SlideShare a Scribd company logo
3
Most read
5
Most read
10
Most read
SMK CONVENT BUKIT NANAS, KUALA LUMPUR.
YEAR 2012
TEST 1:

ADDITIONAL MATHEMATICS FORM 4
Time: 1 ½ HOUR

NAME: ..................................................................................

FORM : 4 ...................

Instruction to candidates:
This paper consists of 18 questions. Answer all questions. Write your answer clearly in the spaces provided
in the question paper. Show your working. It may help you to get marks. If you wish to change your answer,
erase the answer that you have done. Then write down the new answer. The diagrams in the questions
provided are not drawn to scale unless stated. The marks allocated for each question are shown in brackets.
This
question
paper
must
be
handed
in
at
the
end
of
examination.

1. Given that 7m + 2n= 9 and 6m + n = 7, find the value of m andn.
Answer:

[4 marks]

FF Diagram 1shows the relation between set Aand set B in the arrow diagram.
2.

Diagram 1
a) State the type of the relation. [2 marks]
b) Object(s) of p.
Answer:
3.

Diagram 2 shows the relation between set S and set Tin the arrow diagram.

Diagram 2
State the
(a) image of 12
(b) object of 7
(c) domain of this relation
(d) range of this relation
[4 marks]
Answer:

4.

Diagram 3 shows the relation between set X and set Y in the graph form.

Diagram 3
State the relation in the form of ordered pairs.
[2 marks]
Answer:
5. Given function f : x → 3x + 6, find the
a) image of -7
b) object when image is 15
Answer:[3 marks]

6

Given the function f :x → |2x + 2|.
(a) Find the images of −2, 0 and 2.
(b) Sketch the graph of f(x) for the domain −2 ≤ x ≤ 2.
[4 marks]
Answer:
7

x
The functions of f and g are defined as f :x → x − 4 and g : x → 4 . Find the composite
function of gf and the value of gf(2).
[3 marks]
Answer:

8

Given function f : x → cosx, 0° ≤ x ≤ 180°, find the value of
(a) f(120°)
(b) x when f(x) = 0.5
[3 marks]
Answer:

9

The functions of u and v are defined as u: x → x − 3 and v :x → x2 − 6. Find the composite
function of uvand vu.
[4 marks]
Answer:
10 The functions of f and g are defined as f : x → x + 4 and fg : x → 2x − 7.
Find the function g.
[2 marks]
Answer:

11 The functions of f and g are defined as f :x → x + 6 and gf : x → 3x + 8.
Find the function g.
[3 marks]
Answer:

x−7
12. The functions of h and k are defined as h: x → x + 9 and k : x → x − 2, x ≠ a. Find
(a) the value of a
(b) the composite function h2
(c) the composite function kh
[4 marks]
Answer:
13 The function f is defined as f :x → 4x + 3. Find
(a) f−1(x)
(b) f−1(7)
[3 marks]
Answer:

14 The functions f and g are defined asf : x → 4 − 2x and g : x → 5x + 3.
Find gf−1(x).
[3 marks]
Answer:

15 Given the function f : x → 3x– 4 and the composite function fg : x → 5 – 6x. Find
(a) g(x)
(b) the value of x whenf2(x) = 2.
[4 marks]
Answer:
16 Diagram 4represents a functionf: x → x2 + bx + c.

Diagram 4
Find the
(a) values of b and c,
(b) theimage of −9under the function.
[5 marks]
Answer:

17

Given h−1(x) →
Answer:

2
findh(x). Hence evaluate h(2).
3x 5

[4 marks]
18

Given g(x) →

3 2x
find
4

a) g-1(x) ,
b) the value of x if g(x) maps to itself.
Answer:

[3 marks]

END OF THE QUESTION PAPER

Prepared by:

Checked by:

..............................................

.............................................

Miss. SazlinAinabtAbd. Ghani
Coordinator ofForm 4 Add. Maths.

Ms.GanFei Ting
Head of Panel of Add. Maths.
Marking Scheme and Answers for ADDITIONAL MATHEMATICS FORM 4 TEST 1
1

7m + 2n = 9  EQ 1
12m +2n = 14  EQ 2
EQ 1 – EQ 2,
-5m = -5
m=1
use EQ 1 to find t
7(1) + 2n = 9
2n = 2
n=1

2

Many-to-one relation

3

(a)
(b)
(c)
(d)

4

{(2, 8), (2, 14), (2, 16), (2, 20), (5, 20), (7, 14)}

5

(a) f(−7) = 3(−7) + 6
= −15
(b) f(x) = 15
3x + 6 = 15
3x = 9
x=3

6

(a) f(x) = |2x + 2|
f(−2) = |2(−2) + 2|
= |−4 + 2|
= |−2|
=2
f(0) = |2(0) + 2|
= |2|
=2
f(2) = |2(2) + 2|
= |4 + 2|
= |6|
=6
(b) f(x) = 0
|2x + 2|= 0
2x + 2 = 0
x = −1

2
14
{12, 14}
{2, 7}
7

x
Given f(x) = x − 4 and g(x) = 4 .
gf(x) = g(f(x))
= g(x − 4)
x−4
= 4
(2) − 4
gf(2) = 4
1
= −2

8

(a) f : x → cosx
f(120°) = cos 120°
= −0.5
(b) f(x) = 0.5
cosx = 0.5
x = 60°

9

Given u(x) = x − 3 and v(x) = x2 − 6.
uv(x) = u(v(x))
= u(x2 − 6)
= (x2 − 6) − 3
= x2 − 9
vu(x) = v(u(x))
= v(x − 3)
= (x − 3)2 − 6
= (x2 − 6x + 9) − 6
= x2 − 6x + 3

10 Given f(x) = x + 4 and fg(x) = 2x − 7.
fg(x) = f(g(x))
= g(x) + 4
g(x) + 4 = 2x − 7
g(x) = 2x − 11
∴g : x → 2x − 11
11 Given f(x) = x + 6 and gf(x) = 3x + 8.
gf(x) = g(f(x))
= g(x + 6)
g(x + 6) = 3x + 8
Let y = x + 6
So, x = y − 6
g(y) = 3(y − 6) + 8
= 3y − 10
Therefore, g : x → 3x − 10

12
(a) x − 2 = 0
x=2
∴a = 2
(b) h2 = h(h(x))
= h(x + 9)
= (x + 9) + 9
= x + 18
(c) kh(x) = k(h(x))
= g(x + 9)
(x + 9) − 7
= (x + 9) − 2
x+2
= x + 7, x ≠ −7
13 (a) Let f−1(7) = k
So f(k) = 7
4k + 3 = 7
k=1
Therefore, f−1(7) = 1
(b) Let f−1(x) = y
So f(y) = x
4y + 3 = x
4y = x − 3
x−3
y= 4
x−3
Therefore, f−1(x) = 4
14 Let f−1(x) = y
So f(y) = x
4 − 2y = x
4−x
y= 2
Therefore f−1(x) =
gf−1(x) = g(f−1(x))

4−x
2
4−x
= g( 2 )
4−x
= 5( 2 ) + 3
26 − 5x
= 2
15 (a) Given f(x) = 3x - 4 and fg(x) = 5 - 6x .
fg(x) = f(g(x))
5-6x = 3g(x) – 4
Therefore, g : x → 3-2x
(b) ff(x) = 3(3x-4)-4 = 2
9x-12-4 = 2
x=2

16

f(x) = x2 + bx + c
f(2) = 13
(2)2 + b(2) + c = 13
4 + 2b + c = 13
2b + c = 9 −−−− E1
f(3) = 26
(3)2 + b(2) + c = 26
9 + 3b + c = 26
3b + c = 17 −−−− E2
E1 − E2:
−b = −8
b=8
Substitute b = 8 into E1.
2(8) + c = 9
c = −7
f(x) = x2 + 8x − 7
f(−9) = (−9)2 + 8(−9) − 7
= 81 − 72 − 7
=2

17 Let h−1(x) = y
So h(y) = x
2
=y
3x 5
2 5y
x
3y
Therefore, h(x) =

2 5x
;x
3x

18 Let g−1(x) = y
So g(y) = x
3 2y
x
4
3 4x
y
2
Therefore, g-1(x) =
When g(x) = x,
3 2x
4

x=

1
2

x

3 4x
2

0
Test 1 f4 add maths

More Related Content

PDF
Chapter 1 functions
PDF
Chapter 3 quadratc functions
PDF
Add maths complete f4 & f5 Notes
PDF
Chapter 5 indices & logarithms
PDF
Additional Mathematics form 4 (formula)
PDF
Module 7 The Straight Lines
PDF
Linear law
PDF
Form 5 Additional Maths Note
Chapter 1 functions
Chapter 3 quadratc functions
Add maths complete f4 & f5 Notes
Chapter 5 indices & logarithms
Additional Mathematics form 4 (formula)
Module 7 The Straight Lines
Linear law
Form 5 Additional Maths Note

What's hot (20)

PDF
Form 4 add maths note
PPT
Persamaan garis lurus
PDF
Spm Add Maths Formula List Form4
PDF
Matematik tambahan tingkatan 4 fungsi kuadratik {add math form 4 - quadract...
PDF
Rumus matematik-tambahan
DOCX
Esei bm (kesan makanan ringan)
PPT
MT T4 (Bab 3: Fungsi Kuadratik)
PDF
Latihan ungkapan algebra
PDF
551920773-Bahasa-Melayu-Standard-Kempimpinan-Melalui-Teladan (1).pdf
PPTX
Kesan kesan perang dunia kedua 11
PDF
Matematik tambahan spm tingkatan 4 geometri koordinat {add maths form 4 coord...
PDF
KSSM Form 4 Additional Mathematics Notes (Chapter 1-5)
PDF
CHAPTER 10 FINANCIAL MANAGEMENT
DOCX
Cth karangan gaya hidup sihat 1
PPTX
Lakar graf fungsi kuadratik
PDF
Garis lurus
DOC
Topik 1 fungsi (2)
PPT
Spm add math 2009 paper 1extra222
PPTX
Cara lukis graf
DOCX
Latihan rumus algebra
Form 4 add maths note
Persamaan garis lurus
Spm Add Maths Formula List Form4
Matematik tambahan tingkatan 4 fungsi kuadratik {add math form 4 - quadract...
Rumus matematik-tambahan
Esei bm (kesan makanan ringan)
MT T4 (Bab 3: Fungsi Kuadratik)
Latihan ungkapan algebra
551920773-Bahasa-Melayu-Standard-Kempimpinan-Melalui-Teladan (1).pdf
Kesan kesan perang dunia kedua 11
Matematik tambahan spm tingkatan 4 geometri koordinat {add maths form 4 coord...
KSSM Form 4 Additional Mathematics Notes (Chapter 1-5)
CHAPTER 10 FINANCIAL MANAGEMENT
Cth karangan gaya hidup sihat 1
Lakar graf fungsi kuadratik
Garis lurus
Topik 1 fungsi (2)
Spm add math 2009 paper 1extra222
Cara lukis graf
Latihan rumus algebra
Ad

Viewers also liked (20)

PDF
Matematik Tamabahan Pertengahan Tahun Tingkatan 4
DOCX
MATEMATIK TINGKATAN 4 LATIHAN BAB 1-6
DOCX
Matematik Tambahan Soalan set 1
PDF
Modul bimbingan add maths
PDF
Koleksi soalan addmath kertas1
PDF
Soalan Pertengahan Tahun Matematik Tingkatan 4
PDF
Matematik tambahan tingkatan 4
DOCX
LATIHAN MATEMATIK TAMBAHAN TINGKATAN 4 BAB 9 (TAJUK:PEMBEZAAN)
DOC
Mathematics Mid Year Form 4 Paper 1 Mathematics
DOCX
Ujian 1 kimia tingkatan 4 2016
PDF
Soalan Kimia tingkatan 4
PDF
Statistics
DOCX
Ujian matematik tambahan (guru)
DOCX
Pakej percutian matematik tambahan tingkatan 4
DOCX
UJIAN BULANAN 2 2012 TINGKATAN 4, (17/7/2012)
PDF
Matematik Tambahan: Fungsi
PDF
Chapter 4 simultaneous equations
PDF
Perfect Score Addmath SPM 2013
DOCX
Ujian Selaras1 Kimia Form 4 2015
DOCX
UJIAN 1 (MAC) TINGKATAN 4 2012, SMK SULTAN ISMAIL, JOHOR BAHRU
Matematik Tamabahan Pertengahan Tahun Tingkatan 4
MATEMATIK TINGKATAN 4 LATIHAN BAB 1-6
Matematik Tambahan Soalan set 1
Modul bimbingan add maths
Koleksi soalan addmath kertas1
Soalan Pertengahan Tahun Matematik Tingkatan 4
Matematik tambahan tingkatan 4
LATIHAN MATEMATIK TAMBAHAN TINGKATAN 4 BAB 9 (TAJUK:PEMBEZAAN)
Mathematics Mid Year Form 4 Paper 1 Mathematics
Ujian 1 kimia tingkatan 4 2016
Soalan Kimia tingkatan 4
Statistics
Ujian matematik tambahan (guru)
Pakej percutian matematik tambahan tingkatan 4
UJIAN BULANAN 2 2012 TINGKATAN 4, (17/7/2012)
Matematik Tambahan: Fungsi
Chapter 4 simultaneous equations
Perfect Score Addmath SPM 2013
Ujian Selaras1 Kimia Form 4 2015
UJIAN 1 (MAC) TINGKATAN 4 2012, SMK SULTAN ISMAIL, JOHOR BAHRU
Ad

Similar to Test 1 f4 add maths (20)

DOC
F4 c1 functions__new__1_
PPTX
Functions ppt Dr Frost Maths Mixed questions
PDF
Logarithms
ODP
PPT
11-FUNCTIONS-OPERATIONS-COMPOSITE-INVERSE1.ppt
PPT
FUNCTION EX 1 PROBLEMS WITH SOLUTION UPTO JEE LEVEL
PDF
Modul 1 functions
PDF
Module 1
PDF
FUNCTIONS L.1.pdf
KEY
PM5006 Week 6
PDF
Chapter 1 (math 1)
DOC
1.funtions (1)
PPTX
gen math chaptesdf sdf sdfr 1 lesson1-4.pptx
PDF
Limits and Continuity of Functions
PDF
Chapter1 functions
PDF
Chapter1 functions
PDF
TMUA 2021 Paper 1 Solutions (Handwritten).pdf
PDF
Solution Manual : Chapter - 07 Exponential, Logarithmic and Inverse Trigonome...
PDF
Week-2-Operation-on-Functions-Genmathg11
PDF
F4 ADD MATH MODULE 2021.pdf
F4 c1 functions__new__1_
Functions ppt Dr Frost Maths Mixed questions
Logarithms
11-FUNCTIONS-OPERATIONS-COMPOSITE-INVERSE1.ppt
FUNCTION EX 1 PROBLEMS WITH SOLUTION UPTO JEE LEVEL
Modul 1 functions
Module 1
FUNCTIONS L.1.pdf
PM5006 Week 6
Chapter 1 (math 1)
1.funtions (1)
gen math chaptesdf sdf sdfr 1 lesson1-4.pptx
Limits and Continuity of Functions
Chapter1 functions
Chapter1 functions
TMUA 2021 Paper 1 Solutions (Handwritten).pdf
Solution Manual : Chapter - 07 Exponential, Logarithmic and Inverse Trigonome...
Week-2-Operation-on-Functions-Genmathg11
F4 ADD MATH MODULE 2021.pdf

Recently uploaded (20)

PDF
O5-L3 Freight Transport Ops (International) V1.pdf
PDF
O7-L3 Supply Chain Operations - ICLT Program
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PPTX
master seminar digital applications in india
PDF
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
PDF
Complications of Minimal Access Surgery at WLH
PPTX
GDM (1) (1).pptx small presentation for students
PDF
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
PPTX
Cell Structure & Organelles in detailed.
PDF
102 student loan defaulters named and shamed – Is someone you know on the list?
PPTX
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
PPTX
Renaissance Architecture: A Journey from Faith to Humanism
PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
PDF
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
PDF
Basic Mud Logging Guide for educational purpose
PPTX
PPH.pptx obstetrics and gynecology in nursing
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PDF
Computing-Curriculum for Schools in Ghana
PPTX
Institutional Correction lecture only . . .
O5-L3 Freight Transport Ops (International) V1.pdf
O7-L3 Supply Chain Operations - ICLT Program
Final Presentation General Medicine 03-08-2024.pptx
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
master seminar digital applications in india
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
Complications of Minimal Access Surgery at WLH
GDM (1) (1).pptx small presentation for students
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
Cell Structure & Organelles in detailed.
102 student loan defaulters named and shamed – Is someone you know on the list?
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
Renaissance Architecture: A Journey from Faith to Humanism
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
Basic Mud Logging Guide for educational purpose
PPH.pptx obstetrics and gynecology in nursing
Module 4: Burden of Disease Tutorial Slides S2 2025
Computing-Curriculum for Schools in Ghana
Institutional Correction lecture only . . .

Test 1 f4 add maths

  • 1. SMK CONVENT BUKIT NANAS, KUALA LUMPUR. YEAR 2012 TEST 1: ADDITIONAL MATHEMATICS FORM 4 Time: 1 ½ HOUR NAME: .................................................................................. FORM : 4 ................... Instruction to candidates: This paper consists of 18 questions. Answer all questions. Write your answer clearly in the spaces provided in the question paper. Show your working. It may help you to get marks. If you wish to change your answer, erase the answer that you have done. Then write down the new answer. The diagrams in the questions provided are not drawn to scale unless stated. The marks allocated for each question are shown in brackets. This question paper must be handed in at the end of examination. 1. Given that 7m + 2n= 9 and 6m + n = 7, find the value of m andn. Answer: [4 marks] FF Diagram 1shows the relation between set Aand set B in the arrow diagram. 2. Diagram 1 a) State the type of the relation. [2 marks] b) Object(s) of p. Answer:
  • 2. 3. Diagram 2 shows the relation between set S and set Tin the arrow diagram. Diagram 2 State the (a) image of 12 (b) object of 7 (c) domain of this relation (d) range of this relation [4 marks] Answer: 4. Diagram 3 shows the relation between set X and set Y in the graph form. Diagram 3 State the relation in the form of ordered pairs. [2 marks] Answer:
  • 3. 5. Given function f : x → 3x + 6, find the a) image of -7 b) object when image is 15 Answer:[3 marks] 6 Given the function f :x → |2x + 2|. (a) Find the images of −2, 0 and 2. (b) Sketch the graph of f(x) for the domain −2 ≤ x ≤ 2. [4 marks] Answer:
  • 4. 7 x The functions of f and g are defined as f :x → x − 4 and g : x → 4 . Find the composite function of gf and the value of gf(2). [3 marks] Answer: 8 Given function f : x → cosx, 0° ≤ x ≤ 180°, find the value of (a) f(120°) (b) x when f(x) = 0.5 [3 marks] Answer: 9 The functions of u and v are defined as u: x → x − 3 and v :x → x2 − 6. Find the composite function of uvand vu. [4 marks] Answer:
  • 5. 10 The functions of f and g are defined as f : x → x + 4 and fg : x → 2x − 7. Find the function g. [2 marks] Answer: 11 The functions of f and g are defined as f :x → x + 6 and gf : x → 3x + 8. Find the function g. [3 marks] Answer: x−7 12. The functions of h and k are defined as h: x → x + 9 and k : x → x − 2, x ≠ a. Find (a) the value of a (b) the composite function h2 (c) the composite function kh [4 marks] Answer:
  • 6. 13 The function f is defined as f :x → 4x + 3. Find (a) f−1(x) (b) f−1(7) [3 marks] Answer: 14 The functions f and g are defined asf : x → 4 − 2x and g : x → 5x + 3. Find gf−1(x). [3 marks] Answer: 15 Given the function f : x → 3x– 4 and the composite function fg : x → 5 – 6x. Find (a) g(x) (b) the value of x whenf2(x) = 2. [4 marks] Answer:
  • 7. 16 Diagram 4represents a functionf: x → x2 + bx + c. Diagram 4 Find the (a) values of b and c, (b) theimage of −9under the function. [5 marks] Answer: 17 Given h−1(x) → Answer: 2 findh(x). Hence evaluate h(2). 3x 5 [4 marks]
  • 8. 18 Given g(x) → 3 2x find 4 a) g-1(x) , b) the value of x if g(x) maps to itself. Answer: [3 marks] END OF THE QUESTION PAPER Prepared by: Checked by: .............................................. ............................................. Miss. SazlinAinabtAbd. Ghani Coordinator ofForm 4 Add. Maths. Ms.GanFei Ting Head of Panel of Add. Maths.
  • 9. Marking Scheme and Answers for ADDITIONAL MATHEMATICS FORM 4 TEST 1 1 7m + 2n = 9  EQ 1 12m +2n = 14  EQ 2 EQ 1 – EQ 2, -5m = -5 m=1 use EQ 1 to find t 7(1) + 2n = 9 2n = 2 n=1 2 Many-to-one relation 3 (a) (b) (c) (d) 4 {(2, 8), (2, 14), (2, 16), (2, 20), (5, 20), (7, 14)} 5 (a) f(−7) = 3(−7) + 6 = −15 (b) f(x) = 15 3x + 6 = 15 3x = 9 x=3 6 (a) f(x) = |2x + 2| f(−2) = |2(−2) + 2| = |−4 + 2| = |−2| =2 f(0) = |2(0) + 2| = |2| =2 f(2) = |2(2) + 2| = |4 + 2| = |6| =6 (b) f(x) = 0 |2x + 2|= 0 2x + 2 = 0 x = −1 2 14 {12, 14} {2, 7}
  • 10. 7 x Given f(x) = x − 4 and g(x) = 4 . gf(x) = g(f(x)) = g(x − 4) x−4 = 4 (2) − 4 gf(2) = 4 1 = −2 8 (a) f : x → cosx f(120°) = cos 120° = −0.5 (b) f(x) = 0.5 cosx = 0.5 x = 60° 9 Given u(x) = x − 3 and v(x) = x2 − 6. uv(x) = u(v(x)) = u(x2 − 6) = (x2 − 6) − 3 = x2 − 9 vu(x) = v(u(x)) = v(x − 3) = (x − 3)2 − 6 = (x2 − 6x + 9) − 6 = x2 − 6x + 3 10 Given f(x) = x + 4 and fg(x) = 2x − 7. fg(x) = f(g(x)) = g(x) + 4 g(x) + 4 = 2x − 7 g(x) = 2x − 11 ∴g : x → 2x − 11
  • 11. 11 Given f(x) = x + 6 and gf(x) = 3x + 8. gf(x) = g(f(x)) = g(x + 6) g(x + 6) = 3x + 8 Let y = x + 6 So, x = y − 6 g(y) = 3(y − 6) + 8 = 3y − 10 Therefore, g : x → 3x − 10 12 (a) x − 2 = 0 x=2 ∴a = 2 (b) h2 = h(h(x)) = h(x + 9) = (x + 9) + 9 = x + 18 (c) kh(x) = k(h(x)) = g(x + 9) (x + 9) − 7 = (x + 9) − 2 x+2 = x + 7, x ≠ −7 13 (a) Let f−1(7) = k So f(k) = 7 4k + 3 = 7 k=1 Therefore, f−1(7) = 1 (b) Let f−1(x) = y So f(y) = x 4y + 3 = x 4y = x − 3 x−3 y= 4 x−3 Therefore, f−1(x) = 4 14 Let f−1(x) = y So f(y) = x 4 − 2y = x 4−x y= 2 Therefore f−1(x) = gf−1(x) = g(f−1(x)) 4−x 2
  • 12. 4−x = g( 2 ) 4−x = 5( 2 ) + 3 26 − 5x = 2 15 (a) Given f(x) = 3x - 4 and fg(x) = 5 - 6x . fg(x) = f(g(x)) 5-6x = 3g(x) – 4 Therefore, g : x → 3-2x (b) ff(x) = 3(3x-4)-4 = 2 9x-12-4 = 2 x=2 16 f(x) = x2 + bx + c f(2) = 13 (2)2 + b(2) + c = 13 4 + 2b + c = 13 2b + c = 9 −−−− E1 f(3) = 26 (3)2 + b(2) + c = 26 9 + 3b + c = 26 3b + c = 17 −−−− E2 E1 − E2: −b = −8 b=8 Substitute b = 8 into E1. 2(8) + c = 9 c = −7 f(x) = x2 + 8x − 7 f(−9) = (−9)2 + 8(−9) − 7 = 81 − 72 − 7 =2 17 Let h−1(x) = y So h(y) = x 2 =y 3x 5 2 5y x 3y
  • 13. Therefore, h(x) = 2 5x ;x 3x 18 Let g−1(x) = y So g(y) = x 3 2y x 4 3 4x y 2 Therefore, g-1(x) = When g(x) = x, 3 2x 4 x= 1 2 x 3 4x 2 0