SlideShare a Scribd company logo
Introduction to Time Series Analysis. Lecture 1.
Peter Bartlett
1. Organizational issues.
2. Objectives of time series analysis. Examples.
3. Overview of the course.
4. Time series models.
5. Time series modelling: Chasing stationarity.
1
Organizational Issues
• Peter Bartlett. bartlett@stat. Office hours: Thu 1:30-2:30 (Evans 399).
Fri 3-4 (Soda 527).
• Brad Luen. bradluen@stat. Office hours: Tue/Wed 2-3pm (Room
TBA).
• http://www.stat.berkeley.edu/∼bartlett/courses/153-fall2005/
Check it for announcements, assignments, slides, ...
• Text: Time Series Analysis and its Applications, Shumway and Stoffer.
2
Organizational Issues
Computer Labs: Wed 12–1 and Wed 2–3, in 342 Evans.
You need to choose one of these times. Please email bradluen@stat with
your preference. First computer lab sections are on September 7.
Classroom Lab Section: Fri 12–1, in 330 Evans. First classroom lab
section is on September 2.
Assessment:
Lab/Homework Assignments (40%): posted on the website.
These involve a mix of pen-and-paper and computer exercises. You may use
any programming language you choose (R, Splus, Matlab). The last
assignment will involve analysis of a data set that you choose.
Midterm Exam (25%): scheduled for October 20, at the lecture.
Final Exam (35%): scheduled for Thursday, December 15.
3
A Time Series
1960 1965 1970 1975 1980 1985 1990
0
50
100
150
200
250
300
350
400
year
$
SP500: 1960−1990
4
A Time Series
1987 1987.05 1987.1 1987.15 1987.2 1987.25 1987.3 1987.35 1987.4 1987.45 1987.5
220
240
260
280
300
320
340
year
$
SP500: Jan−Jun 1987
5
A Time Series
240 250 260 270 280 290 300 310
0
5
10
15
20
25
30
$
SP500 Jan−Jun 1987. Histogram
6
A Time Series
0 20 40 60 80 100 120
220
240
260
280
300
320
340
$
SP500: Jan−Jun 1987. Permuted.
7
Objectives of Time Series Analysis
1. Compact description of data.
2. Interpretation.
3. Forecasting.
4. Control.
5. Hypothesis testing.
6. Simulation.
8
Classical decomposition: An example
Monthly sales for a souvenir shop at a beach resort town in Queensland.
(Makridakis, Wheelwright and Hyndman, 1998)
0 10 20 30 40 50 60 70 80 90
0
2
4
6
8
10
12
x 10
4
9
Transformed data
0 10 20 30 40 50 60 70 80 90
7
7.5
8
8.5
9
9.5
10
10.5
11
11.5
12
10
Trend
0 10 20 30 40 50 60 70 80 90
7
7.5
8
8.5
9
9.5
10
10.5
11
11.5
12
11
Residuals
0 10 20 30 40 50 60 70 80 90
−1
−0.5
0
0.5
1
1.5
12
Trend and seasonal variation
0 10 20 30 40 50 60 70 80 90
7
7.5
8
8.5
9
9.5
10
10.5
11
11.5
12
13
Objectives of Time Series Analysis
1. Compact description of data.
Example: Classical decomposition: Xt = Tt + St + Yt.
2. Interpretation. Example: Seasonal adjustment.
3. Forecasting. Example: Predict sales.
4. Control.
5. Hypothesis testing.
6. Simulation.
14
Unemployment data
Monthly number of unemployed people in Australia. (Hipel and McLeod, 1994)
1983 1984 1985 1986 1987 1988 1989 1990
4
4.5
5
5.5
6
6.5
7
7.5
8
x 10
5
15
Trend
1983 1984 1985 1986 1987 1988 1989 1990
4
4.5
5
5.5
6
6.5
7
7.5
8
x 10
5
16
Trend plus seasonal variation
1983 1984 1985 1986 1987 1988 1989 1990
4
4.5
5
5.5
6
6.5
7
7.5
8
x 10
5
17
Residuals
1983 1984 1985 1986 1987 1988 1989 1990
−6
−4
−2
0
2
4
6
8
x 10
4
18
Predictions based on a (simulated) variable
1983 1984 1985 1986 1987 1988 1989 1990
4
4.5
5
5.5
6
6.5
7
7.5
8
x 10
5
19
Objectives of Time Series Analysis
1. Compact description of data:
Xt = Tt + St + f(Yt) + Wt.
2. Interpretation. Example: Seasonal adjustment.
3. Forecasting. Example: Predict unemployment.
4. Control. Example: Impact of monetary policy on unemployment.
5. Hypothesis testing. Example: Global warming.
6. Simulation. Example: Estimate probability of catastrophic events.
20
Overview of the Course
1. Time series models
(a) Stationarity.
(b) Autocorrelation function.
(c) Transforming to stationarity.
2. Time domain methods
3. Spectral analysis
4. State space models(?)
21
Overview of the Course
1. Time series models
2. Time domain methods
(a) AR/MA/ARMA models.
(b) ACF and partial autocorrelation function.
(c) Forecasting
(d) Parameter estimation
(e) ARIMA models/seasonal ARIMA models
3. Spectral analysis
4. State space models(?)
22
Overview of the Course
1. Time series models
2. Time domain methods
3. Spectral analysis
(a) Spectral density
(b) Periodogram
(c) Spectral estimation
4. State space models(?)
23
Overview of the Course
1. Time series models
2. Time domain methods
3. Spectral analysis
4. State space models(?)
(a) ARMAX models.
(b) Forecasting, Kalman filter.
(c) Parameter estimation.
24
Time Series Models
A time series model specifies the joint distribution of the se-
quence {Xt} of random variables.
For example:
P[X1 ≤ x1, . . . , Xt ≤ xt] for all t and x1, . . . , xt.
Notation:
X1, X2, . . . is a stochastic process.
x1, x2, . . . is a single realization.
We’ll mostly restrict our attention to second-order properties only:
EXt, E(Xt1 Xt2 ).
25
Time Series Models
Example: White noise: Xt ∼ WN(0, σ2
).
i.e., {Xt} uncorrelated, EXt = 0, VarXt = σ2
.
Example: i.i.d. noise: {Xt} independent and identically distributed.
P[X1 ≤ x1, . . . , Xt ≤ xt] = P[X1 ≤ x1] · · · P[Xt ≤ xt].
Not interesting for forecasting:
P[Xt ≤ xt|X1, . . . , Xt−1] = P[Xt ≤ xt].
26
Gaussian white noise
P[Xt ≤ xt] = Φ(xt) =
1
√
2π
Z xt
−∞
e−x2
/2
dx.
0 5 10 15 20 25 30 35 40 45 50
−2.5
−2
−1.5
−1
−0.5
0
0.5
1
1.5
2
2.5
27
Gaussian white noise
0 5 10 15 20 25 30 35 40 45 50
−2.5
−2
−1.5
−1
−0.5
0
0.5
1
1.5
2
2.5
28
Time Series Models
Example: Binary i.i.d. P[Xt = 1] = P[Xt = −1] = 1/2.
0 5 10 15 20 25 30 35 40 45 50
−1
−0.8
−0.6
−0.4
−0.2
0
0.2
0.4
0.6
0.8
1
29
Random walk
St =
Pt
i=1 Xi. Differences: ∇St = St − St−1 = Xt.
0 5 10 15 20 25 30 35 40 45 50
−4
−2
0
2
4
6
8
30
Random walk
ESt? VarSt?
0 5 10 15 20 25 30 35 40 45 50
−15
−10
−5
0
5
10
31
Random Walk
Recall S&P500 data. (Notice that it’s smooth)
1987 1987.05 1987.1 1987.15 1987.2 1987.25 1987.3 1987.35 1987.4 1987.45 1987.5
220
240
260
280
300
320
340
year
$
SP500: Jan−Jun 1987
32
Random Walk
Differences: ∇St = St − St−1 = Xt.
1987 1987.05 1987.1 1987.15 1987.2 1987.25 1987.3 1987.35 1987.4 1987.45 1987.5
−10
−8
−6
−4
−2
0
2
4
6
8
10
year
$
SP500, Jan−Jun 1987. first differences
33
Trend and Seasonal Models
Xt = Tt + St + Et = β0 + β1t +
P
i (βi cos(λit) + γi sin(λit)) + Et
0 50 100 150 200 250
2.5
3
3.5
4
4.5
5
5.5
6
34
Trend and Seasonal Models
Xt = Tt + Et = β0 + β1t + Et
0 50 100 150 200 250
2.5
3
3.5
4
4.5
5
5.5
6
35
Trend and Seasonal Models
Xt = Tt + St + Et = β0 + β1t +
P
i (βi cos(λit) + γi sin(λit)) + Et
0 50 100 150 200 250
2.5
3
3.5
4
4.5
5
5.5
6
36
Trend and Seasonal Models: Residuals
0 50 100 150 200 250
−0.5
−0.4
−0.3
−0.2
−0.1
0
0.1
0.2
0.3
0.4
0.5
37
Time Series Modelling
1. Plot the time series.
Look for trends, seasonal components, step changes, outliers.
2. Transform data so that residuals are stationary.
(a) Estimate and subtract Tt, St.
(b) Differencing.
(c) Nonlinear transformations (log,
√
·).
3. Fit model to residuals.
38
Nonlinear transformations
Recall: Monthly sales. (Makridakis, Wheelwright and Hyndman, 1998)
0 10 20 30 40 50 60 70 80 90
0
2
4
6
8
10
12
x 10
4
0 10 20 30 40 50 60 70 80 90
7
7.5
8
8.5
9
9.5
10
10.5
11
11.5
12
39
Differencing
Recall: S&P 500 data.
1987 1987.05 1987.1 1987.15 1987.2 1987.25 1987.3 1987.35 1987.4 1987.45 1987.5
220
240
260
280
300
320
340
year
$
SP500: Jan−Jun 1987
1987 1987.05 1987.1 1987.15 1987.2 1987.25 1987.3 1987.35 1987.4 1987.45 1987.5
−10
−8
−6
−4
−2
0
2
4
6
8
10
year
$
SP500, Jan−Jun 1987. first differences
40
Differencing and Trend
Define the lag-1 difference operator, (think ‘first derivative’)
∇Xt = Xt − Xt−1 = (1 − B)Xt,
where B is the backshift operator, BXt = Xt−1.
• If Xt = β0 + β1t + Yt, then
∇Xt = β1 + ∇Yt.
• If Xt =
Pk
i=0 βiti
+ Yt, then
∇k
Xt = k!βk + ∇k
Yt,
where ∇k
Xt = ∇(∇k−1
Xt) and ∇1
Xt = ∇Xt.
41
Differencing and Seasonal Variation
Define the lag-s difference operator,
∇sXt = Xt − Xt−s = (1 − Bs
)Xt,
where Bs
is the backshift operator applied s times, Bs
Xt = B(Bs−1
Xt)
and B1
Xt = BXt.
If Xt = Tt + St + Yt, and St has period s (that is, St = St−s for all t), then
∇sXt = Tt − Tt−s + ∇sYt.
42
Least Squares Regression
Model: Xt = β0 + β1t + Wt
=

1 t



β0
β1

 + Wt,








X1
X2
.
.
.
XT








| {z }
x
=








1 1
1 2
.
.
.
.
.
.
1 T








| {z }
Z


β0
β1


| {z }
β
+








W1
W2
.
.
.
WT








| {z }
w
43
Least Squares Regression
x = Zβ + w.
Least squares: choose β to minimize kwk2
= kx − Zβk2
.
Solution β̂ satisfies the normal equations:
∇βkwk2
= 2Z0
(x − Zβ̂) = 0.
If Z0
Z is nonsingular, the solution is unique:
β̂ = (Z0
Z)−1
Z0
x.
44
Least Squares Regression
Properties of the least squares solution (β̂ = (Z0
Z)−1
Z0
x):
• Linear.
• Unbiased.
• For {Wt} i.i.d., it is the linear unbiased estimator with smallest
variance.
Other regressors Z: polynomial, trigonometric functions, piecewise
polynomial (splines), etc.
45
Outline
1. Objectives of time series analysis. Examples.
2. Overview of the course.
3. Time series models.
4. Time series modelling: Chasing stationarity.
46

More Related Content

PDF
pres06-main
PDF
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...
PDF
Stochastic Gravity in Conformally-flat Spacetimes
PDF
Prof. Vishnu Jejjala (Witwatersrand) TITLE: "The Geometry of Generations"
PDF
Sampling strategies for Sequential Monte Carlo (SMC) methods
PDF
On Twisted Paraproducts and some other Multilinear Singular Integrals
PDF
Gauss–Bonnet Boson Stars in AdS - Ibericos, Portugal, 2014
PDF
computational stochastic phase-field
pres06-main
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...
Stochastic Gravity in Conformally-flat Spacetimes
Prof. Vishnu Jejjala (Witwatersrand) TITLE: "The Geometry of Generations"
Sampling strategies for Sequential Monte Carlo (SMC) methods
On Twisted Paraproducts and some other Multilinear Singular Integrals
Gauss–Bonnet Boson Stars in AdS - Ibericos, Portugal, 2014
computational stochastic phase-field

What's hot (20)

PDF
Tales on two commuting transformations or flows
PDF
Scattering theory analogues of several classical estimates in Fourier analysis
PDF
ICML2016: Low-rank tensor completion: a Riemannian manifold preconditioning a...
PDF
Estimates for a class of non-standard bilinear multipliers
PDF
Wits Node Seminar: Dr Sunandan Gangopadhyay (NITheP Stellenbosch) TITLE: Path...
PDF
Trilinear embedding for divergence-form operators
PDF
Norm-variation of bilinear averages
PDF
Boundedness of the Twisted Paraproduct
PDF
Paraproducts with general dilations
PDF
Multilinear singular integrals with entangled structure
PDF
Bellman functions and Lp estimates for paraproducts
PDF
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...
PDF
On maximal and variational Fourier restriction
PDF
Distributed perceptron
PDF
2014 04 22 wits presentation oqw
PDF
Internal workshop jub talk jan 2013
PDF
Quantitative norm convergence of some ergodic averages
PDF
On Clustering Financial Time Series - Beyond Correlation
PDF
Some Examples of Scaling Sets
PDF
ProjectAndersSchreiber
Tales on two commuting transformations or flows
Scattering theory analogues of several classical estimates in Fourier analysis
ICML2016: Low-rank tensor completion: a Riemannian manifold preconditioning a...
Estimates for a class of non-standard bilinear multipliers
Wits Node Seminar: Dr Sunandan Gangopadhyay (NITheP Stellenbosch) TITLE: Path...
Trilinear embedding for divergence-form operators
Norm-variation of bilinear averages
Boundedness of the Twisted Paraproduct
Paraproducts with general dilations
Multilinear singular integrals with entangled structure
Bellman functions and Lp estimates for paraproducts
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...
On maximal and variational Fourier restriction
Distributed perceptron
2014 04 22 wits presentation oqw
Internal workshop jub talk jan 2013
Quantitative norm convergence of some ergodic averages
On Clustering Financial Time Series - Beyond Correlation
Some Examples of Scaling Sets
ProjectAndersSchreiber
Ad

Similar to 1notes (20)

PDF
Demand time series analysis and forecasting
PPTX
Time series
PDF
Time Series - 1
PPTX
Presentation On Time Series Analysis in Mechine Learning
PPT
Enterprise_Planning_TimeSeries_And_Components
PPTX
timeseries_analysis.pptx a unique approach to solve the time related data
PPT
Time Series Analysis and Forecasting.ppt
PPT
03.time series presentation
PPTX
Dr. Syed Muhammad Ali Tirmizi - Special topics in finance lec 5
PPT
Time Series Analysis and Forecasting.ppt
PPT
Time Series Analysis and Forecasting.ppt
PDF
A Course in Time Series Analysis 1st Edition Pena D.
PPTX
Project time series ppt
PDF
A Course in Time Series Analysis 1st Edition Pena D.
PPTX
DIAS ppt.pptx
PDF
PPTX
Time series analysis
PPTX
timeseries and forecasting components and their types
PPTX
Time series Modelling Basics
PPTX
Module 3 - Time Series.pptx
Demand time series analysis and forecasting
Time series
Time Series - 1
Presentation On Time Series Analysis in Mechine Learning
Enterprise_Planning_TimeSeries_And_Components
timeseries_analysis.pptx a unique approach to solve the time related data
Time Series Analysis and Forecasting.ppt
03.time series presentation
Dr. Syed Muhammad Ali Tirmizi - Special topics in finance lec 5
Time Series Analysis and Forecasting.ppt
Time Series Analysis and Forecasting.ppt
A Course in Time Series Analysis 1st Edition Pena D.
Project time series ppt
A Course in Time Series Analysis 1st Edition Pena D.
DIAS ppt.pptx
Time series analysis
timeseries and forecasting components and their types
Time series Modelling Basics
Module 3 - Time Series.pptx
Ad

More from TadiyosHailemichael (11)

PDF
A_review_on_outlier_detection_in_time_series_data__BCAM_1.pdf.pdf
PDF
2006.11583.pdf
PDF
KDD21_InterFusion_Li.pdf
PDF
2007.02500.pdf
PDF
mathematics-10-01599-v2.pdf
PDF
AUDIBERT_Julien_2021.pdf
PDF
Bäßler2022_Article_UnsupervisedAnomalyDetectionIn.pdf
PDF
4-SequenceTimeSeries02.pdf
PDF
5438-Article Text-8663-1-10-20200511.pdf
PDF
PDF
2204.01637.pdf
A_review_on_outlier_detection_in_time_series_data__BCAM_1.pdf.pdf
2006.11583.pdf
KDD21_InterFusion_Li.pdf
2007.02500.pdf
mathematics-10-01599-v2.pdf
AUDIBERT_Julien_2021.pdf
Bäßler2022_Article_UnsupervisedAnomalyDetectionIn.pdf
4-SequenceTimeSeries02.pdf
5438-Article Text-8663-1-10-20200511.pdf
2204.01637.pdf

Recently uploaded (20)

PPTX
Physical Education and Health Q4-CO4-TARPAPEL
PPTX
Green and Orange Illustration Understanding Climate Change Presentation.pptx
PPTX
Slide_Egg-81850-About Us PowerPoint Template Free.pptx
PPTX
Theatre Studies - Powerpoint Entertainmn
PPTX
Callie Slide Show Slide Show Slide Show S
PPTX
Certificados y Diplomas para Educación de Colores Candy by Slidesgo.pptx
PPTX
CPAR7 ARTS GRADE 112 LITERARY ARTS OR LI
PPTX
EJ Wedding 520 It's official! We went to Xinyi District to do the documents
PPTX
Technical-Codes-presentation-G-12Student
PDF
the saint and devil who dominated the outcasts
PPTX
Review1_Bollywood_Project analysis of bolywood trends from 1950s to 2025
PPTX
Understanding Postmodernism Powerpoint.pptx
PPSX
Multiple scenes in a single painting.ppsx
PPTX
Art Appreciation-Lesson-1-1.pptx College
PDF
; Projeto Rixa Antiga.pdf
PPTX
DIMAYUGA ANDEA MAE P. BSED ENG 3-2 (CHAPTER 7).pptx
PPTX
Neoclassical and Mystery Plays Entertain
PDF
Dating-Courtship-Marriage-and-Responsible-Parenthood.pdf
PDF
The-Art-of-Storytelling-in-Cinema (1).pdf
PPTX
White Green Simple and Professional Business Pitch Deck Presentation.pptx
Physical Education and Health Q4-CO4-TARPAPEL
Green and Orange Illustration Understanding Climate Change Presentation.pptx
Slide_Egg-81850-About Us PowerPoint Template Free.pptx
Theatre Studies - Powerpoint Entertainmn
Callie Slide Show Slide Show Slide Show S
Certificados y Diplomas para Educación de Colores Candy by Slidesgo.pptx
CPAR7 ARTS GRADE 112 LITERARY ARTS OR LI
EJ Wedding 520 It's official! We went to Xinyi District to do the documents
Technical-Codes-presentation-G-12Student
the saint and devil who dominated the outcasts
Review1_Bollywood_Project analysis of bolywood trends from 1950s to 2025
Understanding Postmodernism Powerpoint.pptx
Multiple scenes in a single painting.ppsx
Art Appreciation-Lesson-1-1.pptx College
; Projeto Rixa Antiga.pdf
DIMAYUGA ANDEA MAE P. BSED ENG 3-2 (CHAPTER 7).pptx
Neoclassical and Mystery Plays Entertain
Dating-Courtship-Marriage-and-Responsible-Parenthood.pdf
The-Art-of-Storytelling-in-Cinema (1).pdf
White Green Simple and Professional Business Pitch Deck Presentation.pptx

1notes

  • 1. Introduction to Time Series Analysis. Lecture 1. Peter Bartlett 1. Organizational issues. 2. Objectives of time series analysis. Examples. 3. Overview of the course. 4. Time series models. 5. Time series modelling: Chasing stationarity. 1
  • 2. Organizational Issues • Peter Bartlett. bartlett@stat. Office hours: Thu 1:30-2:30 (Evans 399). Fri 3-4 (Soda 527). • Brad Luen. bradluen@stat. Office hours: Tue/Wed 2-3pm (Room TBA). • http://www.stat.berkeley.edu/∼bartlett/courses/153-fall2005/ Check it for announcements, assignments, slides, ... • Text: Time Series Analysis and its Applications, Shumway and Stoffer. 2
  • 3. Organizational Issues Computer Labs: Wed 12–1 and Wed 2–3, in 342 Evans. You need to choose one of these times. Please email bradluen@stat with your preference. First computer lab sections are on September 7. Classroom Lab Section: Fri 12–1, in 330 Evans. First classroom lab section is on September 2. Assessment: Lab/Homework Assignments (40%): posted on the website. These involve a mix of pen-and-paper and computer exercises. You may use any programming language you choose (R, Splus, Matlab). The last assignment will involve analysis of a data set that you choose. Midterm Exam (25%): scheduled for October 20, at the lecture. Final Exam (35%): scheduled for Thursday, December 15. 3
  • 4. A Time Series 1960 1965 1970 1975 1980 1985 1990 0 50 100 150 200 250 300 350 400 year $ SP500: 1960−1990 4
  • 5. A Time Series 1987 1987.05 1987.1 1987.15 1987.2 1987.25 1987.3 1987.35 1987.4 1987.45 1987.5 220 240 260 280 300 320 340 year $ SP500: Jan−Jun 1987 5
  • 6. A Time Series 240 250 260 270 280 290 300 310 0 5 10 15 20 25 30 $ SP500 Jan−Jun 1987. Histogram 6
  • 7. A Time Series 0 20 40 60 80 100 120 220 240 260 280 300 320 340 $ SP500: Jan−Jun 1987. Permuted. 7
  • 8. Objectives of Time Series Analysis 1. Compact description of data. 2. Interpretation. 3. Forecasting. 4. Control. 5. Hypothesis testing. 6. Simulation. 8
  • 9. Classical decomposition: An example Monthly sales for a souvenir shop at a beach resort town in Queensland. (Makridakis, Wheelwright and Hyndman, 1998) 0 10 20 30 40 50 60 70 80 90 0 2 4 6 8 10 12 x 10 4 9
  • 10. Transformed data 0 10 20 30 40 50 60 70 80 90 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 10
  • 11. Trend 0 10 20 30 40 50 60 70 80 90 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 11
  • 12. Residuals 0 10 20 30 40 50 60 70 80 90 −1 −0.5 0 0.5 1 1.5 12
  • 13. Trend and seasonal variation 0 10 20 30 40 50 60 70 80 90 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 13
  • 14. Objectives of Time Series Analysis 1. Compact description of data. Example: Classical decomposition: Xt = Tt + St + Yt. 2. Interpretation. Example: Seasonal adjustment. 3. Forecasting. Example: Predict sales. 4. Control. 5. Hypothesis testing. 6. Simulation. 14
  • 15. Unemployment data Monthly number of unemployed people in Australia. (Hipel and McLeod, 1994) 1983 1984 1985 1986 1987 1988 1989 1990 4 4.5 5 5.5 6 6.5 7 7.5 8 x 10 5 15
  • 16. Trend 1983 1984 1985 1986 1987 1988 1989 1990 4 4.5 5 5.5 6 6.5 7 7.5 8 x 10 5 16
  • 17. Trend plus seasonal variation 1983 1984 1985 1986 1987 1988 1989 1990 4 4.5 5 5.5 6 6.5 7 7.5 8 x 10 5 17
  • 18. Residuals 1983 1984 1985 1986 1987 1988 1989 1990 −6 −4 −2 0 2 4 6 8 x 10 4 18
  • 19. Predictions based on a (simulated) variable 1983 1984 1985 1986 1987 1988 1989 1990 4 4.5 5 5.5 6 6.5 7 7.5 8 x 10 5 19
  • 20. Objectives of Time Series Analysis 1. Compact description of data: Xt = Tt + St + f(Yt) + Wt. 2. Interpretation. Example: Seasonal adjustment. 3. Forecasting. Example: Predict unemployment. 4. Control. Example: Impact of monetary policy on unemployment. 5. Hypothesis testing. Example: Global warming. 6. Simulation. Example: Estimate probability of catastrophic events. 20
  • 21. Overview of the Course 1. Time series models (a) Stationarity. (b) Autocorrelation function. (c) Transforming to stationarity. 2. Time domain methods 3. Spectral analysis 4. State space models(?) 21
  • 22. Overview of the Course 1. Time series models 2. Time domain methods (a) AR/MA/ARMA models. (b) ACF and partial autocorrelation function. (c) Forecasting (d) Parameter estimation (e) ARIMA models/seasonal ARIMA models 3. Spectral analysis 4. State space models(?) 22
  • 23. Overview of the Course 1. Time series models 2. Time domain methods 3. Spectral analysis (a) Spectral density (b) Periodogram (c) Spectral estimation 4. State space models(?) 23
  • 24. Overview of the Course 1. Time series models 2. Time domain methods 3. Spectral analysis 4. State space models(?) (a) ARMAX models. (b) Forecasting, Kalman filter. (c) Parameter estimation. 24
  • 25. Time Series Models A time series model specifies the joint distribution of the se- quence {Xt} of random variables. For example: P[X1 ≤ x1, . . . , Xt ≤ xt] for all t and x1, . . . , xt. Notation: X1, X2, . . . is a stochastic process. x1, x2, . . . is a single realization. We’ll mostly restrict our attention to second-order properties only: EXt, E(Xt1 Xt2 ). 25
  • 26. Time Series Models Example: White noise: Xt ∼ WN(0, σ2 ). i.e., {Xt} uncorrelated, EXt = 0, VarXt = σ2 . Example: i.i.d. noise: {Xt} independent and identically distributed. P[X1 ≤ x1, . . . , Xt ≤ xt] = P[X1 ≤ x1] · · · P[Xt ≤ xt]. Not interesting for forecasting: P[Xt ≤ xt|X1, . . . , Xt−1] = P[Xt ≤ xt]. 26
  • 27. Gaussian white noise P[Xt ≤ xt] = Φ(xt) = 1 √ 2π Z xt −∞ e−x2 /2 dx. 0 5 10 15 20 25 30 35 40 45 50 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 27
  • 28. Gaussian white noise 0 5 10 15 20 25 30 35 40 45 50 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 28
  • 29. Time Series Models Example: Binary i.i.d. P[Xt = 1] = P[Xt = −1] = 1/2. 0 5 10 15 20 25 30 35 40 45 50 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 29
  • 30. Random walk St = Pt i=1 Xi. Differences: ∇St = St − St−1 = Xt. 0 5 10 15 20 25 30 35 40 45 50 −4 −2 0 2 4 6 8 30
  • 31. Random walk ESt? VarSt? 0 5 10 15 20 25 30 35 40 45 50 −15 −10 −5 0 5 10 31
  • 32. Random Walk Recall S&P500 data. (Notice that it’s smooth) 1987 1987.05 1987.1 1987.15 1987.2 1987.25 1987.3 1987.35 1987.4 1987.45 1987.5 220 240 260 280 300 320 340 year $ SP500: Jan−Jun 1987 32
  • 33. Random Walk Differences: ∇St = St − St−1 = Xt. 1987 1987.05 1987.1 1987.15 1987.2 1987.25 1987.3 1987.35 1987.4 1987.45 1987.5 −10 −8 −6 −4 −2 0 2 4 6 8 10 year $ SP500, Jan−Jun 1987. first differences 33
  • 34. Trend and Seasonal Models Xt = Tt + St + Et = β0 + β1t + P i (βi cos(λit) + γi sin(λit)) + Et 0 50 100 150 200 250 2.5 3 3.5 4 4.5 5 5.5 6 34
  • 35. Trend and Seasonal Models Xt = Tt + Et = β0 + β1t + Et 0 50 100 150 200 250 2.5 3 3.5 4 4.5 5 5.5 6 35
  • 36. Trend and Seasonal Models Xt = Tt + St + Et = β0 + β1t + P i (βi cos(λit) + γi sin(λit)) + Et 0 50 100 150 200 250 2.5 3 3.5 4 4.5 5 5.5 6 36
  • 37. Trend and Seasonal Models: Residuals 0 50 100 150 200 250 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 37
  • 38. Time Series Modelling 1. Plot the time series. Look for trends, seasonal components, step changes, outliers. 2. Transform data so that residuals are stationary. (a) Estimate and subtract Tt, St. (b) Differencing. (c) Nonlinear transformations (log, √ ·). 3. Fit model to residuals. 38
  • 39. Nonlinear transformations Recall: Monthly sales. (Makridakis, Wheelwright and Hyndman, 1998) 0 10 20 30 40 50 60 70 80 90 0 2 4 6 8 10 12 x 10 4 0 10 20 30 40 50 60 70 80 90 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 39
  • 40. Differencing Recall: S&P 500 data. 1987 1987.05 1987.1 1987.15 1987.2 1987.25 1987.3 1987.35 1987.4 1987.45 1987.5 220 240 260 280 300 320 340 year $ SP500: Jan−Jun 1987 1987 1987.05 1987.1 1987.15 1987.2 1987.25 1987.3 1987.35 1987.4 1987.45 1987.5 −10 −8 −6 −4 −2 0 2 4 6 8 10 year $ SP500, Jan−Jun 1987. first differences 40
  • 41. Differencing and Trend Define the lag-1 difference operator, (think ‘first derivative’) ∇Xt = Xt − Xt−1 = (1 − B)Xt, where B is the backshift operator, BXt = Xt−1. • If Xt = β0 + β1t + Yt, then ∇Xt = β1 + ∇Yt. • If Xt = Pk i=0 βiti + Yt, then ∇k Xt = k!βk + ∇k Yt, where ∇k Xt = ∇(∇k−1 Xt) and ∇1 Xt = ∇Xt. 41
  • 42. Differencing and Seasonal Variation Define the lag-s difference operator, ∇sXt = Xt − Xt−s = (1 − Bs )Xt, where Bs is the backshift operator applied s times, Bs Xt = B(Bs−1 Xt) and B1 Xt = BXt. If Xt = Tt + St + Yt, and St has period s (that is, St = St−s for all t), then ∇sXt = Tt − Tt−s + ∇sYt. 42
  • 43. Least Squares Regression Model: Xt = β0 + β1t + Wt = 1 t   β0 β1   + Wt,         X1 X2 . . . XT         | {z } x =         1 1 1 2 . . . . . . 1 T         | {z } Z   β0 β1   | {z } β +         W1 W2 . . . WT         | {z } w 43
  • 44. Least Squares Regression x = Zβ + w. Least squares: choose β to minimize kwk2 = kx − Zβk2 . Solution β̂ satisfies the normal equations: ∇βkwk2 = 2Z0 (x − Zβ̂) = 0. If Z0 Z is nonsingular, the solution is unique: β̂ = (Z0 Z)−1 Z0 x. 44
  • 45. Least Squares Regression Properties of the least squares solution (β̂ = (Z0 Z)−1 Z0 x): • Linear. • Unbiased. • For {Wt} i.i.d., it is the linear unbiased estimator with smallest variance. Other regressors Z: polynomial, trigonometric functions, piecewise polynomial (splines), etc. 45
  • 46. Outline 1. Objectives of time series analysis. Examples. 2. Overview of the course. 3. Time series models. 4. Time series modelling: Chasing stationarity. 46