved.
(ii) (A n B) = {8, 12}
(A n B)' = {4, 7, 10, 11, 15, 16} ----(1)
A' = {4, 10, 15, 16}
B' = {7, 10, 11, 16}
A' U B' = {4, 7, 10, 11, 15, 16} ----(2)
Hence proved.
1e. Pedagogy of Mathematics (Part II) - Set language introduction and Ex.1.5
Solution :
…. (1)
(1) = (2)
Verified
1e. Pedagogy of Mathematics (Part II) - Set language introduction and Ex.1.5

More Related Content

PPSX
1d. Pedagogy of Mathematics (Part II) - Set language introduction and Ex.1.4
PPSX
1c. Pedagogy of Mathematics (Part II) - Set language introduction and Ex.1.3
PPSX
1f. Pedagogy of Mathematics (Part II) - Set language introduction and Ex.1.6
PPSX
1h. Pedagogy of Mathematics (Part II) - Set language Activities and exercise
PPSX
1g. Pedagogy of Mathematics (Part II) - Set language introduction and Ex.1.7
PPSX
1a. Pedagogy of Mathematics (Part II) - Set language introduction and ex.1.1
PDF
Diagram Venn Beserta Contoh Soal
PDF
Latihan soal (vektor)
1d. Pedagogy of Mathematics (Part II) - Set language introduction and Ex.1.4
1c. Pedagogy of Mathematics (Part II) - Set language introduction and Ex.1.3
1f. Pedagogy of Mathematics (Part II) - Set language introduction and Ex.1.6
1h. Pedagogy of Mathematics (Part II) - Set language Activities and exercise
1g. Pedagogy of Mathematics (Part II) - Set language introduction and Ex.1.7
1a. Pedagogy of Mathematics (Part II) - Set language introduction and ex.1.1
Diagram Venn Beserta Contoh Soal
Latihan soal (vektor)

What's hot (20)

PDF
modul 1 add maths 07
DOCX
Tugas 2 turunan
PDF
modul 2 add maths 07
PDF
Irasional
PDF
modul 4 add maths 07
PDF
modul 3 add maths
PPSX
1b. Pedagogy of Mathematics (Part II) - Set language introduction and ex.1.2
PDF
modul 5 add maths 07
PPTX
Elements of a sequence
PDF
Set theory solutions
PDF
2022 ملزمة الرياضيات للصف السادس التطبيقي الفصل الثالث - تطبيقات التفاضل
PPSX
X std maths - Relations and functions (ex 1.3)
PDF
2022 ملزمة الرياضيات للصف السادس الاحيائي الفصل الثالث تطبيقات التفاضل
PDF
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاول
PDF
Metrix[1]
PDF
ملزمة الرياضيات للصف السادس التطبيقي الفصل الخامس المعادلات التفاضلية 2022
PDF
7.0 modul super score kertas 1 set 4
PPSX
X std maths - Relations and functions (ex 1.4)
DOC
Mathematics Mid Year Form 4 Paper 1 Mathematics
PPTX
C 9 Coordinate Geometry Graphs
modul 1 add maths 07
Tugas 2 turunan
modul 2 add maths 07
Irasional
modul 4 add maths 07
modul 3 add maths
1b. Pedagogy of Mathematics (Part II) - Set language introduction and ex.1.2
modul 5 add maths 07
Elements of a sequence
Set theory solutions
2022 ملزمة الرياضيات للصف السادس التطبيقي الفصل الثالث - تطبيقات التفاضل
X std maths - Relations and functions (ex 1.3)
2022 ملزمة الرياضيات للصف السادس الاحيائي الفصل الثالث تطبيقات التفاضل
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاول
Metrix[1]
ملزمة الرياضيات للصف السادس التطبيقي الفصل الخامس المعادلات التفاضلية 2022
7.0 modul super score kertas 1 set 4
X std maths - Relations and functions (ex 1.4)
Mathematics Mid Year Form 4 Paper 1 Mathematics
C 9 Coordinate Geometry Graphs
Ad

Similar to 1e. Pedagogy of Mathematics (Part II) - Set language introduction and Ex.1.5 (20)

PDF
INSTRUCTORS_SOLUTIONS_MANUAL_FOR_ELEMENT.pdf
DOC
Matematica 01 - 1 ano
PPSX
5c. Pedagogy of Mathematics (Part II) - Coordinate Geometry (ex 5.3)
PPSX
X std maths - Relations and functions (ex 1.1)
PPT
mathemathics + Straight line equation
PDF
Obj. 7 Midpoint and Distance Formulas
PDF
Obj. 5 Midpoint and Distance Formulas
PDF
Solucionario teoria-electromagnetica-hayt-2001
PPTX
Distance Formula - PPT Presentation.pptx
PPTX
Kuliah 10 Vektor.pptx
PDF
College Algebra and Trigonometry 6th Edition Lial Solutions Manual
PDF
On Triplet of Positive Integers Such That the Sum of Any Two of Them is a Per...
PPTX
WEEK 1 -2.pptx
DOCX
Assessments for class xi
PDF
Notes and formulae mathematics
PDF
01_Sets.pdf
PPTX
SESSION- NAT Review for Math Gr10 1.pptx
PDF
CBSE - Grade 8 - Mathematics - Exponents and Powers - Multiple Choice Questio...
PDF
IIT JAM MATH 2019 Question Paper | Sourav Sir's Classes
PPTX
Maths Intersection and Union .pptx
INSTRUCTORS_SOLUTIONS_MANUAL_FOR_ELEMENT.pdf
Matematica 01 - 1 ano
5c. Pedagogy of Mathematics (Part II) - Coordinate Geometry (ex 5.3)
X std maths - Relations and functions (ex 1.1)
mathemathics + Straight line equation
Obj. 7 Midpoint and Distance Formulas
Obj. 5 Midpoint and Distance Formulas
Solucionario teoria-electromagnetica-hayt-2001
Distance Formula - PPT Presentation.pptx
Kuliah 10 Vektor.pptx
College Algebra and Trigonometry 6th Edition Lial Solutions Manual
On Triplet of Positive Integers Such That the Sum of Any Two of Them is a Per...
WEEK 1 -2.pptx
Assessments for class xi
Notes and formulae mathematics
01_Sets.pdf
SESSION- NAT Review for Math Gr10 1.pptx
CBSE - Grade 8 - Mathematics - Exponents and Powers - Multiple Choice Questio...
IIT JAM MATH 2019 Question Paper | Sourav Sir's Classes
Maths Intersection and Union .pptx
Ad

More from Dr. I. Uma Maheswari Maheswari (20)

PPSX
2h. Pedagogy of mathematics part II (numbers and sequence - ex 2.8)
PPSX
2g. Pedagogy of mathematics part II (numbers and sequence - ex 2.7)
PPSX
2f. Pedagogy of Mathematics - Part II (Numbers and Sequence - Ex 2.6)
PPSX
2e. Pedagogy of Mathematics - Part II (Numbers and Sequence - Ex 2.5)
PPSX
2d. Pedagogy of Mathematics - Part II (Numbers and Sequence - Ex 2.4)
PPSX
2c. Pedagogy of Mathematics - Part II (Numbers and Sequence - Ex 2.3)
PPSX
2b. Pedagogy of Mathematics - Part II (Numbers and Sequence - Ex 2.2)
PPSX
2a. Pedagogy of Mathematics - Part II (Numbers and Sequence - Ex 2.1)
PPSX
Computer language - Html forms
PPSX
computer language - Html frames
PPSX
Computer language - Html tables
PPSX
Pedagogy - teaching models
PPSX
Computer language - html links
PPSX
Computer language - html images and sounds
PPSX
computer language - html lists
PPSX
Computer language - HTML tags
PPSX
Computer language - HTML (Hyper Text Markup Language)
PPSX
X std maths - Relations and functions (ex 1.5 &amp; 1.6)
PPSX
X std mathematics - Relations and functions (Ex 1.2)
PPSX
Computers in education - cyber resources
2h. Pedagogy of mathematics part II (numbers and sequence - ex 2.8)
2g. Pedagogy of mathematics part II (numbers and sequence - ex 2.7)
2f. Pedagogy of Mathematics - Part II (Numbers and Sequence - Ex 2.6)
2e. Pedagogy of Mathematics - Part II (Numbers and Sequence - Ex 2.5)
2d. Pedagogy of Mathematics - Part II (Numbers and Sequence - Ex 2.4)
2c. Pedagogy of Mathematics - Part II (Numbers and Sequence - Ex 2.3)
2b. Pedagogy of Mathematics - Part II (Numbers and Sequence - Ex 2.2)
2a. Pedagogy of Mathematics - Part II (Numbers and Sequence - Ex 2.1)
Computer language - Html forms
computer language - Html frames
Computer language - Html tables
Pedagogy - teaching models
Computer language - html links
Computer language - html images and sounds
computer language - html lists
Computer language - HTML tags
Computer language - HTML (Hyper Text Markup Language)
X std maths - Relations and functions (ex 1.5 &amp; 1.6)
X std mathematics - Relations and functions (Ex 1.2)
Computers in education - cyber resources

Recently uploaded (20)

PPTX
Pharma ospi slides which help in ospi learning
PDF
Abdominal Access Techniques with Prof. Dr. R K Mishra
PDF
O7-L3 Supply Chain Operations - ICLT Program
PPTX
Lesson notes of climatology university.
PDF
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PPTX
Renaissance Architecture: A Journey from Faith to Humanism
PDF
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
PDF
Sports Quiz easy sports quiz sports quiz
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PDF
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
PDF
Classroom Observation Tools for Teachers
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PPTX
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
PDF
FourierSeries-QuestionsWithAnswers(Part-A).pdf
PPTX
PPH.pptx obstetrics and gynecology in nursing
PPTX
GDM (1) (1).pptx small presentation for students
PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
PDF
Anesthesia in Laparoscopic Surgery in India
Pharma ospi slides which help in ospi learning
Abdominal Access Techniques with Prof. Dr. R K Mishra
O7-L3 Supply Chain Operations - ICLT Program
Lesson notes of climatology university.
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
Renaissance Architecture: A Journey from Faith to Humanism
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
Sports Quiz easy sports quiz sports quiz
Supply Chain Operations Speaking Notes -ICLT Program
Module 4: Burden of Disease Tutorial Slides S2 2025
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
Classroom Observation Tools for Teachers
Final Presentation General Medicine 03-08-2024.pptx
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
FourierSeries-QuestionsWithAnswers(Part-A).pdf
PPH.pptx obstetrics and gynecology in nursing
GDM (1) (1).pptx small presentation for students
2.FourierTransform-ShortQuestionswithAnswers.pdf
Anesthesia in Laparoscopic Surgery in India

1e. Pedagogy of Mathematics (Part II) - Set language introduction and Ex.1.5

  • 1. PEDAGOGY OF MATHEMATICS – PART II By Dr. I. Uma Maheswari Principal Peniel Rural College of Education,Vemparali, Dindigul District iuma_maheswari@yahoo.co.in
  • 2. STD IX CHAPTER 1 – SET LANGUAGE Ex - 1.5
  • 20. Solution : (i) A - B = {4, 6, 3} (ii) B - C = {-1, 5, 7} (iii) A' U B' A' = {-3, 0, 1, 2, 5, 7, 8} B' = {-3, 0, 1, 2, 3, 4, 6} A' U B' = {-3, 0, 1, 2, 3, 4, 5, 6, 7, 8}
  • 21. (iv) A' n B' A' n B' = {-3, 0, 1, 2} (v) (B U C)' B U C = {-3, -,2, -1, 0, 3, 5, 7, 8} (B U C)' = {4, 6, 1, 2}
  • 22. (vi) A − (B U C) A = {-2, -1, 3, 4, 6} and B U C = {-3, -,2, -1, 0, 3, 5, 7, 8} A − (B U C) = {4, 6} (vii) A − (B n C) B n C = {-2, 8} A = {-2, -1, 3, 4, 6} A − (B n C) = {-1, 3, 4, 6}
  • 24. Solution : (i) K U (L n M) (L n M) = { b, c, d } K U (L n M) = {a, b, c, d, e, f} (ii) K n (L U M) (L U M) = {a, b, c, d, g, h} K n (L U M) = {a, b, d}
  • 25. (iii) (K U L) n (K U M) (K U L) = {a, b, c, d, e, f, g} (K U M) = {a, b, c , d, e, f, h} (K U L) n (K U M) = {a, b , c, d , e, f} (iv) (K n L) U (K n M) K = {a, b, d, e, f}, L = {b, c, d, g} and M = {a, b, c, d, h} (K n L) = {b, d} (K n M) = {a, b, d} (K n L) U (K n M) = {a, b, d}
  • 27. Solution : A = {x : x ∊ Z,−2 < x ≤ 4} A = {-1, 0, 1, 2, 3, 4} B = {x : x ∈ W, x ≤ 5} B = {0, 1, 2, 3, 4, 5} C = {−4,−1, 0, 2, 3, 4} A U (B n C) = (A U B) n (A U C)
  • 28. (B n C) = {0, 2, 3, 4} A U (B n C) = {-1, 0, 1, 2, 3, 4} ----(1) (A U B) = {-1, 0, 1, 2, 3, 4, 5} (A U C) = {-4, -1, 0, 1, 2, 3, 4} (A U B) n (A U C) = {-1, 0, 1, 2, 3, 4}----(2) (1) = (2)
  • 32. Solution : (B n C) = {a, d, g} A - (B n C) = {b, c, e, h} ----(1) (A − B) = {b, e, h} (A − C) = {b, c} (A − B) U (A−C) = {b, c, e, h} ----(2) (1) = (2) Hence proved
  • 34. Solution : A = {x : x = 6n, n ∈ W and n < 6} A = {0, 6, 12, 18, 24, 30} B = {x : x = 2n, n ∈ N and 2 < n ≤ 9} B = {6, 8, 10, 12, 14, 16, 18} and C = {x : x = 3n, n ∈ N and 4 ≤ n < 10} C = {12, 15, 18, 21, 24, 27}
  • 35. (B n C) = {12, 18} A−(B n C) = {0, 6, 24, 30} ----(1) (A − B) = {0, 24, 30} (A − C) = {0, 6, 30} (A − B) U (A − C) = {0, 6, 24, 30} ----(2)
  • 37. Solution : (B U C) = {-1, 0, 2, 5, 6, 7} A − (B U C) = {-2, 1, 3} ----(1) (A − B) = {-2, 1, 3} (A − C) = {-2, 0, 1, 3} (A − B) n (A − C) = {-2, 1, 3} ----(2) (1) = (2) Hence proved.
  • 39. Solution : A = {y : y = (a + 1)/2, a ∈ W and a ≤ 5} A = {1/2, 3/2, 2, 5/2, 3} B = {y : y = (2n - 1)/2, n ∈ W and n < 5} B = {-1/2, 1/2, 3/2, 5/2, 7/2} C = {-1, -1/2, 1, 3/2, 2} A - (BUC) = (A - B) n (A - C)
  • 40. B U C = {-1/2, -1, 1/2, 1, 3/2, 2, 5/2, 7/2} A - (BU C) = {3} -----(1) (A - B) = {2, 3} (A - C) = {1/2, 5/2, 3} (A - B) n (A - C) = {3} -----(2) (1) = (2) Hence proved.
  • 44. Solution : De morgan's laws for complementation : (i) (A U B)' = A' n B' (ii) (A n B)' = A' U B' A = {7, 8, 11, 12} and B = {4, 8, 12, 15}, U = {4, 7, 8, 10, 11, 12, 15, 16}
  • 45. (i) (A U B) = {4, 7, 8, 11, 12, 15} (A U B)' = {10, 16} ----(1) A' = {4, 10, 15, 16} B' = {7, 10, 11, 16} A' n B' = {10, 16} ----(2) Hence proved.
  • 46. (ii) (A n B) = {8, 12} (A n B)' = {4, 7, 10, 11, 15, 16} ----(1) A' = {4, 10, 15, 16} B' = {7, 10, 11, 16} A' U B' = {4, 7, 10, 11, 15, 16} ----(2) Hence proved.