SlideShare a Scribd company logo
ALGEBRA OF FUNCTIONS
AND IT’S OPERATIONS
A. SUM
(f + h)(x) = f(x) + h(x)
B. DIFFERENCE
(f – h)(x) = f(x) – h(x)
Example 1:
Let f(x) = x + 1 ; h(x) = 2x2
a.(f+h)(x) = f(x) + h(x)
= (x+1) + (2x2
)
= 2x2
+ x + 1
b. (f-h)(x) = f(x) - h(x)
= (x+1) - (2x2
)
= -2x2
+ x + 1
c. (f∙h)(x) = f(x) · h(x)
= (x+1) · (2x2
)
= 2x3
+ 2x2
11-FUNCTIONS-OPERATIONS-COMPOSITE-INVERSE1.ppt
Example 2:
Let f(x) = 2x + 1 ; h(x) = 3x
x – 2 x – 2
a.(f+h)(x) = f(x) + h(x)
= 2x+1 + 3x
x-2 x-2
= 5x + 1
x - 2
b. (f-h)(x) = f(x) - h(x)
= 2x+1 - (3x)
x-2 x-2
= 1 - x
x – 2
c. (f∙h)(x) = f(x) · h(x)
= (2x+1) · (3x)
x – 2 x - 2
= 6x2
+ 3x
x2
- 4x + 4
COMPOSITION OF FUNCTION
Given two functions f and h, the
composite function denoted by f ◦ h is
defined by (f ◦ h)(x) = f(h(x))
Example:
Let f(x) = 2x +1 ; h(x) = 3x
1.(f◦h)(1)
h(x) = 3x
h(1) = 3(1)
= 3
f(x) = 2x + 1
f(3) = 2(3) + 1
= 6 + 1
= 7
Therefore, (f◦h)(1) = f(h(1)) = f(3) = 7
Let f(x) = 2x +1 ; h(x) = 3x
2. (h◦f)(1)
f(1) = 2x + 1
= 2(1) + 1
= 2 + 1
= 3
h(x) = 3x
h(3) = 3(3)
= 9
Therefore, (h◦f)(1) = h(f(1)) = h(3) = 9
11-FUNCTIONS-OPERATIONS-COMPOSITE-INVERSE1.ppt
11-FUNCTIONS-OPERATIONS-COMPOSITE-INVERSE1.ppt
11-FUNCTIONS-OPERATIONS-COMPOSITE-INVERSE1.ppt
11-FUNCTIONS-OPERATIONS-COMPOSITE-INVERSE1.ppt
INVERSE FUNCTION
A function f is one-to-one
ordered pairs in the function have the
same ordinate and different abscissa.
A function f has an inverse
function f-1
if and only if f is one-to-
one.
Example:
1. Let f(x) = 2x -3. Find f-1
(x) given that f is
one-to-one.
Let f(x) = y
Thus, y= 2x-3
Interchange x and y.
x = 2y -3
Solve for y
2y = x + 3
y = x + 3
2
f-1
(x) = x+3
2
2. Let f(x) = 5x. Find the inverse function.
Let f(x) = y
Thus, y= 5x
Interchange x and y.
x = 5y
Solve for y
5y = x
y = x
5
f-1
(x) = x
5
3. Let f(x) = x+10. Find the inverse
function.
Let f(x) = y
Thus, y= x+10
Interchange x and y.
x = y+10
Solve for y
y = x -10
f-1
(x) = x -10
Activity
A. Solve the composite function.
Let f(x) = 2x ; g(x) = 4x2
- 5x ; h(x) = x + 1
1.(g ◦ h)(2)=21
2.(h ◦ g)(1)
3.(f ◦ h)(3)
4.(f ◦ g)(1)
5.(g ◦ f)(1)
6.(h ◦ f)(2)
7.(f ◦ f)(2)
8.(h ◦ h)(3)
9.(g ◦ g)(1)
10.(g ◦ g)(-1)
Solutions
1.h(2)= 2 + 1 = 3 g(3)= 4(9) – 5(3)= 36 – 15 = 21
2.g(1)= 4 – 5 = -1 h(-1)= -1 + 1= 0
3.h(3)= 3 + 1 = 4 f(4)= 2(4) = 8
4.g(1)= 4(1) – 5(1) = -1 f(-1) = 2(-1) = -2
5.f(1)= 2(1) = 2 g(2) = 4(4) – 5(2) = 6
6.f(2)= 2(2) = 4 h(4)= 4 + 1 = 5
7.f(2)= 2(2) = 4 f(4)= 2(4) = 8
8.h(3)= 3 + 1= 4 h(4)= 4 + 1 = 5
9.g(1)= 4 – 5 = -1 g(-1)= 4 + 5 = 9
10.g(-1)= 4 + 5 = 9 g(9)= 4(81) – 45 = 324 – 45 = 279
B. Solve the inverse function.
1.f(x) = 4x – 1
2.f(x) = x – 2
3.f(x) = 2x + 5
4.f(x) = x-2
2x+3
5. f(x) = -3x
Solution
1.x = 4y – 1 4y= x + 1 f-1
= x + 1
4
2.x= y – 2 y= x + 2 f-1
(x)= x + 2
3. x= 2y + 5 2y= x – 5 f-1
(x)= x – 5
2
4.x= y-2 y= 2xy+3x-2 f-1
(x)= 2xy+3x-2
2y+3
5.x= -3yy= x f-1
(x)= x
-3 -3

More Related Content

PPTX
gen math chaptesdf sdf sdfr 1 lesson1-4.pptx
PPTX
Evaluate functions & fundamental operations of functions
PPTX
FUNCIONES.pptx
PPTX
GEN-MATH-WEEK-2.pptx
PDF
Operation on functions
PDF
Operations on Functions.pdf
PPT
FUNCTION EX 1 PROBLEMS WITH SOLUTION UPTO JEE LEVEL
PPTX
OPERATIONS ON FUNCTIONS (ADDITION, SUBTRACTION, MULTIPLICATION AND DIVISION)....
gen math chaptesdf sdf sdfr 1 lesson1-4.pptx
Evaluate functions & fundamental operations of functions
FUNCIONES.pptx
GEN-MATH-WEEK-2.pptx
Operation on functions
Operations on Functions.pdf
FUNCTION EX 1 PROBLEMS WITH SOLUTION UPTO JEE LEVEL
OPERATIONS ON FUNCTIONS (ADDITION, SUBTRACTION, MULTIPLICATION AND DIVISION)....

Similar to 11-FUNCTIONS-OPERATIONS-COMPOSITE-INVERSE1.ppt (20)

PPT
Composite Function Mathematics for grade 11
DOCX
Invers fungsi
PDF
Algebra 2 Section 5-1
PPTX
3_Operations_onfffffffffffffffffffffff_Functions.pptx
PPTX
BINARY-OPERATION and OPERATION OF FUNCTION.pptx
PPTX
Combined Functions
PPTX
The _Operations_on_Functions_Addition subtruction Multiplication and Division...
PPTX
3_Operations_on_Functions0000000000.pptx
PPTX
3_Operations_on_Functions...........pptx
PDF
PPTX
F.Komposisi
PPTX
lesson10-thechainrule034slides-091006133832-phpapp01.pptx
PDF
1. functions
PPT
Numerical differentiation integration
DOCX
Tugasmatematikakelompok 150715235527-lva1-app6892
PPT
Evaluating Functions.ppt
DOCX
Tugasmatematikakelompok
PDF
OPERATIONS OF FUNCTIONhshdhsbdbbsbvvj.pdf
PPTX
Multipying polynomial functions
DOCX
Tugas matematika kelompok
Composite Function Mathematics for grade 11
Invers fungsi
Algebra 2 Section 5-1
3_Operations_onfffffffffffffffffffffff_Functions.pptx
BINARY-OPERATION and OPERATION OF FUNCTION.pptx
Combined Functions
The _Operations_on_Functions_Addition subtruction Multiplication and Division...
3_Operations_on_Functions0000000000.pptx
3_Operations_on_Functions...........pptx
F.Komposisi
lesson10-thechainrule034slides-091006133832-phpapp01.pptx
1. functions
Numerical differentiation integration
Tugasmatematikakelompok 150715235527-lva1-app6892
Evaluating Functions.ppt
Tugasmatematikakelompok
OPERATIONS OF FUNCTIONhshdhsbdbbsbvvj.pdf
Multipying polynomial functions
Tugas matematika kelompok
Ad

More from DhanielleMamucod (14)

PPTX
7C-GROUPEDDATA_DECILEhbjbbjhbnmhbmn.pptx
PPT
10-VARIATIONS1 bbbbbbbbbbbbbvvvvvvbv.ppt
PPTX
Presentation10november18bbbbbbbbbbbbbbbbbbbbbb.pptx
PPTX
K to 12 Curriculum in PE Powerpoint Week 2.pptx
PPTX
ELEMENTS-OF-MUSICaaaaaaaaaaaaaaaaaaaaaa.pptx
PPTX
DEMONSTRATION METHOD (Jelyn Escartin) (2).pptx
PPT
Basic-Accounting-mmmmmmmmmmmmmmConcepts.ppt
PPT
BASIC-ACCOUNTING-REVIEWsasdadsdwadsad.ppt
PPTX
Assignment in Artsbbbbbbbbbbbbbbbbbbbbbbbbbbbb.pptx
PPTX
biobbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb.pptx
PPTX
7A-GROUPEDDATA_INTRODUCTION eeeeeee.pptx
PPT
Travel-Abroad-of-Rizal-Group-4asasasasdddaadwsadsdwa.ppt
PPTX
HM2-Team-Sports-Lesson-1aaaaaaaaaaaaa.pptx
PPTX
HM2-MIDTERM-LECTURE-3 vvvvvvvvvvvvv.pptx
7C-GROUPEDDATA_DECILEhbjbbjhbnmhbmn.pptx
10-VARIATIONS1 bbbbbbbbbbbbbvvvvvvbv.ppt
Presentation10november18bbbbbbbbbbbbbbbbbbbbbb.pptx
K to 12 Curriculum in PE Powerpoint Week 2.pptx
ELEMENTS-OF-MUSICaaaaaaaaaaaaaaaaaaaaaa.pptx
DEMONSTRATION METHOD (Jelyn Escartin) (2).pptx
Basic-Accounting-mmmmmmmmmmmmmmConcepts.ppt
BASIC-ACCOUNTING-REVIEWsasdadsdwadsad.ppt
Assignment in Artsbbbbbbbbbbbbbbbbbbbbbbbbbbbb.pptx
biobbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb.pptx
7A-GROUPEDDATA_INTRODUCTION eeeeeee.pptx
Travel-Abroad-of-Rizal-Group-4asasasasdddaadwsadsdwa.ppt
HM2-Team-Sports-Lesson-1aaaaaaaaaaaaa.pptx
HM2-MIDTERM-LECTURE-3 vvvvvvvvvvvvv.pptx
Ad

Recently uploaded (20)

PPTX
Pharma ospi slides which help in ospi learning
PDF
STATICS OF THE RIGID BODIES Hibbelers.pdf
PDF
Sports Quiz easy sports quiz sports quiz
PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PPTX
GDM (1) (1).pptx small presentation for students
PPTX
BOWEL ELIMINATION FACTORS AFFECTING AND TYPES
PPTX
master seminar digital applications in india
PDF
Basic Mud Logging Guide for educational purpose
PDF
RMMM.pdf make it easy to upload and study
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PPTX
Microbial diseases, their pathogenesis and prophylaxis
PPTX
Lesson notes of climatology university.
PDF
Anesthesia in Laparoscopic Surgery in India
PPTX
Pharmacology of Heart Failure /Pharmacotherapy of CHF
PDF
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
PDF
Insiders guide to clinical Medicine.pdf
PDF
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
PDF
102 student loan defaulters named and shamed – Is someone you know on the list?
PPTX
Cell Types and Its function , kingdom of life
Pharma ospi slides which help in ospi learning
STATICS OF THE RIGID BODIES Hibbelers.pdf
Sports Quiz easy sports quiz sports quiz
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
GDM (1) (1).pptx small presentation for students
BOWEL ELIMINATION FACTORS AFFECTING AND TYPES
master seminar digital applications in india
Basic Mud Logging Guide for educational purpose
RMMM.pdf make it easy to upload and study
Module 4: Burden of Disease Tutorial Slides S2 2025
Microbial diseases, their pathogenesis and prophylaxis
Lesson notes of climatology university.
Anesthesia in Laparoscopic Surgery in India
Pharmacology of Heart Failure /Pharmacotherapy of CHF
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
Insiders guide to clinical Medicine.pdf
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
102 student loan defaulters named and shamed – Is someone you know on the list?
Cell Types and Its function , kingdom of life

11-FUNCTIONS-OPERATIONS-COMPOSITE-INVERSE1.ppt

  • 1. ALGEBRA OF FUNCTIONS AND IT’S OPERATIONS A. SUM (f + h)(x) = f(x) + h(x) B. DIFFERENCE (f – h)(x) = f(x) – h(x)
  • 2. Example 1: Let f(x) = x + 1 ; h(x) = 2x2 a.(f+h)(x) = f(x) + h(x) = (x+1) + (2x2 ) = 2x2 + x + 1 b. (f-h)(x) = f(x) - h(x) = (x+1) - (2x2 ) = -2x2 + x + 1 c. (f∙h)(x) = f(x) · h(x) = (x+1) · (2x2 ) = 2x3 + 2x2
  • 4. Example 2: Let f(x) = 2x + 1 ; h(x) = 3x x – 2 x – 2 a.(f+h)(x) = f(x) + h(x) = 2x+1 + 3x x-2 x-2 = 5x + 1 x - 2 b. (f-h)(x) = f(x) - h(x) = 2x+1 - (3x) x-2 x-2 = 1 - x x – 2
  • 5. c. (f∙h)(x) = f(x) · h(x) = (2x+1) · (3x) x – 2 x - 2 = 6x2 + 3x x2 - 4x + 4
  • 6. COMPOSITION OF FUNCTION Given two functions f and h, the composite function denoted by f ◦ h is defined by (f ◦ h)(x) = f(h(x))
  • 7. Example: Let f(x) = 2x +1 ; h(x) = 3x 1.(f◦h)(1) h(x) = 3x h(1) = 3(1) = 3 f(x) = 2x + 1 f(3) = 2(3) + 1 = 6 + 1 = 7 Therefore, (f◦h)(1) = f(h(1)) = f(3) = 7
  • 8. Let f(x) = 2x +1 ; h(x) = 3x 2. (h◦f)(1) f(1) = 2x + 1 = 2(1) + 1 = 2 + 1 = 3 h(x) = 3x h(3) = 3(3) = 9 Therefore, (h◦f)(1) = h(f(1)) = h(3) = 9
  • 13. INVERSE FUNCTION A function f is one-to-one ordered pairs in the function have the same ordinate and different abscissa. A function f has an inverse function f-1 if and only if f is one-to- one.
  • 14. Example: 1. Let f(x) = 2x -3. Find f-1 (x) given that f is one-to-one. Let f(x) = y Thus, y= 2x-3 Interchange x and y. x = 2y -3 Solve for y 2y = x + 3 y = x + 3 2 f-1 (x) = x+3 2
  • 15. 2. Let f(x) = 5x. Find the inverse function. Let f(x) = y Thus, y= 5x Interchange x and y. x = 5y Solve for y 5y = x y = x 5 f-1 (x) = x 5
  • 16. 3. Let f(x) = x+10. Find the inverse function. Let f(x) = y Thus, y= x+10 Interchange x and y. x = y+10 Solve for y y = x -10 f-1 (x) = x -10
  • 17. Activity A. Solve the composite function. Let f(x) = 2x ; g(x) = 4x2 - 5x ; h(x) = x + 1 1.(g ◦ h)(2)=21 2.(h ◦ g)(1) 3.(f ◦ h)(3) 4.(f ◦ g)(1) 5.(g ◦ f)(1) 6.(h ◦ f)(2) 7.(f ◦ f)(2) 8.(h ◦ h)(3) 9.(g ◦ g)(1) 10.(g ◦ g)(-1)
  • 18. Solutions 1.h(2)= 2 + 1 = 3 g(3)= 4(9) – 5(3)= 36 – 15 = 21 2.g(1)= 4 – 5 = -1 h(-1)= -1 + 1= 0 3.h(3)= 3 + 1 = 4 f(4)= 2(4) = 8 4.g(1)= 4(1) – 5(1) = -1 f(-1) = 2(-1) = -2 5.f(1)= 2(1) = 2 g(2) = 4(4) – 5(2) = 6 6.f(2)= 2(2) = 4 h(4)= 4 + 1 = 5 7.f(2)= 2(2) = 4 f(4)= 2(4) = 8 8.h(3)= 3 + 1= 4 h(4)= 4 + 1 = 5 9.g(1)= 4 – 5 = -1 g(-1)= 4 + 5 = 9 10.g(-1)= 4 + 5 = 9 g(9)= 4(81) – 45 = 324 – 45 = 279
  • 19. B. Solve the inverse function. 1.f(x) = 4x – 1 2.f(x) = x – 2 3.f(x) = 2x + 5 4.f(x) = x-2 2x+3 5. f(x) = -3x
  • 20. Solution 1.x = 4y – 1 4y= x + 1 f-1 = x + 1 4 2.x= y – 2 y= x + 2 f-1 (x)= x + 2 3. x= 2y + 5 2y= x – 5 f-1 (x)= x – 5 2 4.x= y-2 y= 2xy+3x-2 f-1 (x)= 2xy+3x-2 2y+3 5.x= -3yy= x f-1 (x)= x -3 -3