SlideShare a Scribd company logo
2.1 Functions
Obj: Define a function
2.1 Functions
• A relation is considered a Function if there is exactly
one output for each input
Obj: Define a function
2.1 Functions Obj: Define a function
The temperature of water from
the faucet is a function of time.
2.1 Functions Obj: Define a function
INPUT
(DOMAIN)
OUTPUT (RANGE)
FUNCTION
MACHINE
For a relationship to be a function…
EVERY INPUT MUST HAVE AN OUTPUT
TWO DIFFERENT INPUTS CAN HAVE THE SAME OUTPUT
Functions
ONE INPUT CAN HAVE ONLY ONE OUTPUT
2.1 Functions Obj: Define a function
Example
No two ordered pairs can have
the same first coordinate
(and different second coordinates).
Which of the following relations are
functions?
R= {(9,10), (-5, -2), (2, -1), (3, -9)}
S= {(6, a), (8, f), (6, b), (-2, p)}
T= {(z, 7), (y, -5), (r, 7), (z, 0), (k, 0)}
2.1 Functions Obj: Define a function
2.1 Functions Obj: Define a function
2.1 Functions Obj: Define a function
2.1 Functions Obj: Define a function
2.1 Functions Obj: Define a function
a) Express how “f” acts on the input “x” to produce f(x)
b) Evaluate f(3), f(-2), and f()
c) Find the domain and range of “f”
a)
X F(x)
-2 8
-1 5
0 4
1 5
b) f(3) = 3^2 + 4
= 13
F(-2) = 4 + 4 = 8
F() = 5 + 4 = 9
c) Domain:
All real numbers
Range: [4, oo)
2.1 Functions Obj: Define a function
2.1 Functions Obj: Define a function
2.1 Functions Obj: Define a function
Ex2: f(x) = 2x2
– 3
Find f(0), f(-3), f(5).
2.1 Functions Obj: Define a function
Ex3:
2.1 Functions Obj: Define a function
2.1 Functions Obj: Define a function
2.1 Functions Obj: Define a function
1) f(x) = x2
+ 2
2) g(x) = √x – 1
3) h(x) = 1
x + 5
Practice: Find the domain and range for
the following:
2.1 Functions Obj: Define a function
1) f(x) = x2
+ 2
2) g(x) = √x – 1
2) h(x) = 1
x + 5
Practice: Find the domain and range for
the following:
Domain: R Range: [2, oo)
Domain: [0, oo) Range: [-1,
oo)
Domain: R {-5} Range: (-oo, -5) U (-
5, oo)
2.1 Functions Obj: Define a function
Practice:
2.1 Functions Obj: Define a function
Practice:
a) Domain: R – {0, 1}
b) Domain: [-3, 3]
c) Domain: (-1, oo)
2.1 Functions Obj: Define a function
Authentic example, Real life:
2.1 Functions Obj: Define a function
Authentic example, Real life:
2.1 Functions Obj: Define a function
Piecewise Defined Function:
2.1 Functions Obj: Define a function
Piecewise Defined Function:
2.1 Functions Obj: Define a function
Piecewise Defined Function:
‘Piecewise Function’ What Are They?
Up to now, we’ve been looking at functions
represented by a single equation.
In real life, however, functions are represented
by a combination of equations, each
corresponding to a part of the domain.
These are called piecewise functions.
Piecewise Function –a function defined by two or more
functions over different
parts, or pieces, of the domain.
2.1 Functions Obj: Define a function
 








1
,
1
3
1
,
1
2
x
if
x
x
if
x
x
f
One equation gives the value of f(x) when x ≤ 1
and the other when x>1
2.1 Functions Obj: Define a function








2
,
1
2
2
,
2
)
(
x
if
x
x
if
x
x
f
First you have to figure
out which equation to
use,
you NEVER use both
X=0
This one fits
Into the top
equation
So:
0+2=2
f(0)=2
X=2
This one fits here
So:
2(2) + 1 = 5
f(2) = 5
X=4
This one fits here
So:
2(4) + 1 = 9
f(4) = 9
2.1 Functions Obj: Define a function
Evaluating Piecewise Functions
Evaluating piecewise functions is like evaluating
functions that you are already familiar with.
f(x) =
x2
+ 1 , x  0
x – 1 , x  0
Let’s calculate f(2).
You are being asked to find y when
x = 2. Since 2 is  0, you will only substitute
into the second part of the function.
f(2) = 2 – 1 = 1

More Related Content

PPT
Lesson 2 - Functions and their Graphs - NOTES.ppt
PPTX
1. Week 1_ Functions and Evaluate Functions.pptx
PPTX
Functions
PPTX
FM-Functions-Piecewise-Functions (1).pptx
PPTX
FM-Functions-Piecewise-Functions (1).pptx
PPTX
Grade 11- Concept of functions rev.1.pptx
PPT
Module 1 Lesson 1 Remediation Notes
PPTX
General Mathematics.pptxjuniorhighschool
Lesson 2 - Functions and their Graphs - NOTES.ppt
1. Week 1_ Functions and Evaluate Functions.pptx
Functions
FM-Functions-Piecewise-Functions (1).pptx
FM-Functions-Piecewise-Functions (1).pptx
Grade 11- Concept of functions rev.1.pptx
Module 1 Lesson 1 Remediation Notes
General Mathematics.pptxjuniorhighschool

Similar to 2.1 Functions PPT 1 FOR STUDRNT MUST REA (20)

PPTX
7 functions
PPT
Storyboard math
PDF
3.1 Functions and Function Notation
PDF
Limits and Continuity of Functions
PDF
Calculus 1 Lecture Notes (Functions and Their Graphs)
PDF
3.1 Functions
PPTX
01 FUNCTIONS.pptx
PDF
Lecture 3.1 to 3.2 bt
PPT
Functions, and quaduratic equatioins in mathematics
PPT
Introductory part of function for class 12th JEE
PPTX
introduction-to-functions-grade-11general-math.pptx
PDF
2.3 Functions
PPT
Module 2 topic 1 notes
PPTX
Grade 11-Strand(Concept of functions).pptx
PDF
functions-1.pdf
PDF
Lesson 1: Functions and their representations (slides)
PDF
Lesson 1: Functions and their representations (slides)
PPT
PPT
Piecewise function lesson 3
PPTX
Lesson 21: More Algebra
7 functions
Storyboard math
3.1 Functions and Function Notation
Limits and Continuity of Functions
Calculus 1 Lecture Notes (Functions and Their Graphs)
3.1 Functions
01 FUNCTIONS.pptx
Lecture 3.1 to 3.2 bt
Functions, and quaduratic equatioins in mathematics
Introductory part of function for class 12th JEE
introduction-to-functions-grade-11general-math.pptx
2.3 Functions
Module 2 topic 1 notes
Grade 11-Strand(Concept of functions).pptx
functions-1.pdf
Lesson 1: Functions and their representations (slides)
Lesson 1: Functions and their representations (slides)
Piecewise function lesson 3
Lesson 21: More Algebra
Ad

Recently uploaded (20)

PDF
01-Introduction-to-Information-Management.pdf
PDF
Microbial disease of the cardiovascular and lymphatic systems
PDF
O7-L3 Supply Chain Operations - ICLT Program
PDF
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
PDF
FourierSeries-QuestionsWithAnswers(Part-A).pdf
PDF
Classroom Observation Tools for Teachers
PDF
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
PDF
RMMM.pdf make it easy to upload and study
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PDF
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PPTX
Renaissance Architecture: A Journey from Faith to Humanism
PPTX
Cell Structure & Organelles in detailed.
PDF
O5-L3 Freight Transport Ops (International) V1.pdf
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PDF
STATICS OF THE RIGID BODIES Hibbelers.pdf
PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PPTX
human mycosis Human fungal infections are called human mycosis..pptx
PDF
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
01-Introduction-to-Information-Management.pdf
Microbial disease of the cardiovascular and lymphatic systems
O7-L3 Supply Chain Operations - ICLT Program
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
FourierSeries-QuestionsWithAnswers(Part-A).pdf
Classroom Observation Tools for Teachers
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
RMMM.pdf make it easy to upload and study
Supply Chain Operations Speaking Notes -ICLT Program
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
Final Presentation General Medicine 03-08-2024.pptx
Renaissance Architecture: A Journey from Faith to Humanism
Cell Structure & Organelles in detailed.
O5-L3 Freight Transport Ops (International) V1.pdf
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
STATICS OF THE RIGID BODIES Hibbelers.pdf
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
human mycosis Human fungal infections are called human mycosis..pptx
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
Ad

2.1 Functions PPT 1 FOR STUDRNT MUST REA

  • 2. 2.1 Functions • A relation is considered a Function if there is exactly one output for each input Obj: Define a function
  • 3. 2.1 Functions Obj: Define a function The temperature of water from the faucet is a function of time.
  • 4. 2.1 Functions Obj: Define a function INPUT (DOMAIN) OUTPUT (RANGE) FUNCTION MACHINE For a relationship to be a function… EVERY INPUT MUST HAVE AN OUTPUT TWO DIFFERENT INPUTS CAN HAVE THE SAME OUTPUT Functions ONE INPUT CAN HAVE ONLY ONE OUTPUT
  • 5. 2.1 Functions Obj: Define a function Example No two ordered pairs can have the same first coordinate (and different second coordinates). Which of the following relations are functions? R= {(9,10), (-5, -2), (2, -1), (3, -9)} S= {(6, a), (8, f), (6, b), (-2, p)} T= {(z, 7), (y, -5), (r, 7), (z, 0), (k, 0)}
  • 6. 2.1 Functions Obj: Define a function
  • 7. 2.1 Functions Obj: Define a function
  • 8. 2.1 Functions Obj: Define a function
  • 9. 2.1 Functions Obj: Define a function
  • 10. 2.1 Functions Obj: Define a function a) Express how “f” acts on the input “x” to produce f(x) b) Evaluate f(3), f(-2), and f() c) Find the domain and range of “f” a) X F(x) -2 8 -1 5 0 4 1 5 b) f(3) = 3^2 + 4 = 13 F(-2) = 4 + 4 = 8 F() = 5 + 4 = 9 c) Domain: All real numbers Range: [4, oo)
  • 11. 2.1 Functions Obj: Define a function
  • 12. 2.1 Functions Obj: Define a function
  • 13. 2.1 Functions Obj: Define a function Ex2: f(x) = 2x2 – 3 Find f(0), f(-3), f(5).
  • 14. 2.1 Functions Obj: Define a function Ex3:
  • 15. 2.1 Functions Obj: Define a function
  • 16. 2.1 Functions Obj: Define a function
  • 17. 2.1 Functions Obj: Define a function 1) f(x) = x2 + 2 2) g(x) = √x – 1 3) h(x) = 1 x + 5 Practice: Find the domain and range for the following:
  • 18. 2.1 Functions Obj: Define a function 1) f(x) = x2 + 2 2) g(x) = √x – 1 2) h(x) = 1 x + 5 Practice: Find the domain and range for the following: Domain: R Range: [2, oo) Domain: [0, oo) Range: [-1, oo) Domain: R {-5} Range: (-oo, -5) U (- 5, oo)
  • 19. 2.1 Functions Obj: Define a function Practice:
  • 20. 2.1 Functions Obj: Define a function Practice: a) Domain: R – {0, 1} b) Domain: [-3, 3] c) Domain: (-1, oo)
  • 21. 2.1 Functions Obj: Define a function Authentic example, Real life:
  • 22. 2.1 Functions Obj: Define a function Authentic example, Real life:
  • 23. 2.1 Functions Obj: Define a function Piecewise Defined Function:
  • 24. 2.1 Functions Obj: Define a function Piecewise Defined Function:
  • 25. 2.1 Functions Obj: Define a function Piecewise Defined Function: ‘Piecewise Function’ What Are They? Up to now, we’ve been looking at functions represented by a single equation. In real life, however, functions are represented by a combination of equations, each corresponding to a part of the domain. These are called piecewise functions. Piecewise Function –a function defined by two or more functions over different parts, or pieces, of the domain.
  • 26. 2.1 Functions Obj: Define a function           1 , 1 3 1 , 1 2 x if x x if x x f One equation gives the value of f(x) when x ≤ 1 and the other when x>1
  • 27. 2.1 Functions Obj: Define a function         2 , 1 2 2 , 2 ) ( x if x x if x x f First you have to figure out which equation to use, you NEVER use both X=0 This one fits Into the top equation So: 0+2=2 f(0)=2 X=2 This one fits here So: 2(2) + 1 = 5 f(2) = 5 X=4 This one fits here So: 2(4) + 1 = 9 f(4) = 9
  • 28. 2.1 Functions Obj: Define a function Evaluating Piecewise Functions Evaluating piecewise functions is like evaluating functions that you are already familiar with. f(x) = x2 + 1 , x  0 x – 1 , x  0 Let’s calculate f(2). You are being asked to find y when x = 2. Since 2 is  0, you will only substitute into the second part of the function. f(2) = 2 – 1 = 1