SlideShare a Scribd company logo
6
Most read
11
Most read
14
Most read
OPERATIONS
OF FUNCTION
MYLA M. ARONDA
OBJECTIVES
A. define operation of functions.
B. substitute each value in a given
equation
C. Perform the indicated operation
DEFINITION
Let f and g be functions defined at a real number x.
the sum, difference, product, and quotient functions f
and g are the functions defined by
(f + g)(x) = f(x) + g(x) sum function
(f-g)(x) = f(x) – g(x) difference function
(fg)(x) = f(x)g(x) product function
, g(x) ≠ 0 quotient function
EXAMPLE
IN
SUM FUNCTION
EXAMPLE
Given thefunctions:
𝑓 (𝑥 )=𝑥 +5
𝑔 (𝑥 )=2𝑥 −1
ℎ(𝑥 )=2+9𝑥 −5
Find: (f + g)(x)
(g+ h)(x)
Find (f + g)(x)
Given: 𝑓 (𝑥 )=𝑥 +5
𝑔 (𝑥 )=2𝑥 −1
Solution:
(f + g)(x) = f(x) + g(x)
(f + g)(x) = (x + 5) + (2x-1)
= x + 2x + 5 – 1
= 3x + 4
Definition of addition
replace f(x) and g(x) by the
given values. Combine like
terms and perform the
indicated values
Find (g + h)(x)
Given: 𝑔 (𝑥 )=2𝑥 −1
ℎ(𝑥 )=2+9𝑥 −5
Solution:
(g + h)(x) = g(x) + h(x)
= (2x -1) + (2+9𝑥 −5
= 2 + 2x + 9x – 5 -1
= 2 + 11x -6
Definition of addition
replace f(x) and g(x) by the
given values. Combine like
terms and perform the
indicated values
EXAMPLE
IN
DIFFERENCE
FUNCTION
EXAMPLE
Given thefunctions:
𝑓 (𝑥 )=𝑥 +5
𝑔 (𝑥 )=2𝑥 −1
ℎ(𝑥 )=2+9𝑥 −5
Find: (f -g)(x)
(g-h)(x)
Find: (f-g)(x)
Given: 𝑓 (𝑥 )=𝑥 +5
𝑔 (𝑥 )=2𝑥 −1
Solution:
(f – g)(x) = f(x) – g(x)
= (x + 5) – (2x -1)
= x + 5 -2x + 1
= x -2x + 5 + 1
= -x + 6
Definition of subtraction of
functions replace f(x) and g(x) by
the given values and given values
and distribute the negative sign.
combine like terms and perform the
indicatedoperation
Find(g-h)(x)
Given: 𝑔 (𝑥 )=2𝑥 −1
ℎ(𝑥 )=2+9𝑥 −5
Solution
(g– h)(x) = g(x) – h(x)
= (2x – 1) – (2+9𝑥 −5)
= 2x -
1 -29𝑥 +5
= -2 -
9x + 2x +5 -
1
= -2 -
7x + 4
Definition of subtraction of
functions replace f(x) and g(x) by
the given values and given values
and distribute the negative sign.
combine like terms and perform the
indicated operation
EXAMPLE
IN
PRODUCT
FUNCTION
EXAMPLE
Given the functions:
f(x) = 2x -1 g(x) = + 1 h(x) = 3x -
4
Find: (gh) (x)
(fh)(x)
Find: (gh) (x)
Given: g(x) = + 1
h(x) = 3x -4
Solution
(gh)(x) = g(x) • h(x)
= + 1 ) (3x -4)
= + 3x -4 - 4
= -4 + 3x - 4
Definition of multiplication of
functions. Replace f(x0 and g(x)
by the given values. Multiply the
binomial
Find: (fh)(x)
Given: f(x) = 2x -1
h(x) = 3x -4
Solution:
(fh)(x) = f(x) • h(x)
= (2x-1) (3x -4)
= 6 - 3x – 8x + 4
= 6 - 11x + 4
Definition of multiplication of
functions. Replace f(x0 and
g(x) by the given values.
Multiply the binomial
EXAMPLE
IN
QUOTIENT
FUNCTION
EXAMPLE
Given thefunctions:
𝑓 (𝑥 )=𝑥 +5
𝑔 (𝑥 )=2𝑥 −1
ℎ(𝑥 )=2+9𝑥 −5
Find:
(x)
Find: (x)
GIVEN: 𝑔 (𝑥 )=2𝑥 −1
ℎ(𝑥 )=2+9𝑥 −5
Solution:
(x) =
=
=
= x + 5
Definition of division of functions
replaceh(x) andg(x) by thegiven
valuesfactor thenumerator
cancel out thecommon factors.
Find: (x)
Given: ℎ(𝑥 )=2+9𝑥 −5
𝑓 (𝑥 )=𝑥 +5
Solution:
(x) =
=
=
= 2x -
1
Definition of division of functions
replaceh(x) andg(x) by thegiven
valuesfactor thenumerator
cancel out thecommon factors.

More Related Content

PPTX
Operation on Functions.pptx
PPTX
Operations on function.pptx
PPTX
BINARY-OPERATION and OPERATION OF FUNCTION.pptx
PPTX
Lesson 3a_operations of Functions.pptx
PDF
L4 Addition and Subtraction of Functions.pdf
PPTX
OPERATIONS ON FUNCTIONS (ADDITION, SUBTRACTION, MULTIPLICATION AND DIVISION)....
PDF
Algebra 2 Section 5-1
PPTX
Operation of functions and Composite function.pptx
Operation on Functions.pptx
Operations on function.pptx
BINARY-OPERATION and OPERATION OF FUNCTION.pptx
Lesson 3a_operations of Functions.pptx
L4 Addition and Subtraction of Functions.pdf
OPERATIONS ON FUNCTIONS (ADDITION, SUBTRACTION, MULTIPLICATION AND DIVISION)....
Algebra 2 Section 5-1
Operation of functions and Composite function.pptx

Similar to OPERATIONS OF FUNCTIONhshdhsbdbbsbvvj.pdf (20)

PDF
Operation of functions and Composite function.pdf
PDF
FUNCTIONS L.1.pdf
PPTX
OPERATIONS ON FUNCTIONS.pptx
PPT
LESSONS 1-3 Gen Math. functions and relationsppt
PDF
Operation on functions
PPTX
gen math.pptx
PPTX
Lesson 3 Operation on Functions
PPTX
3_Operations_onfffffffffffffffffffffff_Functions.pptx
PPTX
RANDOM OPERATIONS ON FUNCTIONS TEMPALTESS
PPTX
Gen Math topic 1.pptx
PPTX
The _Operations_on_Functions_Addition subtruction Multiplication and Division...
PDF
Operations on Functions.pdf
PPTX
3_Operations_on_Functions...........pptx
PPTX
3_Operations_on_Functions0000000000.pptx
PPTX
Operations-on-Functions.pptx jhvydtrdrtsrr
PPTX
Evaluate functions & fundamental operations of functions
PPTX
gen math chaptesdf sdf sdfr 1 lesson1-4.pptx
PPTX
Operation-on-function-Part-1.pptx grade 11
PDF
2.8A Function Operations
PPTX
Functions and Relations
Operation of functions and Composite function.pdf
FUNCTIONS L.1.pdf
OPERATIONS ON FUNCTIONS.pptx
LESSONS 1-3 Gen Math. functions and relationsppt
Operation on functions
gen math.pptx
Lesson 3 Operation on Functions
3_Operations_onfffffffffffffffffffffff_Functions.pptx
RANDOM OPERATIONS ON FUNCTIONS TEMPALTESS
Gen Math topic 1.pptx
The _Operations_on_Functions_Addition subtruction Multiplication and Division...
Operations on Functions.pdf
3_Operations_on_Functions...........pptx
3_Operations_on_Functions0000000000.pptx
Operations-on-Functions.pptx jhvydtrdrtsrr
Evaluate functions & fundamental operations of functions
gen math chaptesdf sdf sdfr 1 lesson1-4.pptx
Operation-on-function-Part-1.pptx grade 11
2.8A Function Operations
Functions and Relations
Ad

More from DebbieRoseToledano (20)

PPTX
Teacher Self Introduction All About Me Teacher Slides.pptx
PPTX
PART-1-ORSEM-SY-2025-2026cgnhcbbcfjg.pptx
PPTX
INTRODUCTION-OF-THE-FACULTbshsjdjdY.pptx
PPTX
MRDA-FACULTY-STAFF-PRESENTATION_095750.pptx
PPTX
Lesson 1 - Fraction, Decimal, Percentages_013331.pptx
PPTX
Lesson 1 - Fraction, Decimal, Percentage.pptx
PPTX
Quiz in Functions -1kkopl,ojuhhhhiuhi.pptx
PPTX
FUNCTION_10092ncjjuffuinsaxbmogvlt2.pptx
PPTX
Lesson 1 _10111nvjhhjiudfjlpoyrrryv5.pptx
PPTX
Brain-Quest- MATHEMATICSdsgfhtgferer.pptx
PPTX
Parallel Line cut by a Transversalfed.pptx
PPTX
problem-solving-and-reasoning-mathematics-4th-grade.pptx
PPTX
Area of a Circleguin cdgkjklnm,cfzdfd;l,.pptx
PPTX
DELLOROjokpopnkionvhhb3568908654367.pptx
PPTX
3rd HRPTA MEETING-SY2024-2025bhihopo.pptx
PPTX
DELLORO_ANGEL AMORE_A_AUTO2D_LESSON-9.pptx
PPTX
TOLEDANO_VICENTE_JR_E_AUTO2D_LESSON_3.pptx
PPTX
Continuity of a Functionjgbygjbgjjgj.pptx
PPTX
Tangent Line to the Graph of a Function.pptx
PPTX
Proposal in Mathmdjdjwkdhdnejdjndnskk.pptx
Teacher Self Introduction All About Me Teacher Slides.pptx
PART-1-ORSEM-SY-2025-2026cgnhcbbcfjg.pptx
INTRODUCTION-OF-THE-FACULTbshsjdjdY.pptx
MRDA-FACULTY-STAFF-PRESENTATION_095750.pptx
Lesson 1 - Fraction, Decimal, Percentages_013331.pptx
Lesson 1 - Fraction, Decimal, Percentage.pptx
Quiz in Functions -1kkopl,ojuhhhhiuhi.pptx
FUNCTION_10092ncjjuffuinsaxbmogvlt2.pptx
Lesson 1 _10111nvjhhjiudfjlpoyrrryv5.pptx
Brain-Quest- MATHEMATICSdsgfhtgferer.pptx
Parallel Line cut by a Transversalfed.pptx
problem-solving-and-reasoning-mathematics-4th-grade.pptx
Area of a Circleguin cdgkjklnm,cfzdfd;l,.pptx
DELLOROjokpopnkionvhhb3568908654367.pptx
3rd HRPTA MEETING-SY2024-2025bhihopo.pptx
DELLORO_ANGEL AMORE_A_AUTO2D_LESSON-9.pptx
TOLEDANO_VICENTE_JR_E_AUTO2D_LESSON_3.pptx
Continuity of a Functionjgbygjbgjjgj.pptx
Tangent Line to the Graph of a Function.pptx
Proposal in Mathmdjdjwkdhdnejdjndnskk.pptx
Ad

Recently uploaded (20)

PDF
MBA _Common_ 2nd year Syllabus _2021-22_.pdf
PPTX
Computer Architecture Input Output Memory.pptx
PDF
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 1)
PPTX
A powerpoint presentation on the Revised K-10 Science Shaping Paper
PDF
Indian roads congress 037 - 2012 Flexible pavement
PDF
Practical Manual AGRO-233 Principles and Practices of Natural Farming
PPTX
20th Century Theater, Methods, History.pptx
PDF
HVAC Specification 2024 according to central public works department
PDF
Weekly quiz Compilation Jan -July 25.pdf
PDF
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
PPTX
Share_Module_2_Power_conflict_and_negotiation.pptx
PPTX
Virtual and Augmented Reality in Current Scenario
PDF
Chinmaya Tiranga quiz Grand Finale.pdf
PPTX
ELIAS-SEZIURE AND EPilepsy semmioan session.pptx
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PDF
What if we spent less time fighting change, and more time building what’s rig...
PDF
Trump Administration's workforce development strategy
PDF
Vision Prelims GS PYQ Analysis 2011-2022 www.upscpdf.com.pdf
PDF
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
PPTX
TNA_Presentation-1-Final(SAVE)) (1).pptx
MBA _Common_ 2nd year Syllabus _2021-22_.pdf
Computer Architecture Input Output Memory.pptx
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 1)
A powerpoint presentation on the Revised K-10 Science Shaping Paper
Indian roads congress 037 - 2012 Flexible pavement
Practical Manual AGRO-233 Principles and Practices of Natural Farming
20th Century Theater, Methods, History.pptx
HVAC Specification 2024 according to central public works department
Weekly quiz Compilation Jan -July 25.pdf
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
Share_Module_2_Power_conflict_and_negotiation.pptx
Virtual and Augmented Reality in Current Scenario
Chinmaya Tiranga quiz Grand Finale.pdf
ELIAS-SEZIURE AND EPilepsy semmioan session.pptx
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
What if we spent less time fighting change, and more time building what’s rig...
Trump Administration's workforce development strategy
Vision Prelims GS PYQ Analysis 2011-2022 www.upscpdf.com.pdf
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
TNA_Presentation-1-Final(SAVE)) (1).pptx

OPERATIONS OF FUNCTIONhshdhsbdbbsbvvj.pdf

  • 2. OBJECTIVES A. define operation of functions. B. substitute each value in a given equation C. Perform the indicated operation
  • 3. DEFINITION Let f and g be functions defined at a real number x. the sum, difference, product, and quotient functions f and g are the functions defined by (f + g)(x) = f(x) + g(x) sum function (f-g)(x) = f(x) – g(x) difference function (fg)(x) = f(x)g(x) product function , g(x) ≠ 0 quotient function
  • 5. EXAMPLE Given thefunctions: 𝑓 (𝑥 )=𝑥 +5 𝑔 (𝑥 )=2𝑥 −1 ℎ(𝑥 )=2+9𝑥 −5 Find: (f + g)(x) (g+ h)(x)
  • 6. Find (f + g)(x) Given: 𝑓 (𝑥 )=𝑥 +5 𝑔 (𝑥 )=2𝑥 −1 Solution: (f + g)(x) = f(x) + g(x) (f + g)(x) = (x + 5) + (2x-1) = x + 2x + 5 – 1 = 3x + 4 Definition of addition replace f(x) and g(x) by the given values. Combine like terms and perform the indicated values
  • 7. Find (g + h)(x) Given: 𝑔 (𝑥 )=2𝑥 −1 ℎ(𝑥 )=2+9𝑥 −5 Solution: (g + h)(x) = g(x) + h(x) = (2x -1) + (2+9𝑥 −5 = 2 + 2x + 9x – 5 -1 = 2 + 11x -6 Definition of addition replace f(x) and g(x) by the given values. Combine like terms and perform the indicated values
  • 9. EXAMPLE Given thefunctions: 𝑓 (𝑥 )=𝑥 +5 𝑔 (𝑥 )=2𝑥 −1 ℎ(𝑥 )=2+9𝑥 −5 Find: (f -g)(x) (g-h)(x)
  • 10. Find: (f-g)(x) Given: 𝑓 (𝑥 )=𝑥 +5 𝑔 (𝑥 )=2𝑥 −1 Solution: (f – g)(x) = f(x) – g(x) = (x + 5) – (2x -1) = x + 5 -2x + 1 = x -2x + 5 + 1 = -x + 6 Definition of subtraction of functions replace f(x) and g(x) by the given values and given values and distribute the negative sign. combine like terms and perform the indicatedoperation
  • 11. Find(g-h)(x) Given: 𝑔 (𝑥 )=2𝑥 −1 ℎ(𝑥 )=2+9𝑥 −5 Solution (g– h)(x) = g(x) – h(x) = (2x – 1) – (2+9𝑥 −5) = 2x - 1 -29𝑥 +5 = -2 - 9x + 2x +5 - 1 = -2 - 7x + 4 Definition of subtraction of functions replace f(x) and g(x) by the given values and given values and distribute the negative sign. combine like terms and perform the indicated operation
  • 13. EXAMPLE Given the functions: f(x) = 2x -1 g(x) = + 1 h(x) = 3x - 4 Find: (gh) (x) (fh)(x)
  • 14. Find: (gh) (x) Given: g(x) = + 1 h(x) = 3x -4 Solution (gh)(x) = g(x) • h(x) = + 1 ) (3x -4) = + 3x -4 - 4 = -4 + 3x - 4 Definition of multiplication of functions. Replace f(x0 and g(x) by the given values. Multiply the binomial
  • 15. Find: (fh)(x) Given: f(x) = 2x -1 h(x) = 3x -4 Solution: (fh)(x) = f(x) • h(x) = (2x-1) (3x -4) = 6 - 3x – 8x + 4 = 6 - 11x + 4 Definition of multiplication of functions. Replace f(x0 and g(x) by the given values. Multiply the binomial
  • 17. EXAMPLE Given thefunctions: 𝑓 (𝑥 )=𝑥 +5 𝑔 (𝑥 )=2𝑥 −1 ℎ(𝑥 )=2+9𝑥 −5 Find: (x)
  • 18. Find: (x) GIVEN: 𝑔 (𝑥 )=2𝑥 −1 ℎ(𝑥 )=2+9𝑥 −5 Solution: (x) = = = = x + 5 Definition of division of functions replaceh(x) andg(x) by thegiven valuesfactor thenumerator cancel out thecommon factors.
  • 19. Find: (x) Given: ℎ(𝑥 )=2+9𝑥 −5 𝑓 (𝑥 )=𝑥 +5 Solution: (x) = = = = 2x - 1 Definition of division of functions replaceh(x) andg(x) by thegiven valuesfactor thenumerator cancel out thecommon factors.