SlideShare a Scribd company logo
16of38
Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.
TEKOCLASSES,H.O.D.MATHS:SUHAGR.KARIYA(S.R.K.Sir)PH:(0755)-3200000,09893058881,BHOPAL,(M.P.)
FREEDownloadStudyPackagefromwebsite:www.tekoclasses.com
a3 − b3 = (a − b) (a − ωb) (a − ω²b) ; x2 + x + 1 = (x − ω) (x − ω2) ;
a3 + b3 = (a + b) (a + ωb) (a + ω2b) ;
a3 + b3 + c3 − 3abc = (a + b + c) (a + ωb + ω²c) (a + ω²b + ωc)
10. nth ROOTS OF UNITY :
If 1 , α1 , α2 , α3 ..... αn − 1 are the n , nth root of unity then :
(i) They are in G.P. with common ratio ei(2π/n) &
(ii) 1p + α1
p
+ α2
p
+ .... +α n
p
−1 = 0 if p is not an integral multiple of n
= n if p is an integral multiple of n
(iii) (1 − α1) (1 − α2) ...... (1 − αn − 1) = n &
(1 + α1) (1 + α2) ....... (1 + αn − 1) = 0 if n is even and 1 if n is odd.
(iv) 1 . α1 . α2 . α3 ......... αn − 1 = 1 or −1 according as n is odd or even.
11. THE SUM OF THE FOLLOWING SERIES SHOULD BE REMEMBERED :
(i) cos θ + cos 2 θ + cos 3 θ + ..... + cos nθ =
( )
( )2sin
2nsin
θ
θ
cos 




 +
2
1n
θ.
(ii) sin θ + sin 2θ + sin 3θ + ..... + sin nθ =
( )
( )2sin
2nsin
θ
θ
sin 




 +
2
1n
θ.
Note : If θ = (2π/n) then the sum of the above series vanishes.
12. STRAIGHT LINES & CIRCLES IN TERMS OF COMPLEX NUMBERS :
(A) If z1 &z2 are two complex numbersthenthecomplexnumber z =
nm
mznz 21
+
+
divides the joins of z1
& z2 in the ratio m: n.
Note:(i) If a , b , c are three real numbers such that az1 + bz2 + cz3 = 0 ;
where a + b + c = 0 and a,b,c are not allsimultaneouslyzero, then the complexnumbers z1 , z2 & z3
are collinear.
(ii) Ifthe vertices A, B, C ofa ∆ represent the complexnos. z1, z2, z3 respectively, then :
(a) Centroid of the ∆ABC =
3
zzz 321 ++
:
(b) Orthocentre of the ∆ABC =
( ) ( ) ( )
CseccBsecbAseca
zCsecczBsecbzAseca 321
++
++
OR
CtanBtanAtan
CtanzBtanzAtanz 321
++
++
(c) Incentre of the ∆ ABC = (az1 + bz2 + cz3) ÷ (a + b + c) .
(d) Circumcentre ofthe ∆ABC= :
(Z1 sin 2A + Z2 sin 2B + Z3 sin 2C) ÷ (sin 2A + sin 2B + sin 2C) .
(B) amp(z) = θ is arayemanating fromthe origin inclined at an angle θ to the x−axis.
(C) z − a = z − b is the perpendicular bisector of the line joining a to b.
(D) The equation ofa line joining z1 & z2 is given by;
z = z1 + t (z1 − z2) where t is a perameter.
(E) z = z1 (1 + it) where t is a realparameter is a line through the point z1 &perpendicular to oz1.
(F) The equation of a line passing through z1 & z2 can be expressed in the determinant form as
1zz
1zz
1zz
22
11 = 0. This is also the condition for three complex numbers to be collinear..
(G) Complex equation of a straight line through two given points z1 & z2 can be written as
( ) ( ) ( )21212121 zzzzzzzzzz −+−−− = 0, which on manipulating takes the formas rzz +α+α = 0
where r is realand α isa non zero complex constant.
(H) The equation of circle having centre z0 & radius ρ is :
z − z0 = ρ or z z − z0 z − 0z z + 0z z0 − ρ² = 0 which is of the form
rzzzz +α+α+ = 0 , r is real centre − α & radius r−αα .
Circle willbe realif 0r ≥−αα .
(I) The equation ofthe circle described on the line segment joining z1 &z2 asdiameter is :
(i) arg
1
2
zz
zz
−
−
= ±
2
π
or (z − z1) ( z − z 2) + (z − z2)( z − z 1) = 0
(J) Condition for four given points z1 , z2 , z3 & z4 to be concyclicis, the number
17of38
Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.
TEKOCLASSES,H.O.D.MATHS:SUHAGR.KARIYA(S.R.K.Sir)PH:(0755)-3200000,09893058881,BHOPAL,(M.P.)
FREEDownloadStudyPackagefromwebsite:www.tekoclasses.com
14
24
23
13
zz
zz
.
zz
zz
−
−
−
−
is real. Hence theequationofa circle through3noncollinear pointsz1, z2 &z3 canbe
taken as
( )( )
( )( )231
132
zzzz
zzzz
−−
−−
is real ⇒
( )( )
( )( )231
132
zzzz
zzzz
−−
−−
=
( )( )
( )( )231
132
zzzz
zzzz
−−
−−
13.(a) Reflection points for a straight line :
Two given points P & Q are the reflection points for a given straight line if the given line is the right
bisector of the segment PQ. Notethat thetwo points denoted bythe complexnumbers z1 &z2 willbe
the reflection pointsforthe straight line 0rzz =+α+α ifand onlyif; 0rzz 21
=+α+α , wherer is
realand α is nonzero complex constant.
(b) Inverse points w.r.t. a circle :
Two points P& Q are said to be inverse w.r.t. a circle with centre 'O' and radius ρ, if :
(i) the point O, P, Q are collinear and on the same side of O. (ii) OP . OQ = ρ2.
Note that the two points z1 &z2 willbe the inverse points w.r.t. the circle
0rzzzz =+α+α+ if and only if 0rzzzz 2121 =+α+α+ .
14. PTOLEMY’S THEOREM :It states that the product of the lengths of the diagonals of a
convex quadrilateral inscribed in a circle is equal to the sum of the lengths of the two pairs of
its opposite sides. i.e. z1 − z3 z2 − z4 = z1 − z2 z3 − z4 + z1 − z4 z2 − z3.
15. LOGARITHM OF A COMPLEX QUANTITY:
(i) Loge (α + i β) =
2
1
Loge (α² + β²) + i 





α
β
+π −1
tann2 where n ∈ I.
(ii) ii represents a set of positive real numbers given by





 π
+π−
2
n2
e , n ∈ I.
VERY ELEMENTARY EXERCISE
Q.1 Simplifyand expressthe result in theformof a + bi
(a)
2
i2
i21






+
+
(b) −i (9 + 6 i) (2 − i)−1 (c)
2
3
1i2
ii4








+
−
(d)
i52
i23
i52
i23
+
−
+
−
+
(e)
( ) ( )
i2
i2
i2
i2 22
+
−
−
−
+
Q.2 Given that x , y ∈ R, solve : (a) (x + 2y) + i (2x − 3y) = 5 − 4i (b) (x + iy) + (7 − 5i) = 9 + 4i
(c) x² − y² − i (2x + y) = 2i (d) (2 + 3i) x² − (3 − 2i) y = 2x − 3y + 5i
(e) 4x² + 3xy + (2xy − 3x²)i = 4y² − (x2/2) + (3xy − 2y²)i
Q.3 Find the square root of : (a) 9 + 40 i (b) −11 − 60 i (c) 50 i
Q.4 (a) If f (x) = x4 + 9x3 + 35x2 − x + 4, find f ( – 5 + 4i)
(b) If g (x) = x4 − x3 + x2 + 3x − 5, find g(2 + 3i)
Q.5 Among the complex numbersz satisfying thecondition z i+ − =3 3 3 , find the number having the
least positiveargument.
Q.6 Solve the following equations over C and expressthe result in theform a + ib, a, b ∈R.
(a) ix2 − 3x − 2i = 0 (b) 2 (1 + i) x2 − 4 (2 − i) x − 5 − 3 i = 0
Q.7 Locate the points representing the complexnumber zon theArgand plane:
(a) z +1 −2i = 7 ; (b) z z− + +1 1
2 2
= 4 ; (c)
z
z
−
+
3
3
= 3 ; (d) z −3 = z−6
Q.8 If a & b are real numbers between 0 & 1 such that the points z1 = a + i, z2 = 1 + bi & z3 = 0 forman
equilateraltriangle, then find the valuesof'a' and 'b'.
Q.9 For what real values of x & y are the numbers −3 + ix2 y & x2 + y + 4iconjugate complex?
Q.10 Find the modulus, argument and the principal argument of the complex numbers.
(i) 6 (cos310° − i sin 310°) (ii) −2 (cos 30° + i sin 30°) (iii)
2
4 1 2
+
+ +
i
i i( )
Q.11 If (x + iy)1/3 = a + bi ; prove that 4(a2 − b2) =
x
a
y
b
+ .
Q.12(a) If
a ib
c id
+
+
= p + qi , prove that p2 + q2 =
a b
c d
2 2
2 2
+
+
.
(b) Let z1, z2, z3 be the complex numbers such that
z1 + z2 + z3 = z1z2 + z2z3 + z3z1 = 0. Prove that | z1 | = | z2 | = | z3 |.
Q.13 Let z be a complex number such that z ∈ cR and 2
2
zz1
zz1
+−
++
∈ R, then prove that | z | =1.
Q.14 Prove the identity, ( )( )2
2
2
1
2
21
2
21 |z|1|z|1|zz||zz1| −−=−−−
18of38
Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.
TEKOCLASSES,H.O.D.MATHS:SUHAGR.KARIYA(S.R.K.Sir)PH:(0755)-3200000,09893058881,BHOPAL,(M.P.)
FREEDownloadStudyPackagefromwebsite:www.tekoclasses.com
Q.15 For any two complex numbers, prove that z z z z1 2
2
1 2
2
+ + − = 2 [ ]z z1
2
2
2
+ . Also give the
geometricalinterpretationofthisidentity.
Q.16 (a) Find all non−zero complex numbers Z satisfying Z = i Z².
(b) Ifthe complex numbers z1, z2, .................zn lieon the unit circle|z| = 1 then show that
|z1 + z2 + ..............+zn| = |z1
–1+ z2
–1+................+zn
–1| .
Q.17 Find the Cartesianequation ofthe locus of'z' in the complexplane satisfying, | z – 4 | + | z + 4 | = 16.
Q.18 If ω is an imaginary cube root of unity then prove that :
(a) (1 + ω − ω²)3 − (1− ω + ω²)3 = 0 (b) (1 − ω + ω²)5 + (1+ ω − ω²)5 = 32
(c) If ωis the cube root of unity, Find the value of, (1 + 5ω2 + ω4) (1+ 5ω4 + ω2) (5ω3 + ω+ ω2).
Q.19 If ωis a cube root of unity, prove that ; (i) (1 + ω− ω2)3 − (1 − ω+ ω2)3
(ii)
a b c
c a b
+ +
+ +
ω ω
ω ω
2
2
= ω2 (iii) (1 − ω) (1 − ω2) (1 − ω4) (1 − ω8) = 9
Q.20 If x = a + b ; y = aω + bω2 ; z = aω2 + bω, show that
(i) xyz = a3 + b3 (ii) x2 + y2 + z2 = 6ab (iii) x3 + y3 + z3 = 3 (a3 + b3)
Q.21 If (w ≠ 1) is a cube root ofunity then
11wii
1w1i1
wwi11
2
22
−−+−−
−−−
++
=
(A) 0 (B) 1 (C) i (D) w
Q.22(a) (1 + w)7 =A+ Bw where w is the imaginarycube root of a unity andA, B ∈ R, find the ordered pair
(A, B).
(b) The value of the expression ;
1. (2 − w) (2 − w²) + 2. (3 − w) (3 − w²) + ............. + (n − 1) . (n − w) (n − w²), where w is an
imaginary cube root of unity is ________.
Q.23 If n ∈ N, prove that (1 + i)n + (1 − i)n = 22
1n +
. cos
nπ
4
.
Q.24 Show that thesum
k
n
=
∑1
2
sin cos
2
2 1
2
2 1
π πk
n
i
k
n+
−
+





 simplifiesto apure imaginarynumber..
Q.25 If x = cosθ + i sinθ & 1+ 1 2
− a = na, prove that 1 + a cosθ =
a
n2
(1 + nx) 1 +






n
x
.
Q.26 The number t isrealand not anintegralmultiple ofπ/2. Thecomplex number x1 and x2 aretherootsof
the equation, tan2(t) · x2 + tan (t) · x + 1 = 0
Show that (x1)n + (x2)n = 




 π
3
n2
cos2 cotn(t).
EXERCISE-1
Q.1 Simplifyand expressthe result in the formof a +bi :
(a) −i (9 + 6 i) (2 − i)−1 (b)
23
1i2
ii4








+
−
(c)
i52
i23
i52
i23
+
−
+
−
+
(d)
( ) ( )
i2
i2
i2
i2 22
+
−
−
−
+
(e) ii −+
Q.2 Find the modulus , argument and the principal argument of the complex numbers.
(i) z = 1 + cos 




 π
9
10
+ i sin 




 π
9
10
(ii) (tan1 – i)2
(iii) z =
i125i125
i125i125
−−+
−++ (iv)
5
2
sin
5
2
cos1i
1i
π
+




 π
−
−
Q.3 Given that x, y ∈ R, solve :
(a) (x + 2y) + i (2x − 3y) = 5 − 4i (b)
1i8
i65
i23
y
i21
x
−
+
=
+
+
+
(c) x² − y² − i (2x + y) = 2i (d) (2 + 3i) x² − (3 − 2i) y = 2x − 3y + 5i
(e) 4x² + 3xy + (2xy − 3x²)i = 4y² − (x2/2) + (3xy − 2y²)i
Q.4(a) Let Z is complex satisfying the equation, z2 – (3 + i)z + m + 2i= 0, where m ∈R.
19of38
Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.
TEKOCLASSES,H.O.D.MATHS:SUHAGR.KARIYA(S.R.K.Sir)PH:(0755)-3200000,09893058881,BHOPAL,(M.P.)
FREEDownloadStudyPackagefromwebsite:www.tekoclasses.com
Suppose the equation has a realroot, then find the value ofm.
(b) a, b, c are real numbers in the polynomial, P(Z) = 2Z4 + aZ3 + bZ2 + cZ + 3
If two roots of the equation P(Z) = 0 are 2 and i, then find thevalue of'a'.
Q.5(a) Find the real values of x & y for which z1 = 9y2 − 4 − 10 ix and
z2 = 8y2 − 20 i are conjugate complex of each other.
(b) Find the value of x4 − x3 + x2 + 3x − 5 if x = 2 + 3i
Q.6 Solve the following for z : (a) z2 – (3 – 2 i)z = (5i – 5) (b) z+ z = 2 + i
Q.7(a) If iZ3 + Z2 − Z + i = 0, then show that | Z | = 1.
(b) Let z1 and z2 be two complex numbers such that
21
21
zz2
z2z
−
−
= 1 and | z2 | ≠ 1, find | z1 |.
(c) Let z1 =10 +6i &z2 = 4 +6i. If z isanycomplexnumber suchthat theargument of,
2
1
zz
zz
−
−
is
4
π
, then
prove that z − 7 − 9i= 3 2 .
Q.8 Show that theproduct,













 +
+













 +
+













 +
+










 +
+
n2
222
2
i1
1......
2
i1
1
2
i1
1
2
i1
1 is equal to 1
1
22
−





n
(1+ i) where n ≥ 2 .
Q.9 Let a &b be complex numbers (which may bereal) and let,
Z = z3 + (a + b + 3i) z2 + (ab + 3 ia + 2 ib − 2) z + 2 abi − 2a.
(i) Show that Z is divisible by, z + b + i. (ii) Find all complex numbers z for which Z= 0.
(iii) Find all purelyimaginary numbers a &b when z = 1 + i and Z is a real number.
Q.10 Interpret the following locii in z ∈C.
(a) 1 < z − 2i < 3 (b) Re 4
2zi
i2z
≤





+
+
(z ≠ 2i)
(c) Arg (z + i) −Arg (z − i) = π/2 (d) Arg (z − a) = π/3 where a = 3 + 4i.
Q.11 Prove that thecomplexnumbers z1 and z2 and the origin forman isosceles trianglewithverticalangle
2π/3 if 0zzzz 21
2
2
2
1 =++ .
Q.12 Pis apoint on theAraganddiagram. Onthe circlewith OPas diameter two points Q & Raretakensuch
that ∠ POQ = ∠ QOR = θ. If ‘O’is the origin & P, Q & R are represented bythe complex numbers
ZZZZ
1 , Z2 & Z3 respectively, show that : Z2
2 . cos 2θ = Z1 . Z3 cos²θ.
Q.13 Let z1, z2, z3 are three pair wise distinct complexnumbers and t1, t2, t3 are non-negative realnumbers
such that t1 + t2 + t3 = 1. Prove that the complexnumber z = t1z1 + t2z2 + t3z3 lies inside a triangle with
vertices z1, z2, z3 or on its boundry.
Q.14 If a CiSα, b CiSβ, c CiSγ represent three distinct collinear points in anArgand's plane, then prove
thefollowing:
(i) Σ ab sin (α − β) = 0.
(ii) (a CiS α) )cos(bc2cb 22
γ−β−+ ± (b CiS β) )cos(ac2ca 22
γ−α−+
(c CiS γ) )cos(ab2ba 22
β−α−+ = 0.
Q.15 Find allrealvalues of the parameter a for which the equation
(a − 1)z4 − 4z2 + a + 2 = 0 has only pure imaginary roots.
Q.16 LetA≡z1 ;B ≡ z2;C ≡ z3 are three complex numbers denotingthe vertices ofanacuteangled triangle.
Iftheorigin ‘O’is theorthocentreofthe triangle,thenprovethat
z1 z2
+ z1
z2 = z2 z3
+ z2
z3 = z3 z1
+ z3
z1
hence show that the ∆ABC is a right angled triangle ⇔ z1 z2
+ z1
z2 = z2 z3
+ z2
z3 = z3 z1
+ z3
z1 = 0
Q.17 If the complex number P(w) lies on the standard unit circle in an Argand's plane and
z = (aw+b)(w – c)–1 then, find the locus ofz and interpret it. Given a, b, c are real.
Q.18(a) Without expanding the determinant at anystage , find RK∈ suchthat
i8iKi4
ii16i8
i34i8i4
+−
+−
++
haspurelyimaginaryvalue.
(b) IfA, Band C are the angles ofa triangle
20of38
Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.
TEKOCLASSES,H.O.D.MATHS:SUHAGR.KARIYA(S.R.K.Sir)PH:(0755)-3200000,09893058881,BHOPAL,(M.P.)
FREEDownloadStudyPackagefromwebsite:www.tekoclasses.com
D =
iC2iAiB
iAiB2iC
iBiCiA2
eee
eee
eee
−
−
−
where i = −1 then find the value of D.
Q.19 If w is an imaginary cube root of unity then prove that :
(a) (1 − w + w2) (1 − w2 + w4) (1 − w4 + w8) ..... to 2n factors = 22n .
(b) If w is a complex cube root of unity, find the value of
(1 + w) (1 + w2) (1 + w4) (1 + w8) ..... to n factors .
Q.20 Prove that
n
cosisin1
cosisin1






θ−θ+
θ+θ+
= cos 





θ−
π
n
2
n
+ isin 





θ−
π
n
2
n
. Hence deduce that
5
5
cosi
5
sin1 




 π
+
π
+ + i
5
5
cosi
5
sin1 




 π
−
π
+ = 0
Q.21 If cos (α − β) + cos(β − γ) + cos (γ − α) = − 3/2 then prove that :
(a) Σ cos 2α = 0 = Σ sin 2α (b) Σ sin (α + β) = 0 = Σ cos (α + β) (c) Σ sin2 α = Σ cos2 α = 3/2
(d) Σ sin 3α = 3 sin (α + β + γ) (e) Σ cos 3α = 3 cos (α + β + γ)
(f) cos3 (θ+α)+cos3 (θ+β)+ cos3 (θ+γ) = 3cos(θ +α). cos (θ+β). cos (θ+γ) where θ ∈R.
Q.22 Resolve Z5 + 1 into linear& quadratic factors withrealcoefficients. Deduce that : 4·sin π
10
·cos
π
5
= 1.
Q.23 If x = 1+ i 3 ; y = 1 − i 3 & z = 2 , then prove that xp + yp = zp for every prime p > 3.
Q.24 If the expression z5 – 32 can be factorised into linear and quadratic factors over realcoefficients as
(z5 – 32) = (z – 2)(z2 – pz + 4)(z2 – qz + 4) then find the value of (p2 + 2p).
Q.25(a)Let z= x + iybeacomplexnumber, wherexand y arerealnumbers. LetAand B bethesets defined by
A= {z | | z | ≤ 2} and B = {z | (1 – i)z + (1 + i) z ≥ 4}. Find the area of the regionA∩ B.
(b) For all real numbers x, let the mapping f (x) =
i−x
1
, where i = 1− . If there exist real number
a, b, c and d for which f (a), f (b), f (c) and f (d) forma square onthe complex plane. Find the area of
the square.
EXERCISE-2
Q.1 If
p q r
q r p
r p q
= 0 ; where p , q , r are the moduli of non−zero complex numbers u, v, w respectively,,
prove that, arg
w
v
= arg
w u
v u
−
−






2
.
Q.2 The equation x3 = 9 + 46i where i = 1− has a solution ofthe forma + bi where a and bare integers.
Find the value of(a3 + b3).
Q.3 Show that the locus formed by z in the equation z3 + iz = 1 never crosses the co-ordinate axes in the
Argand’s plane. Further show that |z| =
−
+
Im( )
Re( )Im( )
z
z z2 1
Q.4 If ωis the fifth root of 2 and x = ω+ ω2, prove that x5 = 10x2 + 10x + 6.
Q.5 Prove that , with regard to the quadratic equation z2 + (p + ip′) z + q + iq′ = 0
where p , p′, q , q′ are all real.
(i) if the equation has one real root then q ′2 − pp ′q′ + qp′2 = 0 .
(ii) if the equation has two equal roots then p2 − p′2 = 4q & pp′ = 2q′.
State whether these equalrootsarerealor complex.
Q.6 If the equation (z + 1)7 + z7 = 0 has roots z1, z2, .... z7, find the value of
(a) ∑
=
7
1r
r )ZRe( and (b) ∑
=
7
1r
r )ZIm(
Q.7 Find the roots oftheequation Zn = (Z+ 1)n and show that thepoints whichrepresent themare collinear
on the complex plane. Hence showthat these roots are also the roots ofthe equation
2
2
Z
n
m
sin2 




 π
+ Z
n
m
sin2
2





 π
+ 1 = 0.
Q.8 Dividing f(z) by z − i, we get the remainder i and dividing it by z + i, we get the remainder
21of38
Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.
TEKOCLASSES,H.O.D.MATHS:SUHAGR.KARIYA(S.R.K.Sir)PH:(0755)-3200000,09893058881,BHOPAL,(M.P.)
FREEDownloadStudyPackagefromwebsite:www.tekoclasses.com
1 + i. Find the remainder upon the division of f(z) by z² + 1.
Q.9 Let z1 & z2 be anytwo arbitrarycomplex numbers then prove that :
z1 + z2 ≥ ( )
|z|
z
|z|
z
|z||z|
2
1
2
2
1
1
21
++ .
Q.10 If Zr, r = 1, 2, 3, ......... 2m, m ε N are the roots ofthe equation
Z2m + Z2m-1 + Z2m-2 + ............. + Z + 1 = 0 then prove that ∑
−=r
m
rZ1
2
1
1 = −m
Q.11 If (1 + x)n = C0 + C1x + C2x² + .... + Cn xn (n ∈ N), prove that :
(a) C0 + C4 + C8 + .... =
1
2
2 2
4
1 2n n n−
+






/
cos
π
(b) C1 + C5 + C9 + .... =
1
2
2 2
4
1 2n n n−
+






/
sin
π
(c) C2 + C6 + C10 + ..... = 1
2
2 2
4
1 2n n n−
−






/
cos
π
(d) C3 + C7 + C11 + .... = 1
2
2 2
4
1 2n n n−
−






/
sin
π
(e) C0 + C3 + C6 + C9 + ........ =
1
3
2 2
3
n n
+





cos
π
Q.12 Let z1 , z2 , z3 , z4 be the vertices A, B , C , D respectively of a square on the Argand diagram
taken in anticlockwise direction then prove that :
(i) 2z2 = (1 + i) z1 + (1− i)z3 & (ii) 2z4 = (1− i) z1 + (1 + i) z3
Q.13 Show that allthe roots of the equation 1
1
1
1
+
−





 =
+
−
ix
ix
ia
ia
n
a ∈ R are realand distinct.
Q.14 Prove that:
(a) cos x + nC1 cos 2x + nC2 cos 3x + ..... + nCn cos (n + 1) x = 2n . cosn x
2
. cos
n +





2
2
x
(b) sin x + nC1 sin 2x + nC2 sin 3x + ..... + nCn sin (n + 1) x = 2n . cosn x
2
. sin
n +





2
2
x
(c) cos
2
2 1
π
n +





 + cos
4
2 1
π
n +





 + cos
6
2 1
π
n +





 + ..... + cos
2
2 1
n
n
π
+





 = −
1
2
When n ∈ N.
Q.15 Show that all roots of the equation a0zn + a1zn – 1 + ...... + an – 1z + an = n,
where | ai | ≤ 1, i= 0, 1, 2, .... , n lie outside the circle withcentre at the originand radius
n
1n −
.
Q.16 The pointsA, B, Cdepict thecomplexnumbers z1 , z2 , z3 respectivelyon a complex plane &the angle
B & C of the triangleABC are each equal to )(
2
1
α−π . Show that
(z2 − z3)² = 4 (z3 − z1) (z1 − z2) sin2 α
2
.
Q.17 Show that the equation
A
x a
A
x a
A
x a
n
n
1
2
1
2
2
2
2
−
+
−
+ +
−
...... = k hasno imaginaryroot, given that:
a1 , a2 , a3 .... an & A1, A2, A3 ..... An, k are all real numbers.
Q.18 Let a, b, c bedistinct complex numbers such that
b1
a
−
=
c1
b
−
=
a1
c
−
= k. Find the valueof k.
Q.19 Let α, β be fixed complex numbers and z is a variable complexnumber such that,
z − α
2
+ z − β
2
= k.
Find out thelimits for 'k' suchthat thelocus of z isa circle. Find also thecentreand radius ofthe circle.
Q.20 C is the complexnumber. f : C →R isdefined byf(z) =| z3 – z+ 2|.What is the maximumvalueof f on
the unit circle | z | = 1?
Q.21 Let f(x) = )xi2(coslog x3cos
if x≠ 0 and f(0) =K (where i= 1− ) iscontinuous at x= 0 thenfind
the value ofK. Use ofLHospital’s rule or series expansion not allowed.
Q.22 If z1 , z2 are the roots of the equation az2 + bz + c = 0, with a, b, c > 0 ; 2b2 > 4ac > b2 ;
z1 ∈ third quadrant ; z2 ∈ second quadrant in the argand's plane then, show that
22of38
Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.
TEKOCLASSES,H.O.D.MATHS:SUHAGR.KARIYA(S.R.K.Sir)PH:(0755)-3200000,09893058881,BHOPAL,(M.P.)
FREEDownloadStudyPackagefromwebsite:www.tekoclasses.com
arg 







2
1
z
z
= 2cos–1
2/12
ac4
b








Q.23 Find the set ofpoints on theargand plane for whichthe realpart ofthe complex number
(1 + i) z2 is positive where z = x + iy , x, y ∈ R and i = −1 .
Q.24 If a and b are positive integer such that N = (a + ib)3 – 107i is a positive integer. Find N.
Q.25 If the biquadratic x4 + ax3 + bx2 + cx + d = 0 (a, b, c, d ∈ R) has 4 non real roots, two with sum
3 + 4iand the other two with product 13 + i. Find the value of 'b'.
EXERCISE-3
Q.1 Evaluate: ( ) sin cos3 2
2
11
2
111
10
1
32
p
q
i
q
q
p
p
+ −














==
∑∑
π π
. [REE '97, 6]
Q.2(a) Let z1 and z2 be roots of the equation z2 + pz + q = 0 , where the co−efficients p and q may be
complex numbers. Let A and B represent z1 and z2 in the complex plane. If ∠AOB = α ≠ 0 and
OA = OB, where O is the origin . Prove that p2 = 4qcos2 α
2





 . [JEE '97 , 5]
(b) Prove that
k
n
=
−
∑
1
1
(n − k) cos
2k
n
π
= −
n
2
where n ≥ 3 is an integer . [JEE '97, 5]
Q.3(a) If ωis animaginarycube root of unity, then (1 + ω− ω2)7 equals
(A) 128ω (B) − 128ω (C) 128ω2 (D) − 128ω2
(b) The value of the sum ( )i in n
n
+ +
=
∑ 1
1
13
, where i = −1 , equals
(A) i (B) i − 1 (C) − i (D) 0 [JEE' 98, 2 + 2 ]
Q.4 Find allthe roots ofthe equation (3z − 1)4 + (z − 2)4 = 0 in the simplified form ofa + ib.
[REE ’98, 6 ]
Q.5(a) If i = −1 , then 4 + 5 − +






1
2
3
2
334
i
+ 3 − +






1
2
3
2
365
i
is equal to :
(A) 1 − i 3 (B) − 1 + i 3 (C) i 3 (D) − i 3
(b) For complex numbers z & ω, prove that, z
2
ω− ω
2
z = z − ω if and only if,
z = ω or zω = 1 [JEE '99, 2 + 10 (out of 200)]
Q.6 If α = e
i2
7
π
and f(x) =AA0 +
k =
∑
1
20
Ak xk, then find the value of,
f(x) + f(αx) + ...... + f(α6x) independent of α . [REE '99, 6]
Q.7(a) If z1 , z2 , z3 are complex numbers such that z1 = z2 = z3 =
1 1 1
1 2 3z z z
+ +





 = 1, then
z1 + z2 + z3 is :
(A) equalto 1 (B) less than 1 (C) greater than 3 (D) equal to 3
(b) If arg (z) < 0, then arg (−z) − arg (z) =
(A) π (B) − π (C) −
π
2
(D)
π
2
[ JEE 2000 (Screening) 1 + 1 out of35 ]
Q.8 Given , z = cos
2
2 1
π
n +
+ i sin
2
2 1
π
n +
, 'n' a positive integer, find the equation whose roots are,
α = z + z3 + ...... + z2n − 1 & β = z2 + z4 + ...... + z2n .
[ REE 2000 (Mains) 3 out of100 ]
Q.9(a) The complex numbers z1, z2 and z3 satisfying
z z
z z
i1 3
2 3
1 3
2
−
−
=
−
arethevertices of atrianglewhich is
(A) ofarea zero (B) right-angled isosceles
(C) equilateral (D) obtuse – angled isosceles
23of38
Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.
TEKOCLASSES,H.O.D.MATHS:SUHAGR.KARIYA(S.R.K.Sir)PH:(0755)-3200000,09893058881,BHOPAL,(M.P.)
FREEDownloadStudyPackagefromwebsite:www.tekoclasses.com
(b) Let z1 and z2 benth roots ofunitywhich subtend a right angle at the origin. Thenn must be ofthe form
(A) 4k + 1 (B) 4k + 2 (C) 4k + 3 (D) 4k
[ JEE 2001 (Scr) 1 + 1 out of 35 ]
Q.10 Find allthose roots of the equation z12 – 56z6 – 512 = 0 whose imaginarypart is positive.
[ REE 2000, 3 out of100 ]
Q.11(a) Let ω = − +
1
2
3
2
i . Thenthe value of thedeterminant
1 1 1
1 1
1
2 2
2 4
− − ω ω
ω ω
is
(A) 3ω (B) 3ω (ω– 1) (C) 3ω2 (D) 3ω(1 – ω)
(b) For all complex numbers z1, z2 satisfying |z1| = 12 and |z2 – 3 – 4i| = 5, the minimum value of
|z1 – z2| is
(A) 0 (B) 2 (C) 7 (D) 17
[JEE 2002(Scr) 3+3]
(c) Let a complex number α , α ≠ 1, be aroot ofthe equation
zp+q – zp – zq + 1 = 0 where p, q are distinct primes.
Show that either 1 + α + α2 + ...... + αp–1 = 0 or 1 + α + α2 + ...... + αq–1 = 0 , but not both together.
[JEE 2002, (5) ]
Q.12(a) If z1 and z2 are two complex numbers such that | z1 | < 1 < | z2 | then prove that 1
zz
zz1
21
21
<
−
−
.
(b) Prove that there exists no complex number z such that | z | <
3
1
and ∑
=
n
1r
r
r za = 1 where |ar |<2.
[JEE-03, 2 +2 out of 60]
Q.13(a) ωis animaginarycube root ofunity. If(1 + ω2)m = (1 + ω4)m , then least positiveintegralvalue ofmis
(A) 6 (B) 5 (C) 4 (D) 3
[JEE 2004 (Scr)]
(b) Findcentreandradius ofthecircle determinedbyallcomplexnumbersz=x+iysatisfying k
)z(
)z(
=
β−
α−
,
where 2121 i,i β+β=βα+α=α are fixed complex and k ≠ 1. [JEE 2004, 2 out of60 ]
Q.14(a) The locus ofz which lies in shaded region is best represented by
(A) z : |z + 1| > 2, |arg(z + 1)| < π/4
(B) z : |z - 1| > 2, |arg(z – 1)| < π/4
(C) z : |z + 1| < 2, |arg(z + 1)| < π/2
(D) z : |z - 1| < 2, |arg(z - 1)| < π/2
(b) If a, b, c are integers not all equaland w is a cube root ofunity(w ≠ 1), then the minimumvalue of
|a + bw + cw2
| is
(A) 0 (B) 1 (C)
2
3
(D)
2
1
[JEE 2005 (Scr), 3 + 3]
(c) If one ofthe vertices of the squarecircumscribing the circle |z – 1| = 2 is i32 + . Find the other
vertices ofsquare. [JEE 2005 (Mains), 4]
Q.15 If w = α + iβ where β ≠ 0 and z ≠ 1, satisfies the conditionthat
z1
zww
−
−
is purelyreal, then theset of
values ofz is
(A) {z : | z | = 1} (B) {z: z = z ) (C) {z : z ≠ 1} (D) {z : | z | = 1, z ≠ 1}
[JEE 2006, 3]
ANSWER KEY
VERY ELEMENTARY EXERCISE
Q.1 (a)
25
24
25
7
+ i; (b)
5
12
5
21
− i; (c) 3 + 4i; (d)
29
8
− + 0i; (e)
5
22
i
Q.2 (a) x =1, y = 2; (b) (2, 9); (c) (−2 , 2) or − −






2
3
2
3
, ; (d) (1 ,1) 0
5
2
,





 (e) x = K, y =
3
2
K
, K∈R
24of38
Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.
TEKOCLASSES,H.O.D.MATHS:SUHAGR.KARIYA(S.R.K.Sir)PH:(0755)-3200000,09893058881,BHOPAL,(M.P.)
FREEDownloadStudyPackagefromwebsite:www.tekoclasses.com
Q.3 (a) ± (5 + 4i) ; (b) ± (5 − 6i) (c) ± 5(1 + i) Q.4 (a) −160 ; (b) − (77 +108 i)
Q.5 –
3
2
3 3
2
+ i Q.6 (a) − i, − 2i (b)
3 5
2
− i
or −
1
2
+ i
Q.7 (a) on a circle of radius 7 with centre (−1, 2) ; (b) ona unit circle withcentre at origin
(c) on a circle with centre (−15/4, 0) & radius 9/4 ; (d) astraight line
Q.8 a = b = 2 − 3 ; Q.9 x = 1, y = − 4 or x = − 1, y = − 4
Q.10 (i) Modulus = 6 , Arg = 2 k π +
5
18
π
(K ∈ I) , Principal Arg =
5
18
π
(K ∈ I)
(ii) Modulus = 2 , Arg = 2 kπ +
7
6
π
, Principal Arg = −
5
6
π
(iii) Modulus =
5
6
, Arg = 2k π − tan−1 2 (K ∈ I) , Principal Arg = − tan−12
Q.16 (a)
3
2 2
−
i
, − −
3
2 2
i
, i ; Q.17 1
48
y
64
x 22
=+ ; Q.18 (c) 64 ; Q.21 A
Q.22 (a) (1, 1) ; (b)
( )n n
n
+







−
1
2
2
EXERCISE-1
Q.1 (a)
21
5
12
5
− i (b) 3 + 4 i (c) −
8
29
+ 0 i (d)
22
5
i (e) + i02 + or i20±
Q.2 (i) Principal Arg z = −
4
9
π
; z = 2 cos
4
9
π
; Arg z = 2 k π −
4
9
π
k ∈ I
(ii) Modulus = sec21 , Arg = 2 nπ + (2 – π ) , Principal Arg = (2 – π )
(iii) Principal value of Agr z = −
π
2
& z =
3
2
; Principal value ofArg z =
π
2
& z =
2
3
(iv) Modulus =
5
eccos
2
1 π
, Arg z =
20
11
n2
π
+π , Principal Arg =
20
11π
Q.3(a) x = 1, y = 2; (b) x = 1 & y = 2 ; (c) (−2, 2) or − −






2
3
2
3
, ; (d) (1 ,1) 0
5
2
,





 ; (e) x =K, y =
3
2
K
K∈R
Q.4 (a) 2, (b) – 11/2 Q.5 (a) [(− 2, 2) ; (− 2, − 2)] (b) − (77 +108 i)
Q.6 (a) z = (2 + i) or (1 – 3i); (b) z =
3 4
4
+ i
Q.7 (b) 2
Q.9 (ii) z = − (b + i) ; − 2 i , − a (iii) 





+
− ti,
5t3
ti2
where t ∈ R −






−
3
5
Q.10 (a) Theregion between the co encentric circles withcentre at (0 , 2) & radii1 & 3 units
(b) regionoutside or on the circlewith centre
2
1
+ 2iand radius
2
1
.
(c) semi circle (in the 1st & 4th quadrant) x² + y² = 1 (d) a rayemanating fromthe point
(3 + 4i) directed awayfromthe origin & having equation 3 4 3 3 0x y− + − =
Q.15 [−3 , −2] Q.17 (1 – c2) | z |2 – 2(a + bc) (Re z) + a2 – b2 = 0
Q.18 (a) K = 3 , (b) – 4 Q.19 (b) one if n is even ; − w² if n is odd
Q.22 (Z + 1) (Z² − 2Z cos 36° + 1) (Z² − 2Z cos 108° + 1) Q.24 4
Q.25 (a) π – 2 ; (b) 1/2
EXERCISE-2
Q.2 35 Q.6 (a) –
2
7
, (b) zero Q.8 i z
i
2
1
2
+ + Q.18 – ω or – ω2
Q.19 k >
1
2
2
α β− Q.20 | f(z) | ismaximumwhenz= ω, whereωisthe cuberoot unityand |f(z)| = 13
Q.21 K = –
9
4
25of38
Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.
TEKOCLASSES,H.O.D.MATHS:SUHAGR.KARIYA(S.R.K.Sir)PH:(0755)-3200000,09893058881,BHOPAL,(M.P.)
FREEDownloadStudyPackagefromwebsite:www.tekoclasses.com
Q.23 required set is constituted by the angles without their boundaries, whose sides are the straight lines
y = )12( − x and y + )12( + x = 0 containing the x − axis
Q.24 198 Q.25 51
EXERCISE-3
Q.1 48(1 − i) Q.3 (a) D (b) B
Q.4 Z =
( ) ( )29 20 2 15 25 2
82
+ + ± +i
,
( ) ( )29 20 2 15 25 2
82
− + ± −i
Q.5 (a) C
Q.6 7 A0 + 7 A7 x7 + 7 A14 x14 Q.7 (a) A (b) A Q.8 z2 + z +
sin
sin
2
2
n θ
θ
= 0, where θ =
2
2 1
π
n +
Q.9 (a) C, (b) D Q.10 +1 + i 3 ,
( )± +3
2
i
, 2 i Q.11 (a) B ; (b) B
Q.13 (a) D ; (b) Centre ≡
1k
k
2
2
−
α−β
, Radius = ( )( )1k.||||.k|k|
)1k(
1 222222
2
−α−β−β−α
−
Q.14 (a) A, (b) B, (c) z2 = – 3 i ; z3 = ( ) i31 +− ; z4 = ( ) i31 −+ Q.15 D
EXERCISE-4
Part : (A) Only one correct option
1. If |z| = 1 and ω =
1z
1z
+
−
(where z ≠ –1), the Re(ω) is [IIT – 2003, 3]
(A) 0 (B) 2
|1z|
1
+
− (C) 2
|1z|
1
.
1z
z
++ (D) 2
|1z|
2
+
2. The locus of z which lies in shaded region (excluding the boundaries) is best represented by
[IIT – 2005, 3]
(A) z : |z + 1| > 2 and |arg (z + 1)| < π/4 (B) z : |z – 1| > 2 and |arg (z – 1)| < π/4
(C) z : |z + 1| < 2 and |arg (z + 1)| < π/2 (D) z : |z – 1| < 2 and |arg (z + 1)| < π/2
3. If w = α, + iβ, where β ≠ 0 and z ≠ 1, satisfies the condition that 





−
−
z1
zww
is purely real, then the set of
values of z is [IIT – 2006, (3, –1)]
(A) {z : |z| = 1} (B) {z : z = z } (C) {z : z ≠ 1} (D) {z : |z| = 1, z ≠1}
4. If ( 3 + i)100
= 299
(a + ib), then b is equal to
(A) 3 (B) 2 (C) 1 (D) none of these
5. If Re 





+
−
6z
i8z
= 0, then z lies on the curve
(A) x2
+ y2
+ 6x – 8y = 0 (B) 4x – 3y + 24 = 0 (C) 4ab (D) none of these
6. If n1
, n2
are positive integers then : 1n
)i1( + + 1n3
)i1( + + 2n5
)i1( − + 2n7
)i1( − is a real number if and only if
(A) n1
= n2
+ 1 (B) n1
+ 1 = n2
(C) n1
= n2
(D) n1
, n2
are any two positive integers
7. The three vertices of a triangle are represented by the complex numbers, 0, z1
and z2
. If the triangle is
equilateral, then
(A) z1
2
– z2
2
= z1
z2
(B) z2
2
– z1
2
= z1
z2
(C) z1
2
+ z2
2
= z1
z2
(D) z1
2
+ z2
2
+ z1
z2
= 0
8. If x2
– x + 1 = 0 then the value of
25
1n
n
n
x
1
x∑=






+ is
(A) 8 (B) 10 (C) 12 (D) none of these
26of38
Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.
TEKOCLASSES,H.O.D.MATHS:SUHAGR.KARIYA(S.R.K.Sir)PH:(0755)-3200000,09893058881,BHOPAL,(M.P.)
FREEDownloadStudyPackagefromwebsite:www.tekoclasses.com
9. If α is nonreal and α = 5
1 then the value of |1| 122
2
−−
α−α+α+α+ is equal to
(A) 4 (B) 2 (C) 1 (D) none of these
10. If z = x + iy and z1/3 = a − ib then ( )x
a
y
b
k a b− = −2 2
where k =
(A) 1 (B) 2 (C) 3 (D) 4
11.
− +







+
− −







+
− +







+
− −







1 3
2
1 3
2
1 3
2
1 3
2
6 6 5 5
i i i i
is equal to :
(A) 1 (B) − 1 (C) 2 (D) none
12. Expressed in the form r (cos θ + i sin θ), − 2 + 2i becomes :
(A) 2 2
4 4
cos sin−





 + −












π π
i (B) 2 2
3
4
3
4
cos sin
π π




 +











i
(C) 2 2
3
4
3
4
cos sin−





 + −












π π
i (D) 2
4 4
cos sin−





 + −












π π
i
13. The number of solutions of the equation in z, z z - (3 + i) z - (3 - i) z - 6 = 0 is :
(A) 0 (B) 1 (C) 2 (D) infinite
14. If |z| = max {|z – 1|, |z + 1|} then
(A) |z + z | =
2
1
(B) z + z = 1 (C) |z + z | = 1 (D) none of these
15. If P, P′ represent the complex number z1
and its additive inverse respectively then the complex equation of
the circle with PP′ as a diameter is
(A)
1z
z
= 





z
z1
(B) z z + z1 1z = 0 (C) z 1z + z z1
= 0 (D) none of these
16. The points z1 = 3 + 3 i and z2 = 2 3 + 6 i are given on a complex plane. The complex number lying
on the bisector of the angle formed by the vectors z1 and z2 is :
(A) z =
2
23
2
)323( +
+
+
i (B) z = 5 + 5 i
(C) z = − 1 − i (D) none
17. The expression
1
1
1
1
+
−





 −
+
−
i
i
i n
i n
n
tan
tan
tan
tan
α
α
α
α
when simplified reduces to :
(A) zero (B) 2 sin n α (C) 2 cos n α (D) none
18. All roots of the equation, (1 + z)6 + z6 = 0 :
(A) lie on a unit circle with centre at the origin (B)lie on a unit circle with centre at (− 1, 0)
(C) lie on the vertices of a regular polygon with centre at the origin (D) are collinear
19. Points z1 & z2 are adjacent vertices of a regular octagon. The vertex z3 adjacent to z2 (z3 ≠ z1) is
represented by :
(A) z2 +
1
2
(1 ± i) (z1 + z2) (B) z2 +
1
2
(1 ± i) (z1 − z2)
(C) z2 +
1
2
(1 ± i) (z2 − z1) (D) none of these
20. If z = x + i y then the equation of a straight line Ax + By + C = 0 where A, B, C ∈ R, can be written on
the complex plane in the form a z a z C+ + 2 = 0 where 'a' is equal to :
(A)
( )A iB+
2
(B)
A iB−
2
(C) A + i B (D) none
21. The points of intersection of the two curves z − 3 = 2 and z = 2 in an argand plane are:
(A)
1
2
( )7 3± i (B)
1
2
( )3 7± i (C)
3
2
± i
7
2
(D)
7
2
± i
3
2
22. The equation of the radical axis of the two circles represented by the equations,
z − 2 = 3 and z − 2 − 3 i = 4 on the complex plane is :
(A) 3iz – 3i z – 2 = 0 (B) 3iz – 3i z + 2 = 0 (C) iz – i z + 1 = 0 (D) 2iz – 2i z + 3 = 0
23. If
r
1p=
Π eipθ = 1 where Π denotes the continued product, then the most general value of θ is :
(A)
2
1
n
r r
π
( )−
(B)
2
1
n
r r
π
( )+
(C)
4
1
n
r r
π
( )−
(D)
4
1
n
r r
π
( )+
24. The set of values of a ∈ R for which x2
+ i(a – 1) x + 5 = 0 will have a pair of conjugate imaginary roots is
(A) R (B) {1} (C) |a| a2
– 2a + 21 > 0} (D) none of these
27of38
Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.
TEKOCLASSES,H.O.D.MATHS:SUHAGR.KARIYA(S.R.K.Sir)PH:(0755)-3200000,09893058881,BHOPAL,(M.P.)
FREEDownloadStudyPackagefromwebsite:www.tekoclasses.com 25. If |z1
– 1| < 1, |z2
– 2| < 2, |z3
– 3| < 3 then |z1
+ z2
+ z3
|
(A) is less than 6 (B) is more than 3
(C) is less than 12 (D) lies between 6 and 12
26. If z1, z2, z3, ........., zn lie on the circle |z| = 2, then the value of
E = |z1 + z2 + ..... + zn| – 4
n21 z
1
.......
z
1
z
1
+++ is
(A) 0 (B) n (C) –n (D) none of these
Part : (B) May have more than one options correct
27. If z1 lies on |z| = 1 and z2 lies on |z| = 2, then
(A) 3 ≤ |z1 – 2z2| ≤ 5 (B) 1 ≤ |z1 + z2| ≤ 3
(C) |z1 – 3z2| ≥ 5 (D) |z1 – z2| ≥ 1
28. If z1
, z2
, z3
, z4
are root of the equation a0
z4
+ z1
z3
+ z2
z2
+ z3
z + z4
= 0, where a0
, a1
, a2
, a3
and a4
are real,
then
(A) 1z , 2z , 3z , 4z are also roots of the equation (B) z1
is equal to at least one of 1z , 2z , 3z , 4z
(C) – 1z ,– 2z , – 3z , – 4z are also roots of the equation (D) none of these
29. If a3 + b3 + 6 abc = 8 c3 & ω is a cube root of unity then :
(A) a, c, b are in A.P. (B) a, c, b are in H.P.
(C) a + bω − 2 cω2 = 0 (D) a + bω2 − 2 cω = 0
30. The points z1, z2, z3 on the complex plane are the vertices of an equilateral triangle if and only if :
(A) Σ (z1 − z2) (z2 − z3) = 0 (B) z1
2 + z2
2 + z3
2 = 2 (z1 z2 + z2 z3 + z3 z1)
(C) z1
2 + z2
2 + z3
2 = z1 z2 + z2 z3 + z3 z1 (D) 2 (z1
2 + z2
2 + z3
2) = z1 z2 + z2 z3 + z3 z1
31. If |z1
+ z2
| = |z1
– z2
| then
(A) |amp z1
– amp z2
| =
2
π
(B) | amp z1
– amp2
| = π
(C)
2
1
z
z
is purely real (D)
2
1
z
z
is purely imaginary
EXERCISE-5
1. Given that x, y ∈ R, solve : 4x² + 3xy + (2xy − 3x²)i = 4y² − (x2/2) + (3xy − 2y²)i
2. If α & β are any two complex numbers, prove that :
α α β α α β α β α β− − + + − = + + −2 2 2 2
.
3. If α, β are the numbers between 0 and 1, such that the points z1
= α + i, z2
= 1 + βi and z3
= 0 form an
equilateral triangle, then find α and β.
4. ABCD is a rhombus. Its diagonalsAC and BD intersect at the point M and satisfy BD = 2AC. If the points D
and M represent the complex numbers1 + i and 2 - i respectively, then find the complex number corresponding
to A.
5. Show that the sum of the pth powers of nth roots of unity :
(a) is zero, when p is not a multiple of n. (b) is equal to n, when p is a multiple of n.
6. If (1 + x)n = p0 + p1 x + p2 x2 + p3 x3 +......., then prove that :
(a) p0 − p2 + p4 −....... = 2n/2 cos
n π
4
(b) p1 − p3 + p5 −....... = 2n/2 sin
n π
4
7. Prove that, loge
1
1 −








ei θ
= loge
1
2 2
cosec
θ




 + i
π θ
2 2
−






8. If iii ....... ∞
= A + i B, principal values only being considered, prove that
(a) tan
1
2
πA =
B
A
(b) A2 + B2 = e − π B
9. Prove that the roots of the equation, (x - 1)n = xn are
1
2
1 +





i
r
r
cot
π
, where
r = 0, 1, 2,....... (n − 1) & n ∈ N.
10. If cos (α − β) + cos (β − γ) + cos (γ − α) = − 3/2 then prove that :
(a) Σ cos 2α = 0 = Σ sin 2α (b) Σ sin (α + β) = 0 = Σ cos (α + β)
(c) Σ sin 3α = 3 sin (α + β + γ) (d) Σ cos 3 α = 3 cos (α + β + γ)
(e) Σ sin2 α = Σ cos2 α = 3/2
(f) cos3 (θ + α) + cos3 (θ + β) + cos3 (θ + γ) = 3 cos (θ + α). cos (θ + β). cos (θ + γ)
where θ ∈ R.
28of38
Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.
TEKOCLASSES,H.O.D.MATHS:SUHAGR.KARIYA(S.R.K.Sir)PH:(0755)-3200000,09893058881,BHOPAL,(M.P.)
FREEDownloadStudyPackagefromwebsite:www.tekoclasses.com
11. If α, β, γ are roots of x3 − 3 x2 + 3 x + 7 = 0 (and ωis imaginary cube root of unity), then find the value
of
α
β
−
−
1
1
+
β
γ
−
−
1
1
+
γ
α
−
−
1
1
.
12. Given that, |z − 1| = 1, where ' z ' is a point on the argand plane. Show that
z
z
− 2
= i tan (arg z).
13. P is a point on the Argand diagram. On the circle with OP as diameter two points Q & R are taken such
that ∠ POQ = ∠ QOR = θ. If ‘O’ is the origin & P, Q & R are represented by the complex numbers
Z1, Z2 & Z3 respectively, show that : Z2
2
. cos 2 θ = Z1. Z3 cos² θ.
14. Find an expression for tan 7θ in terms of tan θ, using complex numbers. By considering
tan 7θ = 0, show that x = tan2 (3 π/7) satisfies the cubic equation x3 − 21x2 + 35x − 7 = 0.
15. If (1 + x)n = C0 + C1x + C2x² +.... + Cn xn (n ∈ N), prove that : C2 + C6 + C10 +..... =
1
2
2 2
4
1 2n n n−
−






/
cos
π
16. Prove that : cos
2
2 1
π
n +





 + cos
4
2 1
π
n +





 + cos
6
2 1
π
n +





 +..... + cos
2
2 1
n
n
π
+





 = −
1
2
When n ∈ N.
17. Show that all the roots of the equation a1
z3
+ a2
z2
+ a3
z + a4
= 3, where |ai
| ≤ 1, i = 1, 2, 3, 4 lie outside the
circle with centre origin and radius 2/3.
18. Prove that ∑
−
=
−
1n
1k
)kn( cos
n
k2 π
= –
2
n
, where n ≥ 3 is an integer
19. Show that the equation
A
x a
A
x a
A
x a
n
n
1
2
1
2
2
2
2
−
+
−
+ +
−
...... = k has no imaginary root, given that :
a1, a2, a3.... an & A1, A2, A3..... An, k are all real numbers.
20. Let z1, z2, z3 be three distinct complex numbers satisfying, ½z1-1½ = ½z2-1½ = ½z3-1½. Let A, B & C
be the points represented in the Argand plane corresponding to z1, z2 and z3 resp. Prove that z1 + z2 +
z3 = 3 if and only if D ABC is an equilateral triangle.
21. Let α, β be fixed complex numbers and z is a variable complex number such that,
z − α
2
+ z − β
2
= k.
Find out the limits for 'k' such that the locus of z is a circle. Find also the centre and radius of the
circle.
22. If 1, α1, α2, α3,......., αn − 1 are the n, nth roots of unity, then prove that
(1 − α1) (1 − α2) (1 − α3)........ (1 − αn − 1) = n.
Hence prove that sin
π
n
. sin
2 π
n
. sin
3 π
n
........ sin
( )n
n
− 1 π
=
n
n
2 1− .
23. Find the real values of the parameter ‘a’ for which at least one complex number
z = x + iy satisfies both the equality z − ai = a + 4 and the inequality z − 2 < 1.
24. Prove that, with regard to the quadratic equation z2 + (p + ip′) z + q + iq′ = 0; where p, p′, q, q′ are all
real.
(a) if the equation has one real root then q ′2 − pp ′ q ′ + qp ′2 = 0.
(b) if the equation has two equal roots then p2 − p′2 = 4q & pp ′ = 2q ′.
State whether these equal roots are real or complex.
25. The points A, B, C depict the complex numbers z1, z2, z3 respectively on a complex plane & the angle
B & C of the triangle ABC are each equal to
1
2
( )π α− . Show that
(z2 − z3)² = 4 (z3 − z1) (z1 − z2) sin2
α
2
.
26. If z1, z2 & z3 are the affixes of three points A, B & C respectively and satisfy the condition
|z1 – z2| = |z1| + |z2| and |(2 - i) z1 + iz3 | = |z1| + |(1 – i) z1 + iz3| then prove that ∆ ABC in a right angled.
27. If 1, α1, α2, α3, α4 be the roots of x5 − 1 = 0, then prove that
1
2
1
α−ω
α−ω .
2
2
2
α−ω
α−ω
.
3
2
3
α−ω
α−ω
.
4
2
4
α−ω
α−ω
= ω.
28. If one the vertices of the square circumscribing the circle |z – 1| = 2 is 2 + 3 i. Find the other vertices of
the square. [IIT – 2005, 4]
29of38
Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.
TEKOCLASSES,H.O.D.MATHS:SUHAGR.KARIYA(S.R.K.Sir)PH:(0755)-3200000,09893058881,BHOPAL,(M.P.)
FREEDownloadStudyPackagefromwebsite:www.tekoclasses.com
EXERCISE-4
1. A 2. C 3. D 4. A
5. A 6. D 7. C 8. A
9. A 11. D 12. A 13. B
14. D 15. D 16. A 17. B
18. A 19. D 20. C 21. C
22. B 23. B 24. D 25. B
26. C 27. A 28. ABCD29. AB
30. ACD 31. AC 10. AD
EXERCISE-5
1. x = K, y =
3
2
K
K ∈ R 3. 32,32 −−
4. 3 –
2
i
or 1 –
2
3
i 11. 3 ω2
21. k >
1
2
2
α β− 23. − −






21
10
5
6
,
28. – i 3 , 1 – 3 + i, 1 + 3 – i

More Related Content

PDF
Complex number
PDF
1 complex numbers part 1 of 3
PDF
3 complex numbers part 3 of 3
PDF
Complex Numbers
PDF
1. introduction to complex numbers
PPTX
Complex numbers 1
PDF
3.complex numbers Further Mathematics Zimbabwe Zimsec Cambridge
DOCX
Complex numbers
Complex number
1 complex numbers part 1 of 3
3 complex numbers part 3 of 3
Complex Numbers
1. introduction to complex numbers
Complex numbers 1
3.complex numbers Further Mathematics Zimbabwe Zimsec Cambridge
Complex numbers

What's hot (19)

PPTX
Matlab complex numbers
PDF
1 complex numbers
PDF
Maths chapter wise Important questions
PPTX
What is complex number
PDF
Aieee 2003 maths solved paper by fiitjee
PPTX
Algebra of complex numbers
PDF
Complex numbers with matrics
DOCX
Assessments for class xi
PPTX
Complex number
DOCX
Question bank -xi (hots)
PDF
Mcq for manavsthali( 7 worksheets)
PDF
Modul bimbingan add maths
PDF
Add maths complete f4 & f5 Notes
PDF
II PUC (MATHEMATICS) ANNUAL MODEL QUESTION PAPER FOR ALL SCIENCE STUDENTS WHO...
PDF
Maths important questions for 2018
PDF
PDF
Modulus and argand diagram
PDF
5 work sheet( for manasthali) class 11
PDF
Pembahasan Soal Matematika Kelas 10 Semester 1
Matlab complex numbers
1 complex numbers
Maths chapter wise Important questions
What is complex number
Aieee 2003 maths solved paper by fiitjee
Algebra of complex numbers
Complex numbers with matrics
Assessments for class xi
Complex number
Question bank -xi (hots)
Mcq for manavsthali( 7 worksheets)
Modul bimbingan add maths
Add maths complete f4 & f5 Notes
II PUC (MATHEMATICS) ANNUAL MODEL QUESTION PAPER FOR ALL SCIENCE STUDENTS WHO...
Maths important questions for 2018
Modulus and argand diagram
5 work sheet( for manasthali) class 11
Pembahasan Soal Matematika Kelas 10 Semester 1
Ad

Viewers also liked (7)

PDF
Euclidean geometrynotes
PDF
X2 T01 04 mod arg relations
PPT
complex numbers
PPSX
Complex number
PPTX
Principles of manual handling
PPTX
Complex numbers org.ppt
PPT
Complex Number I - Presentation
Euclidean geometrynotes
X2 T01 04 mod arg relations
complex numbers
Complex number
Principles of manual handling
Complex numbers org.ppt
Complex Number I - Presentation
Ad

Similar to 2 complex numbers part 2 of 3 (20)

PDF
Maths short dhhdbrbdhd hdh hdb rh notes for JEE.pdf
PDF
A Solutions To Exercises On Complex Numbers
PDF
3130005 cvpde gtu_study_material_e-notes_all_18072019070728_am
PDF
CBSE Grade 11 Mathematics Ch 5 Complex Numbers And Quadratic Equations Notes
PDF
Ahlfors sol1
DOCX
Class xi complex numbers worksheet (t) part 2
DOCX
Class xi complex numbers worksheet (t) part 1
PDF
Math20001 dec 2015
PDF
Hssc i objective workbook
PDF
Maths04
PDF
Hw1sol
DOC
Complex Number From Jayant for TV
PDF
Algebra formulas
PDF
05 De-Moivre's Theorem.pdf undergrade presentation
PDF
Chap 4 complex numbers focus exam ace
PDF
Mcq ch 1_fsc_part1_nauman
PDF
Solutions of AHSEC Mathematics Paper 2015
PDF
JEE Main & Advanced Complex numbers questions
PDF
Add math may june 2016 p1
DOC
Unit i trigonometry satyabama univesity
Maths short dhhdbrbdhd hdh hdb rh notes for JEE.pdf
A Solutions To Exercises On Complex Numbers
3130005 cvpde gtu_study_material_e-notes_all_18072019070728_am
CBSE Grade 11 Mathematics Ch 5 Complex Numbers And Quadratic Equations Notes
Ahlfors sol1
Class xi complex numbers worksheet (t) part 2
Class xi complex numbers worksheet (t) part 1
Math20001 dec 2015
Hssc i objective workbook
Maths04
Hw1sol
Complex Number From Jayant for TV
Algebra formulas
05 De-Moivre's Theorem.pdf undergrade presentation
Chap 4 complex numbers focus exam ace
Mcq ch 1_fsc_part1_nauman
Solutions of AHSEC Mathematics Paper 2015
JEE Main & Advanced Complex numbers questions
Add math may june 2016 p1
Unit i trigonometry satyabama univesity

Recently uploaded (20)

PDF
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
PPTX
GDM (1) (1).pptx small presentation for students
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PDF
O5-L3 Freight Transport Ops (International) V1.pdf
PDF
102 student loan defaulters named and shamed – Is someone you know on the list?
PDF
Abdominal Access Techniques with Prof. Dr. R K Mishra
PDF
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
PDF
01-Introduction-to-Information-Management.pdf
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PPTX
human mycosis Human fungal infections are called human mycosis..pptx
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PDF
Microbial disease of the cardiovascular and lymphatic systems
PDF
Sports Quiz easy sports quiz sports quiz
PDF
Pre independence Education in Inndia.pdf
PDF
Insiders guide to clinical Medicine.pdf
PPTX
Microbial diseases, their pathogenesis and prophylaxis
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
GDM (1) (1).pptx small presentation for students
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
O5-L3 Freight Transport Ops (International) V1.pdf
102 student loan defaulters named and shamed – Is someone you know on the list?
Abdominal Access Techniques with Prof. Dr. R K Mishra
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
2.FourierTransform-ShortQuestionswithAnswers.pdf
01-Introduction-to-Information-Management.pdf
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
human mycosis Human fungal infections are called human mycosis..pptx
Final Presentation General Medicine 03-08-2024.pptx
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
Module 4: Burden of Disease Tutorial Slides S2 2025
Microbial disease of the cardiovascular and lymphatic systems
Sports Quiz easy sports quiz sports quiz
Pre independence Education in Inndia.pdf
Insiders guide to clinical Medicine.pdf
Microbial diseases, their pathogenesis and prophylaxis

2 complex numbers part 2 of 3

  • 1. 16of38 Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't. TEKOCLASSES,H.O.D.MATHS:SUHAGR.KARIYA(S.R.K.Sir)PH:(0755)-3200000,09893058881,BHOPAL,(M.P.) FREEDownloadStudyPackagefromwebsite:www.tekoclasses.com a3 − b3 = (a − b) (a − ωb) (a − ω²b) ; x2 + x + 1 = (x − ω) (x − ω2) ; a3 + b3 = (a + b) (a + ωb) (a + ω2b) ; a3 + b3 + c3 − 3abc = (a + b + c) (a + ωb + ω²c) (a + ω²b + ωc) 10. nth ROOTS OF UNITY : If 1 , α1 , α2 , α3 ..... αn − 1 are the n , nth root of unity then : (i) They are in G.P. with common ratio ei(2π/n) & (ii) 1p + α1 p + α2 p + .... +α n p −1 = 0 if p is not an integral multiple of n = n if p is an integral multiple of n (iii) (1 − α1) (1 − α2) ...... (1 − αn − 1) = n & (1 + α1) (1 + α2) ....... (1 + αn − 1) = 0 if n is even and 1 if n is odd. (iv) 1 . α1 . α2 . α3 ......... αn − 1 = 1 or −1 according as n is odd or even. 11. THE SUM OF THE FOLLOWING SERIES SHOULD BE REMEMBERED : (i) cos θ + cos 2 θ + cos 3 θ + ..... + cos nθ = ( ) ( )2sin 2nsin θ θ cos       + 2 1n θ. (ii) sin θ + sin 2θ + sin 3θ + ..... + sin nθ = ( ) ( )2sin 2nsin θ θ sin       + 2 1n θ. Note : If θ = (2π/n) then the sum of the above series vanishes. 12. STRAIGHT LINES & CIRCLES IN TERMS OF COMPLEX NUMBERS : (A) If z1 &z2 are two complex numbersthenthecomplexnumber z = nm mznz 21 + + divides the joins of z1 & z2 in the ratio m: n. Note:(i) If a , b , c are three real numbers such that az1 + bz2 + cz3 = 0 ; where a + b + c = 0 and a,b,c are not allsimultaneouslyzero, then the complexnumbers z1 , z2 & z3 are collinear. (ii) Ifthe vertices A, B, C ofa ∆ represent the complexnos. z1, z2, z3 respectively, then : (a) Centroid of the ∆ABC = 3 zzz 321 ++ : (b) Orthocentre of the ∆ABC = ( ) ( ) ( ) CseccBsecbAseca zCsecczBsecbzAseca 321 ++ ++ OR CtanBtanAtan CtanzBtanzAtanz 321 ++ ++ (c) Incentre of the ∆ ABC = (az1 + bz2 + cz3) ÷ (a + b + c) . (d) Circumcentre ofthe ∆ABC= : (Z1 sin 2A + Z2 sin 2B + Z3 sin 2C) ÷ (sin 2A + sin 2B + sin 2C) . (B) amp(z) = θ is arayemanating fromthe origin inclined at an angle θ to the x−axis. (C) z − a = z − b is the perpendicular bisector of the line joining a to b. (D) The equation ofa line joining z1 & z2 is given by; z = z1 + t (z1 − z2) where t is a perameter. (E) z = z1 (1 + it) where t is a realparameter is a line through the point z1 &perpendicular to oz1. (F) The equation of a line passing through z1 & z2 can be expressed in the determinant form as 1zz 1zz 1zz 22 11 = 0. This is also the condition for three complex numbers to be collinear.. (G) Complex equation of a straight line through two given points z1 & z2 can be written as ( ) ( ) ( )21212121 zzzzzzzzzz −+−−− = 0, which on manipulating takes the formas rzz +α+α = 0 where r is realand α isa non zero complex constant. (H) The equation of circle having centre z0 & radius ρ is : z − z0 = ρ or z z − z0 z − 0z z + 0z z0 − ρ² = 0 which is of the form rzzzz +α+α+ = 0 , r is real centre − α & radius r−αα . Circle willbe realif 0r ≥−αα . (I) The equation ofthe circle described on the line segment joining z1 &z2 asdiameter is : (i) arg 1 2 zz zz − − = ± 2 π or (z − z1) ( z − z 2) + (z − z2)( z − z 1) = 0 (J) Condition for four given points z1 , z2 , z3 & z4 to be concyclicis, the number
  • 2. 17of38 Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't. TEKOCLASSES,H.O.D.MATHS:SUHAGR.KARIYA(S.R.K.Sir)PH:(0755)-3200000,09893058881,BHOPAL,(M.P.) FREEDownloadStudyPackagefromwebsite:www.tekoclasses.com 14 24 23 13 zz zz . zz zz − − − − is real. Hence theequationofa circle through3noncollinear pointsz1, z2 &z3 canbe taken as ( )( ) ( )( )231 132 zzzz zzzz −− −− is real ⇒ ( )( ) ( )( )231 132 zzzz zzzz −− −− = ( )( ) ( )( )231 132 zzzz zzzz −− −− 13.(a) Reflection points for a straight line : Two given points P & Q are the reflection points for a given straight line if the given line is the right bisector of the segment PQ. Notethat thetwo points denoted bythe complexnumbers z1 &z2 willbe the reflection pointsforthe straight line 0rzz =+α+α ifand onlyif; 0rzz 21 =+α+α , wherer is realand α is nonzero complex constant. (b) Inverse points w.r.t. a circle : Two points P& Q are said to be inverse w.r.t. a circle with centre 'O' and radius ρ, if : (i) the point O, P, Q are collinear and on the same side of O. (ii) OP . OQ = ρ2. Note that the two points z1 &z2 willbe the inverse points w.r.t. the circle 0rzzzz =+α+α+ if and only if 0rzzzz 2121 =+α+α+ . 14. PTOLEMY’S THEOREM :It states that the product of the lengths of the diagonals of a convex quadrilateral inscribed in a circle is equal to the sum of the lengths of the two pairs of its opposite sides. i.e. z1 − z3 z2 − z4 = z1 − z2 z3 − z4 + z1 − z4 z2 − z3. 15. LOGARITHM OF A COMPLEX QUANTITY: (i) Loge (α + i β) = 2 1 Loge (α² + β²) + i       α β +π −1 tann2 where n ∈ I. (ii) ii represents a set of positive real numbers given by       π +π− 2 n2 e , n ∈ I. VERY ELEMENTARY EXERCISE Q.1 Simplifyand expressthe result in theformof a + bi (a) 2 i2 i21       + + (b) −i (9 + 6 i) (2 − i)−1 (c) 2 3 1i2 ii4         + − (d) i52 i23 i52 i23 + − + − + (e) ( ) ( ) i2 i2 i2 i2 22 + − − − + Q.2 Given that x , y ∈ R, solve : (a) (x + 2y) + i (2x − 3y) = 5 − 4i (b) (x + iy) + (7 − 5i) = 9 + 4i (c) x² − y² − i (2x + y) = 2i (d) (2 + 3i) x² − (3 − 2i) y = 2x − 3y + 5i (e) 4x² + 3xy + (2xy − 3x²)i = 4y² − (x2/2) + (3xy − 2y²)i Q.3 Find the square root of : (a) 9 + 40 i (b) −11 − 60 i (c) 50 i Q.4 (a) If f (x) = x4 + 9x3 + 35x2 − x + 4, find f ( – 5 + 4i) (b) If g (x) = x4 − x3 + x2 + 3x − 5, find g(2 + 3i) Q.5 Among the complex numbersz satisfying thecondition z i+ − =3 3 3 , find the number having the least positiveargument. Q.6 Solve the following equations over C and expressthe result in theform a + ib, a, b ∈R. (a) ix2 − 3x − 2i = 0 (b) 2 (1 + i) x2 − 4 (2 − i) x − 5 − 3 i = 0 Q.7 Locate the points representing the complexnumber zon theArgand plane: (a) z +1 −2i = 7 ; (b) z z− + +1 1 2 2 = 4 ; (c) z z − + 3 3 = 3 ; (d) z −3 = z−6 Q.8 If a & b are real numbers between 0 & 1 such that the points z1 = a + i, z2 = 1 + bi & z3 = 0 forman equilateraltriangle, then find the valuesof'a' and 'b'. Q.9 For what real values of x & y are the numbers −3 + ix2 y & x2 + y + 4iconjugate complex? Q.10 Find the modulus, argument and the principal argument of the complex numbers. (i) 6 (cos310° − i sin 310°) (ii) −2 (cos 30° + i sin 30°) (iii) 2 4 1 2 + + + i i i( ) Q.11 If (x + iy)1/3 = a + bi ; prove that 4(a2 − b2) = x a y b + . Q.12(a) If a ib c id + + = p + qi , prove that p2 + q2 = a b c d 2 2 2 2 + + . (b) Let z1, z2, z3 be the complex numbers such that z1 + z2 + z3 = z1z2 + z2z3 + z3z1 = 0. Prove that | z1 | = | z2 | = | z3 |. Q.13 Let z be a complex number such that z ∈ cR and 2 2 zz1 zz1 +− ++ ∈ R, then prove that | z | =1. Q.14 Prove the identity, ( )( )2 2 2 1 2 21 2 21 |z|1|z|1|zz||zz1| −−=−−−
  • 3. 18of38 Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't. TEKOCLASSES,H.O.D.MATHS:SUHAGR.KARIYA(S.R.K.Sir)PH:(0755)-3200000,09893058881,BHOPAL,(M.P.) FREEDownloadStudyPackagefromwebsite:www.tekoclasses.com Q.15 For any two complex numbers, prove that z z z z1 2 2 1 2 2 + + − = 2 [ ]z z1 2 2 2 + . Also give the geometricalinterpretationofthisidentity. Q.16 (a) Find all non−zero complex numbers Z satisfying Z = i Z². (b) Ifthe complex numbers z1, z2, .................zn lieon the unit circle|z| = 1 then show that |z1 + z2 + ..............+zn| = |z1 –1+ z2 –1+................+zn –1| . Q.17 Find the Cartesianequation ofthe locus of'z' in the complexplane satisfying, | z – 4 | + | z + 4 | = 16. Q.18 If ω is an imaginary cube root of unity then prove that : (a) (1 + ω − ω²)3 − (1− ω + ω²)3 = 0 (b) (1 − ω + ω²)5 + (1+ ω − ω²)5 = 32 (c) If ωis the cube root of unity, Find the value of, (1 + 5ω2 + ω4) (1+ 5ω4 + ω2) (5ω3 + ω+ ω2). Q.19 If ωis a cube root of unity, prove that ; (i) (1 + ω− ω2)3 − (1 − ω+ ω2)3 (ii) a b c c a b + + + + ω ω ω ω 2 2 = ω2 (iii) (1 − ω) (1 − ω2) (1 − ω4) (1 − ω8) = 9 Q.20 If x = a + b ; y = aω + bω2 ; z = aω2 + bω, show that (i) xyz = a3 + b3 (ii) x2 + y2 + z2 = 6ab (iii) x3 + y3 + z3 = 3 (a3 + b3) Q.21 If (w ≠ 1) is a cube root ofunity then 11wii 1w1i1 wwi11 2 22 −−+−− −−− ++ = (A) 0 (B) 1 (C) i (D) w Q.22(a) (1 + w)7 =A+ Bw where w is the imaginarycube root of a unity andA, B ∈ R, find the ordered pair (A, B). (b) The value of the expression ; 1. (2 − w) (2 − w²) + 2. (3 − w) (3 − w²) + ............. + (n − 1) . (n − w) (n − w²), where w is an imaginary cube root of unity is ________. Q.23 If n ∈ N, prove that (1 + i)n + (1 − i)n = 22 1n + . cos nπ 4 . Q.24 Show that thesum k n = ∑1 2 sin cos 2 2 1 2 2 1 π πk n i k n+ − +       simplifiesto apure imaginarynumber.. Q.25 If x = cosθ + i sinθ & 1+ 1 2 − a = na, prove that 1 + a cosθ = a n2 (1 + nx) 1 +       n x . Q.26 The number t isrealand not anintegralmultiple ofπ/2. Thecomplex number x1 and x2 aretherootsof the equation, tan2(t) · x2 + tan (t) · x + 1 = 0 Show that (x1)n + (x2)n =       π 3 n2 cos2 cotn(t). EXERCISE-1 Q.1 Simplifyand expressthe result in the formof a +bi : (a) −i (9 + 6 i) (2 − i)−1 (b) 23 1i2 ii4         + − (c) i52 i23 i52 i23 + − + − + (d) ( ) ( ) i2 i2 i2 i2 22 + − − − + (e) ii −+ Q.2 Find the modulus , argument and the principal argument of the complex numbers. (i) z = 1 + cos       π 9 10 + i sin       π 9 10 (ii) (tan1 – i)2 (iii) z = i125i125 i125i125 −−+ −++ (iv) 5 2 sin 5 2 cos1i 1i π +      π − − Q.3 Given that x, y ∈ R, solve : (a) (x + 2y) + i (2x − 3y) = 5 − 4i (b) 1i8 i65 i23 y i21 x − + = + + + (c) x² − y² − i (2x + y) = 2i (d) (2 + 3i) x² − (3 − 2i) y = 2x − 3y + 5i (e) 4x² + 3xy + (2xy − 3x²)i = 4y² − (x2/2) + (3xy − 2y²)i Q.4(a) Let Z is complex satisfying the equation, z2 – (3 + i)z + m + 2i= 0, where m ∈R.
  • 4. 19of38 Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't. TEKOCLASSES,H.O.D.MATHS:SUHAGR.KARIYA(S.R.K.Sir)PH:(0755)-3200000,09893058881,BHOPAL,(M.P.) FREEDownloadStudyPackagefromwebsite:www.tekoclasses.com Suppose the equation has a realroot, then find the value ofm. (b) a, b, c are real numbers in the polynomial, P(Z) = 2Z4 + aZ3 + bZ2 + cZ + 3 If two roots of the equation P(Z) = 0 are 2 and i, then find thevalue of'a'. Q.5(a) Find the real values of x & y for which z1 = 9y2 − 4 − 10 ix and z2 = 8y2 − 20 i are conjugate complex of each other. (b) Find the value of x4 − x3 + x2 + 3x − 5 if x = 2 + 3i Q.6 Solve the following for z : (a) z2 – (3 – 2 i)z = (5i – 5) (b) z+ z = 2 + i Q.7(a) If iZ3 + Z2 − Z + i = 0, then show that | Z | = 1. (b) Let z1 and z2 be two complex numbers such that 21 21 zz2 z2z − − = 1 and | z2 | ≠ 1, find | z1 |. (c) Let z1 =10 +6i &z2 = 4 +6i. If z isanycomplexnumber suchthat theargument of, 2 1 zz zz − − is 4 π , then prove that z − 7 − 9i= 3 2 . Q.8 Show that theproduct,               + +               + +               + +            + + n2 222 2 i1 1...... 2 i1 1 2 i1 1 2 i1 1 is equal to 1 1 22 −      n (1+ i) where n ≥ 2 . Q.9 Let a &b be complex numbers (which may bereal) and let, Z = z3 + (a + b + 3i) z2 + (ab + 3 ia + 2 ib − 2) z + 2 abi − 2a. (i) Show that Z is divisible by, z + b + i. (ii) Find all complex numbers z for which Z= 0. (iii) Find all purelyimaginary numbers a &b when z = 1 + i and Z is a real number. Q.10 Interpret the following locii in z ∈C. (a) 1 < z − 2i < 3 (b) Re 4 2zi i2z ≤      + + (z ≠ 2i) (c) Arg (z + i) −Arg (z − i) = π/2 (d) Arg (z − a) = π/3 where a = 3 + 4i. Q.11 Prove that thecomplexnumbers z1 and z2 and the origin forman isosceles trianglewithverticalangle 2π/3 if 0zzzz 21 2 2 2 1 =++ . Q.12 Pis apoint on theAraganddiagram. Onthe circlewith OPas diameter two points Q & Raretakensuch that ∠ POQ = ∠ QOR = θ. If ‘O’is the origin & P, Q & R are represented bythe complex numbers ZZZZ 1 , Z2 & Z3 respectively, show that : Z2 2 . cos 2θ = Z1 . Z3 cos²θ. Q.13 Let z1, z2, z3 are three pair wise distinct complexnumbers and t1, t2, t3 are non-negative realnumbers such that t1 + t2 + t3 = 1. Prove that the complexnumber z = t1z1 + t2z2 + t3z3 lies inside a triangle with vertices z1, z2, z3 or on its boundry. Q.14 If a CiSα, b CiSβ, c CiSγ represent three distinct collinear points in anArgand's plane, then prove thefollowing: (i) Σ ab sin (α − β) = 0. (ii) (a CiS α) )cos(bc2cb 22 γ−β−+ ± (b CiS β) )cos(ac2ca 22 γ−α−+ (c CiS γ) )cos(ab2ba 22 β−α−+ = 0. Q.15 Find allrealvalues of the parameter a for which the equation (a − 1)z4 − 4z2 + a + 2 = 0 has only pure imaginary roots. Q.16 LetA≡z1 ;B ≡ z2;C ≡ z3 are three complex numbers denotingthe vertices ofanacuteangled triangle. Iftheorigin ‘O’is theorthocentreofthe triangle,thenprovethat z1 z2 + z1 z2 = z2 z3 + z2 z3 = z3 z1 + z3 z1 hence show that the ∆ABC is a right angled triangle ⇔ z1 z2 + z1 z2 = z2 z3 + z2 z3 = z3 z1 + z3 z1 = 0 Q.17 If the complex number P(w) lies on the standard unit circle in an Argand's plane and z = (aw+b)(w – c)–1 then, find the locus ofz and interpret it. Given a, b, c are real. Q.18(a) Without expanding the determinant at anystage , find RK∈ suchthat i8iKi4 ii16i8 i34i8i4 +− +− ++ haspurelyimaginaryvalue. (b) IfA, Band C are the angles ofa triangle
  • 5. 20of38 Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't. TEKOCLASSES,H.O.D.MATHS:SUHAGR.KARIYA(S.R.K.Sir)PH:(0755)-3200000,09893058881,BHOPAL,(M.P.) FREEDownloadStudyPackagefromwebsite:www.tekoclasses.com D = iC2iAiB iAiB2iC iBiCiA2 eee eee eee − − − where i = −1 then find the value of D. Q.19 If w is an imaginary cube root of unity then prove that : (a) (1 − w + w2) (1 − w2 + w4) (1 − w4 + w8) ..... to 2n factors = 22n . (b) If w is a complex cube root of unity, find the value of (1 + w) (1 + w2) (1 + w4) (1 + w8) ..... to n factors . Q.20 Prove that n cosisin1 cosisin1       θ−θ+ θ+θ+ = cos       θ− π n 2 n + isin       θ− π n 2 n . Hence deduce that 5 5 cosi 5 sin1       π + π + + i 5 5 cosi 5 sin1       π − π + = 0 Q.21 If cos (α − β) + cos(β − γ) + cos (γ − α) = − 3/2 then prove that : (a) Σ cos 2α = 0 = Σ sin 2α (b) Σ sin (α + β) = 0 = Σ cos (α + β) (c) Σ sin2 α = Σ cos2 α = 3/2 (d) Σ sin 3α = 3 sin (α + β + γ) (e) Σ cos 3α = 3 cos (α + β + γ) (f) cos3 (θ+α)+cos3 (θ+β)+ cos3 (θ+γ) = 3cos(θ +α). cos (θ+β). cos (θ+γ) where θ ∈R. Q.22 Resolve Z5 + 1 into linear& quadratic factors withrealcoefficients. Deduce that : 4·sin π 10 ·cos π 5 = 1. Q.23 If x = 1+ i 3 ; y = 1 − i 3 & z = 2 , then prove that xp + yp = zp for every prime p > 3. Q.24 If the expression z5 – 32 can be factorised into linear and quadratic factors over realcoefficients as (z5 – 32) = (z – 2)(z2 – pz + 4)(z2 – qz + 4) then find the value of (p2 + 2p). Q.25(a)Let z= x + iybeacomplexnumber, wherexand y arerealnumbers. LetAand B bethesets defined by A= {z | | z | ≤ 2} and B = {z | (1 – i)z + (1 + i) z ≥ 4}. Find the area of the regionA∩ B. (b) For all real numbers x, let the mapping f (x) = i−x 1 , where i = 1− . If there exist real number a, b, c and d for which f (a), f (b), f (c) and f (d) forma square onthe complex plane. Find the area of the square. EXERCISE-2 Q.1 If p q r q r p r p q = 0 ; where p , q , r are the moduli of non−zero complex numbers u, v, w respectively,, prove that, arg w v = arg w u v u − −       2 . Q.2 The equation x3 = 9 + 46i where i = 1− has a solution ofthe forma + bi where a and bare integers. Find the value of(a3 + b3). Q.3 Show that the locus formed by z in the equation z3 + iz = 1 never crosses the co-ordinate axes in the Argand’s plane. Further show that |z| = − + Im( ) Re( )Im( ) z z z2 1 Q.4 If ωis the fifth root of 2 and x = ω+ ω2, prove that x5 = 10x2 + 10x + 6. Q.5 Prove that , with regard to the quadratic equation z2 + (p + ip′) z + q + iq′ = 0 where p , p′, q , q′ are all real. (i) if the equation has one real root then q ′2 − pp ′q′ + qp′2 = 0 . (ii) if the equation has two equal roots then p2 − p′2 = 4q & pp′ = 2q′. State whether these equalrootsarerealor complex. Q.6 If the equation (z + 1)7 + z7 = 0 has roots z1, z2, .... z7, find the value of (a) ∑ = 7 1r r )ZRe( and (b) ∑ = 7 1r r )ZIm( Q.7 Find the roots oftheequation Zn = (Z+ 1)n and show that thepoints whichrepresent themare collinear on the complex plane. Hence showthat these roots are also the roots ofthe equation 2 2 Z n m sin2       π + Z n m sin2 2       π + 1 = 0. Q.8 Dividing f(z) by z − i, we get the remainder i and dividing it by z + i, we get the remainder
  • 6. 21of38 Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't. TEKOCLASSES,H.O.D.MATHS:SUHAGR.KARIYA(S.R.K.Sir)PH:(0755)-3200000,09893058881,BHOPAL,(M.P.) FREEDownloadStudyPackagefromwebsite:www.tekoclasses.com 1 + i. Find the remainder upon the division of f(z) by z² + 1. Q.9 Let z1 & z2 be anytwo arbitrarycomplex numbers then prove that : z1 + z2 ≥ ( ) |z| z |z| z |z||z| 2 1 2 2 1 1 21 ++ . Q.10 If Zr, r = 1, 2, 3, ......... 2m, m ε N are the roots ofthe equation Z2m + Z2m-1 + Z2m-2 + ............. + Z + 1 = 0 then prove that ∑ −=r m rZ1 2 1 1 = −m Q.11 If (1 + x)n = C0 + C1x + C2x² + .... + Cn xn (n ∈ N), prove that : (a) C0 + C4 + C8 + .... = 1 2 2 2 4 1 2n n n− +       / cos π (b) C1 + C5 + C9 + .... = 1 2 2 2 4 1 2n n n− +       / sin π (c) C2 + C6 + C10 + ..... = 1 2 2 2 4 1 2n n n− −       / cos π (d) C3 + C7 + C11 + .... = 1 2 2 2 4 1 2n n n− −       / sin π (e) C0 + C3 + C6 + C9 + ........ = 1 3 2 2 3 n n +      cos π Q.12 Let z1 , z2 , z3 , z4 be the vertices A, B , C , D respectively of a square on the Argand diagram taken in anticlockwise direction then prove that : (i) 2z2 = (1 + i) z1 + (1− i)z3 & (ii) 2z4 = (1− i) z1 + (1 + i) z3 Q.13 Show that allthe roots of the equation 1 1 1 1 + −       = + − ix ix ia ia n a ∈ R are realand distinct. Q.14 Prove that: (a) cos x + nC1 cos 2x + nC2 cos 3x + ..... + nCn cos (n + 1) x = 2n . cosn x 2 . cos n +      2 2 x (b) sin x + nC1 sin 2x + nC2 sin 3x + ..... + nCn sin (n + 1) x = 2n . cosn x 2 . sin n +      2 2 x (c) cos 2 2 1 π n +       + cos 4 2 1 π n +       + cos 6 2 1 π n +       + ..... + cos 2 2 1 n n π +       = − 1 2 When n ∈ N. Q.15 Show that all roots of the equation a0zn + a1zn – 1 + ...... + an – 1z + an = n, where | ai | ≤ 1, i= 0, 1, 2, .... , n lie outside the circle withcentre at the originand radius n 1n − . Q.16 The pointsA, B, Cdepict thecomplexnumbers z1 , z2 , z3 respectivelyon a complex plane &the angle B & C of the triangleABC are each equal to )( 2 1 α−π . Show that (z2 − z3)² = 4 (z3 − z1) (z1 − z2) sin2 α 2 . Q.17 Show that the equation A x a A x a A x a n n 1 2 1 2 2 2 2 − + − + + − ...... = k hasno imaginaryroot, given that: a1 , a2 , a3 .... an & A1, A2, A3 ..... An, k are all real numbers. Q.18 Let a, b, c bedistinct complex numbers such that b1 a − = c1 b − = a1 c − = k. Find the valueof k. Q.19 Let α, β be fixed complex numbers and z is a variable complexnumber such that, z − α 2 + z − β 2 = k. Find out thelimits for 'k' suchthat thelocus of z isa circle. Find also thecentreand radius ofthe circle. Q.20 C is the complexnumber. f : C →R isdefined byf(z) =| z3 – z+ 2|.What is the maximumvalueof f on the unit circle | z | = 1? Q.21 Let f(x) = )xi2(coslog x3cos if x≠ 0 and f(0) =K (where i= 1− ) iscontinuous at x= 0 thenfind the value ofK. Use ofLHospital’s rule or series expansion not allowed. Q.22 If z1 , z2 are the roots of the equation az2 + bz + c = 0, with a, b, c > 0 ; 2b2 > 4ac > b2 ; z1 ∈ third quadrant ; z2 ∈ second quadrant in the argand's plane then, show that
  • 7. 22of38 Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't. TEKOCLASSES,H.O.D.MATHS:SUHAGR.KARIYA(S.R.K.Sir)PH:(0755)-3200000,09893058881,BHOPAL,(M.P.) FREEDownloadStudyPackagefromwebsite:www.tekoclasses.com arg         2 1 z z = 2cos–1 2/12 ac4 b         Q.23 Find the set ofpoints on theargand plane for whichthe realpart ofthe complex number (1 + i) z2 is positive where z = x + iy , x, y ∈ R and i = −1 . Q.24 If a and b are positive integer such that N = (a + ib)3 – 107i is a positive integer. Find N. Q.25 If the biquadratic x4 + ax3 + bx2 + cx + d = 0 (a, b, c, d ∈ R) has 4 non real roots, two with sum 3 + 4iand the other two with product 13 + i. Find the value of 'b'. EXERCISE-3 Q.1 Evaluate: ( ) sin cos3 2 2 11 2 111 10 1 32 p q i q q p p + −               == ∑∑ π π . [REE '97, 6] Q.2(a) Let z1 and z2 be roots of the equation z2 + pz + q = 0 , where the co−efficients p and q may be complex numbers. Let A and B represent z1 and z2 in the complex plane. If ∠AOB = α ≠ 0 and OA = OB, where O is the origin . Prove that p2 = 4qcos2 α 2       . [JEE '97 , 5] (b) Prove that k n = − ∑ 1 1 (n − k) cos 2k n π = − n 2 where n ≥ 3 is an integer . [JEE '97, 5] Q.3(a) If ωis animaginarycube root of unity, then (1 + ω− ω2)7 equals (A) 128ω (B) − 128ω (C) 128ω2 (D) − 128ω2 (b) The value of the sum ( )i in n n + + = ∑ 1 1 13 , where i = −1 , equals (A) i (B) i − 1 (C) − i (D) 0 [JEE' 98, 2 + 2 ] Q.4 Find allthe roots ofthe equation (3z − 1)4 + (z − 2)4 = 0 in the simplified form ofa + ib. [REE ’98, 6 ] Q.5(a) If i = −1 , then 4 + 5 − +       1 2 3 2 334 i + 3 − +       1 2 3 2 365 i is equal to : (A) 1 − i 3 (B) − 1 + i 3 (C) i 3 (D) − i 3 (b) For complex numbers z & ω, prove that, z 2 ω− ω 2 z = z − ω if and only if, z = ω or zω = 1 [JEE '99, 2 + 10 (out of 200)] Q.6 If α = e i2 7 π and f(x) =AA0 + k = ∑ 1 20 Ak xk, then find the value of, f(x) + f(αx) + ...... + f(α6x) independent of α . [REE '99, 6] Q.7(a) If z1 , z2 , z3 are complex numbers such that z1 = z2 = z3 = 1 1 1 1 2 3z z z + +       = 1, then z1 + z2 + z3 is : (A) equalto 1 (B) less than 1 (C) greater than 3 (D) equal to 3 (b) If arg (z) < 0, then arg (−z) − arg (z) = (A) π (B) − π (C) − π 2 (D) π 2 [ JEE 2000 (Screening) 1 + 1 out of35 ] Q.8 Given , z = cos 2 2 1 π n + + i sin 2 2 1 π n + , 'n' a positive integer, find the equation whose roots are, α = z + z3 + ...... + z2n − 1 & β = z2 + z4 + ...... + z2n . [ REE 2000 (Mains) 3 out of100 ] Q.9(a) The complex numbers z1, z2 and z3 satisfying z z z z i1 3 2 3 1 3 2 − − = − arethevertices of atrianglewhich is (A) ofarea zero (B) right-angled isosceles (C) equilateral (D) obtuse – angled isosceles
  • 8. 23of38 Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't. TEKOCLASSES,H.O.D.MATHS:SUHAGR.KARIYA(S.R.K.Sir)PH:(0755)-3200000,09893058881,BHOPAL,(M.P.) FREEDownloadStudyPackagefromwebsite:www.tekoclasses.com (b) Let z1 and z2 benth roots ofunitywhich subtend a right angle at the origin. Thenn must be ofthe form (A) 4k + 1 (B) 4k + 2 (C) 4k + 3 (D) 4k [ JEE 2001 (Scr) 1 + 1 out of 35 ] Q.10 Find allthose roots of the equation z12 – 56z6 – 512 = 0 whose imaginarypart is positive. [ REE 2000, 3 out of100 ] Q.11(a) Let ω = − + 1 2 3 2 i . Thenthe value of thedeterminant 1 1 1 1 1 1 2 2 2 4 − − ω ω ω ω is (A) 3ω (B) 3ω (ω– 1) (C) 3ω2 (D) 3ω(1 – ω) (b) For all complex numbers z1, z2 satisfying |z1| = 12 and |z2 – 3 – 4i| = 5, the minimum value of |z1 – z2| is (A) 0 (B) 2 (C) 7 (D) 17 [JEE 2002(Scr) 3+3] (c) Let a complex number α , α ≠ 1, be aroot ofthe equation zp+q – zp – zq + 1 = 0 where p, q are distinct primes. Show that either 1 + α + α2 + ...... + αp–1 = 0 or 1 + α + α2 + ...... + αq–1 = 0 , but not both together. [JEE 2002, (5) ] Q.12(a) If z1 and z2 are two complex numbers such that | z1 | < 1 < | z2 | then prove that 1 zz zz1 21 21 < − − . (b) Prove that there exists no complex number z such that | z | < 3 1 and ∑ = n 1r r r za = 1 where |ar |<2. [JEE-03, 2 +2 out of 60] Q.13(a) ωis animaginarycube root ofunity. If(1 + ω2)m = (1 + ω4)m , then least positiveintegralvalue ofmis (A) 6 (B) 5 (C) 4 (D) 3 [JEE 2004 (Scr)] (b) Findcentreandradius ofthecircle determinedbyallcomplexnumbersz=x+iysatisfying k )z( )z( = β− α− , where 2121 i,i β+β=βα+α=α are fixed complex and k ≠ 1. [JEE 2004, 2 out of60 ] Q.14(a) The locus ofz which lies in shaded region is best represented by (A) z : |z + 1| > 2, |arg(z + 1)| < π/4 (B) z : |z - 1| > 2, |arg(z – 1)| < π/4 (C) z : |z + 1| < 2, |arg(z + 1)| < π/2 (D) z : |z - 1| < 2, |arg(z - 1)| < π/2 (b) If a, b, c are integers not all equaland w is a cube root ofunity(w ≠ 1), then the minimumvalue of |a + bw + cw2 | is (A) 0 (B) 1 (C) 2 3 (D) 2 1 [JEE 2005 (Scr), 3 + 3] (c) If one ofthe vertices of the squarecircumscribing the circle |z – 1| = 2 is i32 + . Find the other vertices ofsquare. [JEE 2005 (Mains), 4] Q.15 If w = α + iβ where β ≠ 0 and z ≠ 1, satisfies the conditionthat z1 zww − − is purelyreal, then theset of values ofz is (A) {z : | z | = 1} (B) {z: z = z ) (C) {z : z ≠ 1} (D) {z : | z | = 1, z ≠ 1} [JEE 2006, 3] ANSWER KEY VERY ELEMENTARY EXERCISE Q.1 (a) 25 24 25 7 + i; (b) 5 12 5 21 − i; (c) 3 + 4i; (d) 29 8 − + 0i; (e) 5 22 i Q.2 (a) x =1, y = 2; (b) (2, 9); (c) (−2 , 2) or − −       2 3 2 3 , ; (d) (1 ,1) 0 5 2 ,       (e) x = K, y = 3 2 K , K∈R
  • 9. 24of38 Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't. TEKOCLASSES,H.O.D.MATHS:SUHAGR.KARIYA(S.R.K.Sir)PH:(0755)-3200000,09893058881,BHOPAL,(M.P.) FREEDownloadStudyPackagefromwebsite:www.tekoclasses.com Q.3 (a) ± (5 + 4i) ; (b) ± (5 − 6i) (c) ± 5(1 + i) Q.4 (a) −160 ; (b) − (77 +108 i) Q.5 – 3 2 3 3 2 + i Q.6 (a) − i, − 2i (b) 3 5 2 − i or − 1 2 + i Q.7 (a) on a circle of radius 7 with centre (−1, 2) ; (b) ona unit circle withcentre at origin (c) on a circle with centre (−15/4, 0) & radius 9/4 ; (d) astraight line Q.8 a = b = 2 − 3 ; Q.9 x = 1, y = − 4 or x = − 1, y = − 4 Q.10 (i) Modulus = 6 , Arg = 2 k π + 5 18 π (K ∈ I) , Principal Arg = 5 18 π (K ∈ I) (ii) Modulus = 2 , Arg = 2 kπ + 7 6 π , Principal Arg = − 5 6 π (iii) Modulus = 5 6 , Arg = 2k π − tan−1 2 (K ∈ I) , Principal Arg = − tan−12 Q.16 (a) 3 2 2 − i , − − 3 2 2 i , i ; Q.17 1 48 y 64 x 22 =+ ; Q.18 (c) 64 ; Q.21 A Q.22 (a) (1, 1) ; (b) ( )n n n +        − 1 2 2 EXERCISE-1 Q.1 (a) 21 5 12 5 − i (b) 3 + 4 i (c) − 8 29 + 0 i (d) 22 5 i (e) + i02 + or i20± Q.2 (i) Principal Arg z = − 4 9 π ; z = 2 cos 4 9 π ; Arg z = 2 k π − 4 9 π k ∈ I (ii) Modulus = sec21 , Arg = 2 nπ + (2 – π ) , Principal Arg = (2 – π ) (iii) Principal value of Agr z = − π 2 & z = 3 2 ; Principal value ofArg z = π 2 & z = 2 3 (iv) Modulus = 5 eccos 2 1 π , Arg z = 20 11 n2 π +π , Principal Arg = 20 11π Q.3(a) x = 1, y = 2; (b) x = 1 & y = 2 ; (c) (−2, 2) or − −       2 3 2 3 , ; (d) (1 ,1) 0 5 2 ,       ; (e) x =K, y = 3 2 K K∈R Q.4 (a) 2, (b) – 11/2 Q.5 (a) [(− 2, 2) ; (− 2, − 2)] (b) − (77 +108 i) Q.6 (a) z = (2 + i) or (1 – 3i); (b) z = 3 4 4 + i Q.7 (b) 2 Q.9 (ii) z = − (b + i) ; − 2 i , − a (iii)       + − ti, 5t3 ti2 where t ∈ R −       − 3 5 Q.10 (a) Theregion between the co encentric circles withcentre at (0 , 2) & radii1 & 3 units (b) regionoutside or on the circlewith centre 2 1 + 2iand radius 2 1 . (c) semi circle (in the 1st & 4th quadrant) x² + y² = 1 (d) a rayemanating fromthe point (3 + 4i) directed awayfromthe origin & having equation 3 4 3 3 0x y− + − = Q.15 [−3 , −2] Q.17 (1 – c2) | z |2 – 2(a + bc) (Re z) + a2 – b2 = 0 Q.18 (a) K = 3 , (b) – 4 Q.19 (b) one if n is even ; − w² if n is odd Q.22 (Z + 1) (Z² − 2Z cos 36° + 1) (Z² − 2Z cos 108° + 1) Q.24 4 Q.25 (a) π – 2 ; (b) 1/2 EXERCISE-2 Q.2 35 Q.6 (a) – 2 7 , (b) zero Q.8 i z i 2 1 2 + + Q.18 – ω or – ω2 Q.19 k > 1 2 2 α β− Q.20 | f(z) | ismaximumwhenz= ω, whereωisthe cuberoot unityand |f(z)| = 13 Q.21 K = – 9 4
  • 10. 25of38 Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't. TEKOCLASSES,H.O.D.MATHS:SUHAGR.KARIYA(S.R.K.Sir)PH:(0755)-3200000,09893058881,BHOPAL,(M.P.) FREEDownloadStudyPackagefromwebsite:www.tekoclasses.com Q.23 required set is constituted by the angles without their boundaries, whose sides are the straight lines y = )12( − x and y + )12( + x = 0 containing the x − axis Q.24 198 Q.25 51 EXERCISE-3 Q.1 48(1 − i) Q.3 (a) D (b) B Q.4 Z = ( ) ( )29 20 2 15 25 2 82 + + ± +i , ( ) ( )29 20 2 15 25 2 82 − + ± −i Q.5 (a) C Q.6 7 A0 + 7 A7 x7 + 7 A14 x14 Q.7 (a) A (b) A Q.8 z2 + z + sin sin 2 2 n θ θ = 0, where θ = 2 2 1 π n + Q.9 (a) C, (b) D Q.10 +1 + i 3 , ( )± +3 2 i , 2 i Q.11 (a) B ; (b) B Q.13 (a) D ; (b) Centre ≡ 1k k 2 2 − α−β , Radius = ( )( )1k.||||.k|k| )1k( 1 222222 2 −α−β−β−α − Q.14 (a) A, (b) B, (c) z2 = – 3 i ; z3 = ( ) i31 +− ; z4 = ( ) i31 −+ Q.15 D EXERCISE-4 Part : (A) Only one correct option 1. If |z| = 1 and ω = 1z 1z + − (where z ≠ –1), the Re(ω) is [IIT – 2003, 3] (A) 0 (B) 2 |1z| 1 + − (C) 2 |1z| 1 . 1z z ++ (D) 2 |1z| 2 + 2. The locus of z which lies in shaded region (excluding the boundaries) is best represented by [IIT – 2005, 3] (A) z : |z + 1| > 2 and |arg (z + 1)| < π/4 (B) z : |z – 1| > 2 and |arg (z – 1)| < π/4 (C) z : |z + 1| < 2 and |arg (z + 1)| < π/2 (D) z : |z – 1| < 2 and |arg (z + 1)| < π/2 3. If w = α, + iβ, where β ≠ 0 and z ≠ 1, satisfies the condition that       − − z1 zww is purely real, then the set of values of z is [IIT – 2006, (3, –1)] (A) {z : |z| = 1} (B) {z : z = z } (C) {z : z ≠ 1} (D) {z : |z| = 1, z ≠1} 4. If ( 3 + i)100 = 299 (a + ib), then b is equal to (A) 3 (B) 2 (C) 1 (D) none of these 5. If Re       + − 6z i8z = 0, then z lies on the curve (A) x2 + y2 + 6x – 8y = 0 (B) 4x – 3y + 24 = 0 (C) 4ab (D) none of these 6. If n1 , n2 are positive integers then : 1n )i1( + + 1n3 )i1( + + 2n5 )i1( − + 2n7 )i1( − is a real number if and only if (A) n1 = n2 + 1 (B) n1 + 1 = n2 (C) n1 = n2 (D) n1 , n2 are any two positive integers 7. The three vertices of a triangle are represented by the complex numbers, 0, z1 and z2 . If the triangle is equilateral, then (A) z1 2 – z2 2 = z1 z2 (B) z2 2 – z1 2 = z1 z2 (C) z1 2 + z2 2 = z1 z2 (D) z1 2 + z2 2 + z1 z2 = 0 8. If x2 – x + 1 = 0 then the value of 25 1n n n x 1 x∑=       + is (A) 8 (B) 10 (C) 12 (D) none of these
  • 11. 26of38 Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't. TEKOCLASSES,H.O.D.MATHS:SUHAGR.KARIYA(S.R.K.Sir)PH:(0755)-3200000,09893058881,BHOPAL,(M.P.) FREEDownloadStudyPackagefromwebsite:www.tekoclasses.com 9. If α is nonreal and α = 5 1 then the value of |1| 122 2 −− α−α+α+α+ is equal to (A) 4 (B) 2 (C) 1 (D) none of these 10. If z = x + iy and z1/3 = a − ib then ( )x a y b k a b− = −2 2 where k = (A) 1 (B) 2 (C) 3 (D) 4 11. − +        + − −        + − +        + − −        1 3 2 1 3 2 1 3 2 1 3 2 6 6 5 5 i i i i is equal to : (A) 1 (B) − 1 (C) 2 (D) none 12. Expressed in the form r (cos θ + i sin θ), − 2 + 2i becomes : (A) 2 2 4 4 cos sin−       + −             π π i (B) 2 2 3 4 3 4 cos sin π π      +            i (C) 2 2 3 4 3 4 cos sin−       + −             π π i (D) 2 4 4 cos sin−       + −             π π i 13. The number of solutions of the equation in z, z z - (3 + i) z - (3 - i) z - 6 = 0 is : (A) 0 (B) 1 (C) 2 (D) infinite 14. If |z| = max {|z – 1|, |z + 1|} then (A) |z + z | = 2 1 (B) z + z = 1 (C) |z + z | = 1 (D) none of these 15. If P, P′ represent the complex number z1 and its additive inverse respectively then the complex equation of the circle with PP′ as a diameter is (A) 1z z =       z z1 (B) z z + z1 1z = 0 (C) z 1z + z z1 = 0 (D) none of these 16. The points z1 = 3 + 3 i and z2 = 2 3 + 6 i are given on a complex plane. The complex number lying on the bisector of the angle formed by the vectors z1 and z2 is : (A) z = 2 23 2 )323( + + + i (B) z = 5 + 5 i (C) z = − 1 − i (D) none 17. The expression 1 1 1 1 + −       − + − i i i n i n n tan tan tan tan α α α α when simplified reduces to : (A) zero (B) 2 sin n α (C) 2 cos n α (D) none 18. All roots of the equation, (1 + z)6 + z6 = 0 : (A) lie on a unit circle with centre at the origin (B)lie on a unit circle with centre at (− 1, 0) (C) lie on the vertices of a regular polygon with centre at the origin (D) are collinear 19. Points z1 & z2 are adjacent vertices of a regular octagon. The vertex z3 adjacent to z2 (z3 ≠ z1) is represented by : (A) z2 + 1 2 (1 ± i) (z1 + z2) (B) z2 + 1 2 (1 ± i) (z1 − z2) (C) z2 + 1 2 (1 ± i) (z2 − z1) (D) none of these 20. If z = x + i y then the equation of a straight line Ax + By + C = 0 where A, B, C ∈ R, can be written on the complex plane in the form a z a z C+ + 2 = 0 where 'a' is equal to : (A) ( )A iB+ 2 (B) A iB− 2 (C) A + i B (D) none 21. The points of intersection of the two curves z − 3 = 2 and z = 2 in an argand plane are: (A) 1 2 ( )7 3± i (B) 1 2 ( )3 7± i (C) 3 2 ± i 7 2 (D) 7 2 ± i 3 2 22. The equation of the radical axis of the two circles represented by the equations, z − 2 = 3 and z − 2 − 3 i = 4 on the complex plane is : (A) 3iz – 3i z – 2 = 0 (B) 3iz – 3i z + 2 = 0 (C) iz – i z + 1 = 0 (D) 2iz – 2i z + 3 = 0 23. If r 1p= Π eipθ = 1 where Π denotes the continued product, then the most general value of θ is : (A) 2 1 n r r π ( )− (B) 2 1 n r r π ( )+ (C) 4 1 n r r π ( )− (D) 4 1 n r r π ( )+ 24. The set of values of a ∈ R for which x2 + i(a – 1) x + 5 = 0 will have a pair of conjugate imaginary roots is (A) R (B) {1} (C) |a| a2 – 2a + 21 > 0} (D) none of these
  • 12. 27of38 Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't. TEKOCLASSES,H.O.D.MATHS:SUHAGR.KARIYA(S.R.K.Sir)PH:(0755)-3200000,09893058881,BHOPAL,(M.P.) FREEDownloadStudyPackagefromwebsite:www.tekoclasses.com 25. If |z1 – 1| < 1, |z2 – 2| < 2, |z3 – 3| < 3 then |z1 + z2 + z3 | (A) is less than 6 (B) is more than 3 (C) is less than 12 (D) lies between 6 and 12 26. If z1, z2, z3, ........., zn lie on the circle |z| = 2, then the value of E = |z1 + z2 + ..... + zn| – 4 n21 z 1 ....... z 1 z 1 +++ is (A) 0 (B) n (C) –n (D) none of these Part : (B) May have more than one options correct 27. If z1 lies on |z| = 1 and z2 lies on |z| = 2, then (A) 3 ≤ |z1 – 2z2| ≤ 5 (B) 1 ≤ |z1 + z2| ≤ 3 (C) |z1 – 3z2| ≥ 5 (D) |z1 – z2| ≥ 1 28. If z1 , z2 , z3 , z4 are root of the equation a0 z4 + z1 z3 + z2 z2 + z3 z + z4 = 0, where a0 , a1 , a2 , a3 and a4 are real, then (A) 1z , 2z , 3z , 4z are also roots of the equation (B) z1 is equal to at least one of 1z , 2z , 3z , 4z (C) – 1z ,– 2z , – 3z , – 4z are also roots of the equation (D) none of these 29. If a3 + b3 + 6 abc = 8 c3 & ω is a cube root of unity then : (A) a, c, b are in A.P. (B) a, c, b are in H.P. (C) a + bω − 2 cω2 = 0 (D) a + bω2 − 2 cω = 0 30. The points z1, z2, z3 on the complex plane are the vertices of an equilateral triangle if and only if : (A) Σ (z1 − z2) (z2 − z3) = 0 (B) z1 2 + z2 2 + z3 2 = 2 (z1 z2 + z2 z3 + z3 z1) (C) z1 2 + z2 2 + z3 2 = z1 z2 + z2 z3 + z3 z1 (D) 2 (z1 2 + z2 2 + z3 2) = z1 z2 + z2 z3 + z3 z1 31. If |z1 + z2 | = |z1 – z2 | then (A) |amp z1 – amp z2 | = 2 π (B) | amp z1 – amp2 | = π (C) 2 1 z z is purely real (D) 2 1 z z is purely imaginary EXERCISE-5 1. Given that x, y ∈ R, solve : 4x² + 3xy + (2xy − 3x²)i = 4y² − (x2/2) + (3xy − 2y²)i 2. If α & β are any two complex numbers, prove that : α α β α α β α β α β− − + + − = + + −2 2 2 2 . 3. If α, β are the numbers between 0 and 1, such that the points z1 = α + i, z2 = 1 + βi and z3 = 0 form an equilateral triangle, then find α and β. 4. ABCD is a rhombus. Its diagonalsAC and BD intersect at the point M and satisfy BD = 2AC. If the points D and M represent the complex numbers1 + i and 2 - i respectively, then find the complex number corresponding to A. 5. Show that the sum of the pth powers of nth roots of unity : (a) is zero, when p is not a multiple of n. (b) is equal to n, when p is a multiple of n. 6. If (1 + x)n = p0 + p1 x + p2 x2 + p3 x3 +......., then prove that : (a) p0 − p2 + p4 −....... = 2n/2 cos n π 4 (b) p1 − p3 + p5 −....... = 2n/2 sin n π 4 7. Prove that, loge 1 1 −         ei θ = loge 1 2 2 cosec θ      + i π θ 2 2 −       8. If iii ....... ∞ = A + i B, principal values only being considered, prove that (a) tan 1 2 πA = B A (b) A2 + B2 = e − π B 9. Prove that the roots of the equation, (x - 1)n = xn are 1 2 1 +      i r r cot π , where r = 0, 1, 2,....... (n − 1) & n ∈ N. 10. If cos (α − β) + cos (β − γ) + cos (γ − α) = − 3/2 then prove that : (a) Σ cos 2α = 0 = Σ sin 2α (b) Σ sin (α + β) = 0 = Σ cos (α + β) (c) Σ sin 3α = 3 sin (α + β + γ) (d) Σ cos 3 α = 3 cos (α + β + γ) (e) Σ sin2 α = Σ cos2 α = 3/2 (f) cos3 (θ + α) + cos3 (θ + β) + cos3 (θ + γ) = 3 cos (θ + α). cos (θ + β). cos (θ + γ) where θ ∈ R.
  • 13. 28of38 Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't. TEKOCLASSES,H.O.D.MATHS:SUHAGR.KARIYA(S.R.K.Sir)PH:(0755)-3200000,09893058881,BHOPAL,(M.P.) FREEDownloadStudyPackagefromwebsite:www.tekoclasses.com 11. If α, β, γ are roots of x3 − 3 x2 + 3 x + 7 = 0 (and ωis imaginary cube root of unity), then find the value of α β − − 1 1 + β γ − − 1 1 + γ α − − 1 1 . 12. Given that, |z − 1| = 1, where ' z ' is a point on the argand plane. Show that z z − 2 = i tan (arg z). 13. P is a point on the Argand diagram. On the circle with OP as diameter two points Q & R are taken such that ∠ POQ = ∠ QOR = θ. If ‘O’ is the origin & P, Q & R are represented by the complex numbers Z1, Z2 & Z3 respectively, show that : Z2 2 . cos 2 θ = Z1. Z3 cos² θ. 14. Find an expression for tan 7θ in terms of tan θ, using complex numbers. By considering tan 7θ = 0, show that x = tan2 (3 π/7) satisfies the cubic equation x3 − 21x2 + 35x − 7 = 0. 15. If (1 + x)n = C0 + C1x + C2x² +.... + Cn xn (n ∈ N), prove that : C2 + C6 + C10 +..... = 1 2 2 2 4 1 2n n n− −       / cos π 16. Prove that : cos 2 2 1 π n +       + cos 4 2 1 π n +       + cos 6 2 1 π n +       +..... + cos 2 2 1 n n π +       = − 1 2 When n ∈ N. 17. Show that all the roots of the equation a1 z3 + a2 z2 + a3 z + a4 = 3, where |ai | ≤ 1, i = 1, 2, 3, 4 lie outside the circle with centre origin and radius 2/3. 18. Prove that ∑ − = − 1n 1k )kn( cos n k2 π = – 2 n , where n ≥ 3 is an integer 19. Show that the equation A x a A x a A x a n n 1 2 1 2 2 2 2 − + − + + − ...... = k has no imaginary root, given that : a1, a2, a3.... an & A1, A2, A3..... An, k are all real numbers. 20. Let z1, z2, z3 be three distinct complex numbers satisfying, ½z1-1½ = ½z2-1½ = ½z3-1½. Let A, B & C be the points represented in the Argand plane corresponding to z1, z2 and z3 resp. Prove that z1 + z2 + z3 = 3 if and only if D ABC is an equilateral triangle. 21. Let α, β be fixed complex numbers and z is a variable complex number such that, z − α 2 + z − β 2 = k. Find out the limits for 'k' such that the locus of z is a circle. Find also the centre and radius of the circle. 22. If 1, α1, α2, α3,......., αn − 1 are the n, nth roots of unity, then prove that (1 − α1) (1 − α2) (1 − α3)........ (1 − αn − 1) = n. Hence prove that sin π n . sin 2 π n . sin 3 π n ........ sin ( )n n − 1 π = n n 2 1− . 23. Find the real values of the parameter ‘a’ for which at least one complex number z = x + iy satisfies both the equality z − ai = a + 4 and the inequality z − 2 < 1. 24. Prove that, with regard to the quadratic equation z2 + (p + ip′) z + q + iq′ = 0; where p, p′, q, q′ are all real. (a) if the equation has one real root then q ′2 − pp ′ q ′ + qp ′2 = 0. (b) if the equation has two equal roots then p2 − p′2 = 4q & pp ′ = 2q ′. State whether these equal roots are real or complex. 25. The points A, B, C depict the complex numbers z1, z2, z3 respectively on a complex plane & the angle B & C of the triangle ABC are each equal to 1 2 ( )π α− . Show that (z2 − z3)² = 4 (z3 − z1) (z1 − z2) sin2 α 2 . 26. If z1, z2 & z3 are the affixes of three points A, B & C respectively and satisfy the condition |z1 – z2| = |z1| + |z2| and |(2 - i) z1 + iz3 | = |z1| + |(1 – i) z1 + iz3| then prove that ∆ ABC in a right angled. 27. If 1, α1, α2, α3, α4 be the roots of x5 − 1 = 0, then prove that 1 2 1 α−ω α−ω . 2 2 2 α−ω α−ω . 3 2 3 α−ω α−ω . 4 2 4 α−ω α−ω = ω. 28. If one the vertices of the square circumscribing the circle |z – 1| = 2 is 2 + 3 i. Find the other vertices of the square. [IIT – 2005, 4]
  • 14. 29of38 Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't. TEKOCLASSES,H.O.D.MATHS:SUHAGR.KARIYA(S.R.K.Sir)PH:(0755)-3200000,09893058881,BHOPAL,(M.P.) FREEDownloadStudyPackagefromwebsite:www.tekoclasses.com EXERCISE-4 1. A 2. C 3. D 4. A 5. A 6. D 7. C 8. A 9. A 11. D 12. A 13. B 14. D 15. D 16. A 17. B 18. A 19. D 20. C 21. C 22. B 23. B 24. D 25. B 26. C 27. A 28. ABCD29. AB 30. ACD 31. AC 10. AD EXERCISE-5 1. x = K, y = 3 2 K K ∈ R 3. 32,32 −− 4. 3 – 2 i or 1 – 2 3 i 11. 3 ω2 21. k > 1 2 2 α β− 23. − −       21 10 5 6 , 28. – i 3 , 1 – 3 + i, 1 + 3 – i