SlideShare a Scribd company logo
4
Most read
6
Most read
8
Most read
2.8A Function Operations
Chapter 2 Graphs and Functions
Concepts and Objectives
 Function operations
 Arithmetic operations on functions
Operations on Functions
 Given two functions f and g, then for all values of x for
which both fx and gx are defined, we can also define
the following:
 Sum
 Difference
 Product
 Quotient
      f g x f x g x  
      f g x f x g x  
      fg x f x g x 
 
 
 
 , 0
f xf
x g x
g g x
 
  
 
Operations on Functions (cont.)
 Example: Let and . Find each
of the following:
a)
b)
c)
d)
  2
1f x x    3 5g x x 
  1f g
  3f g 
  5fg
 0
f
g
 
 
 
Operations on Functions (cont.)
 Example: Let and . Find each
of the following:
a)
b)
c)
d)
  2
1f x x    3 5g x x 
  1f g    1 1gf   2
51 11 3   02 18  
  3f g 
  5fg
 0
f
g
 
 
 
Operations on Functions (cont.)
 Example: Let and . Find each
of the following:
a)
b)
c)
d)
  2
1f x x    3 5g x x 
  1f g    1 1gf   2
51 11 3   02 18  
  3f g     2
3 53 31        410 14  
  5fg
 0
f
g
 
 
 
Operations on Functions (cont.)
 Example: Let and . Find each
of the following:
a)
b)
c)
d)
  2
1f x x    3 5g x x 
  1f g    1 1gf   2
51 11 3   02 18  
  3f g     2
3 53 31        410 14  
  5fg    2
3 5 55 1       02026 52 
 0
f
g
 
 
 
Operations on Functions (cont.)
 Example: Let and . Find each
of the following:
a)
b)
c)
d)
  2
1f x x    3 5g x x 
  1f g    1 1gf   2
51 11 3   02 18  
  3f g     2
3 53 31        410 14  
  5fg    2
3 5 55 1       02026 52 
 0
f
g
 
 
   
2
5
0 1
3 0



5
1

Operations on Functions (cont.)
 Example: Let and . Find
each of the following:
a)
b)
c)
d)
  8 9f x x    2 1g x x 
  f g x
  f g x
  fg x
 
f
x
g
 
 
 
Operations on Functions (cont.)
 Example: Let and . Find
each of the following:
a)
b)
c)
d)
  8 9f x x    2 1g x x 
  f g x 8 9 2 1x x   
  f g x
  fg x
 
f
x
g
 
 
 
Operations on Functions (cont.)
 Example: Let and . Find
each of the following:
a)
b)
c)
d)
  8 9f x x    2 1g x x 
  f g x 8 9 2 1x x   
  f g x 8 9 2 1x x   
  fg x
 
f
x
g
 
 
 
Operations on Functions (cont.)
 Example: Let and . Find
each of the following:
a)
b)
c)
d)
  8 9f x x    2 1g x x 
  f g x 8 9 2 1x x   
  f g x 8 9 2 1x x   
  fg x  8 9 2 1x x  
 
f
x
g
 
 
 
Operations on Functions (cont.)
 Example: Let and . Find
each of the following:
a)
b)
c)
d)
  8 9f x x    2 1g x x 
  f g x 8 9 2 1x x   
  f g x 8 9 2 1x x   
  fg x  8 9 2 1x x  
 
f
x
g
 
 
 
8 9
2 1
x
x



Operations on Functions (cont.)
 Example: Let and . Find
each of the following:
e) What restrictions are on the domain?
  8 9f x x    2 1g x x 
Operations on Functions (cont.)
 Example: Let and . Find
each of the following:
e) What restrictions are on the domain?
 There are two cases that need restrictions: taking the
square root of a negative number and dividing by zero.
  8 9f x x    2 1g x x 
Operations on Functions (cont.)
 Example: Let and . Find
each of the following:
e) What restrictions are on the domain?
 There are two cases that need restrictions: taking the
square root of a negative number and dividing by zero.
 We address these by making sure the inside of gx > 0:
  8 9f x x    2 1g x x 
2 1 0
2 1
1
2
x
x
x
 


So the domain must be
1 1
or ,
2 2
x
 
  
 
Classwork
 2.8 Assignment (College Algebra)
 2.8 – pg. 282: 2-14 (even); 2.7 – pg. 271: 24-36
(even); 2.6 – pg. 257: 48-52, 56 (even)
 Classwork Check 2.8
 Quiz 2.7

More Related Content

PDF
Lesson 26: Integration by Substitution (slides)
PPTX
【材料力学】支点の反力と反モーメント (I-02 2019)
PPTX
Deriving the composition of functions
PDF
ラマヌジャンやっぱりやばいじゃん - 第15回 #日曜数学会
PDF
Em simulator hfss_metamaterial
PDF
半正定値計画問題と最大カット Sedemifinite Programming and Approximation Algorithm for Maxcu...
PPTX
3.1 limit definition of the derivative
PDF
一般グラフの最大マッチング
Lesson 26: Integration by Substitution (slides)
【材料力学】支点の反力と反モーメント (I-02 2019)
Deriving the composition of functions
ラマヌジャンやっぱりやばいじゃん - 第15回 #日曜数学会
Em simulator hfss_metamaterial
半正定値計画問題と最大カット Sedemifinite Programming and Approximation Algorithm for Maxcu...
3.1 limit definition of the derivative
一般グラフの最大マッチング

What's hot (20)

KEY
ggplot2できれいなグラフ
PDF
0.7 Radical Expressions
PPTX
Right Triangle Similarity.pptx
PDF
Lesson 21: Antiderivatives (slides)
PDF
x^2+ny^2の形で表せる素数の法則と類体論
PDF
グラフネットワーク〜フロー&カット〜
PPT
Chapter 10 - Limit and Continuity
PPTX
FM calculus
PDF
「ガロア表現」を使って素数の分解法則を考える #mathmoring
PPTX
Factoring GCF and Grouping
PDF
ACPC 2018 Day3 G: 回文部分列 (Palindromic Subsequences)
PPTX
6.4.2 sum and difference formulas
PPTX
Mathematical induction and divisibility rules
PPT
Pidato Pengukuhan Doktor Honoris Causa KH Maruf Amin
PDF
確率論基礎
KEY
Rの環境とスコープ
PPTX
Writing quadratic equation
PDF
Lesson 9: Basic Differentiation Rules
ggplot2できれいなグラフ
0.7 Radical Expressions
Right Triangle Similarity.pptx
Lesson 21: Antiderivatives (slides)
x^2+ny^2の形で表せる素数の法則と類体論
グラフネットワーク〜フロー&カット〜
Chapter 10 - Limit and Continuity
FM calculus
「ガロア表現」を使って素数の分解法則を考える #mathmoring
Factoring GCF and Grouping
ACPC 2018 Day3 G: 回文部分列 (Palindromic Subsequences)
6.4.2 sum and difference formulas
Mathematical induction and divisibility rules
Pidato Pengukuhan Doktor Honoris Causa KH Maruf Amin
確率論基礎
Rの環境とスコープ
Writing quadratic equation
Lesson 9: Basic Differentiation Rules
Ad

Similar to 2.8A Function Operations (20)

PPTX
Function-Operationsand-Compositionof-Functions.pptx
PPTX
Function-Operationsand-Compositionof-Functions.pptx
PPTX
GRADE-8-LESSON-COMPOSITION-OF-FUNCTION--
PPTX
recorded.pptx
PDF
Algebra 2 Section 5-1
PDF
FUNCTIONS L.1.pdf
PPTX
Operations on function.pptx
PDF
3.4 Composition of Functions
PDF
2.8 Function Operations and Composition
PPTX
1 lesson 6 introduction to radical functions
PPTX
1 lesson 6 introduction to radical functions
PPT
Composite Functions.ppt
PDF
Operation on functions
PPTX
6-6 Alg2-Function Operations Modern.pptx
PPTX
Unit 1.4
PPTX
Composite Functions.pptx
PPT
11-FUNCTIONS-OPERATIONS-COMPOSITE-INVERSE1.ppt
PPTX
OPERATIONS ON FUNCTIONS (ADDITION, SUBTRACTION, MULTIPLICATION AND DIVISION)....
PDF
Operations on Functions.pdf
PDF
OPERATIONS OF FUNCTIONhshdhsbdbbsbvvj.pdf
Function-Operationsand-Compositionof-Functions.pptx
Function-Operationsand-Compositionof-Functions.pptx
GRADE-8-LESSON-COMPOSITION-OF-FUNCTION--
recorded.pptx
Algebra 2 Section 5-1
FUNCTIONS L.1.pdf
Operations on function.pptx
3.4 Composition of Functions
2.8 Function Operations and Composition
1 lesson 6 introduction to radical functions
1 lesson 6 introduction to radical functions
Composite Functions.ppt
Operation on functions
6-6 Alg2-Function Operations Modern.pptx
Unit 1.4
Composite Functions.pptx
11-FUNCTIONS-OPERATIONS-COMPOSITE-INVERSE1.ppt
OPERATIONS ON FUNCTIONS (ADDITION, SUBTRACTION, MULTIPLICATION AND DIVISION)....
Operations on Functions.pdf
OPERATIONS OF FUNCTIONhshdhsbdbbsbvvj.pdf
Ad

More from smiller5 (20)

PDF
T7.3 The Unit Circle and Angles Presentation
PDF
T7.2 Right Triangle Trigonometry Presentation
PDF
1.3 Factoring Quadratics (Presentation).pdf
PPTX
1.3 Factoring Polynomial and Quadratic Expressions
PDF
Trigonometry 7.1 Angles (Degrees and Radians)
PDF
6.7 Exponential and Logarithmic Models
PDF
4.5 Special Segments in Triangles
PDF
1.4 Conditional Statements
PDF
1.3 Distance and Midpoint Formulas
PDF
1.5 Quadratic Equations.pdf
PDF
3.2 Graphs of Functions
PDF
3.2 Graphs of Functions
PDF
3.1 Functions
PDF
2.5 Transformations of Functions
PDF
2.2 More on Functions and Their Graphs
PDF
1.6 Other Types of Equations
PDF
1.5 Quadratic Equations (Review)
PDF
2.1 Basics of Functions and Their Graphs
PDF
9.6 Binomial Theorem
PDF
13.3 Venn Diagrams & Two-Way Tables
T7.3 The Unit Circle and Angles Presentation
T7.2 Right Triangle Trigonometry Presentation
1.3 Factoring Quadratics (Presentation).pdf
1.3 Factoring Polynomial and Quadratic Expressions
Trigonometry 7.1 Angles (Degrees and Radians)
6.7 Exponential and Logarithmic Models
4.5 Special Segments in Triangles
1.4 Conditional Statements
1.3 Distance and Midpoint Formulas
1.5 Quadratic Equations.pdf
3.2 Graphs of Functions
3.2 Graphs of Functions
3.1 Functions
2.5 Transformations of Functions
2.2 More on Functions and Their Graphs
1.6 Other Types of Equations
1.5 Quadratic Equations (Review)
2.1 Basics of Functions and Their Graphs
9.6 Binomial Theorem
13.3 Venn Diagrams & Two-Way Tables

Recently uploaded (20)

PPTX
Presentation on HIE in infants and its manifestations
PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
PDF
Abdominal Access Techniques with Prof. Dr. R K Mishra
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PPTX
GDM (1) (1).pptx small presentation for students
PDF
O5-L3 Freight Transport Ops (International) V1.pdf
PDF
102 student loan defaulters named and shamed – Is someone you know on the list?
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PPTX
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx
PPTX
202450812 BayCHI UCSC-SV 20250812 v17.pptx
PDF
Chinmaya Tiranga quiz Grand Finale.pdf
PDF
01-Introduction-to-Information-Management.pdf
PDF
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
PDF
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
PPTX
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PPTX
Pharma ospi slides which help in ospi learning
PPTX
Microbial diseases, their pathogenesis and prophylaxis
Presentation on HIE in infants and its manifestations
2.FourierTransform-ShortQuestionswithAnswers.pdf
Abdominal Access Techniques with Prof. Dr. R K Mishra
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
GDM (1) (1).pptx small presentation for students
O5-L3 Freight Transport Ops (International) V1.pdf
102 student loan defaulters named and shamed – Is someone you know on the list?
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx
202450812 BayCHI UCSC-SV 20250812 v17.pptx
Chinmaya Tiranga quiz Grand Finale.pdf
01-Introduction-to-Information-Management.pdf
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
Pharma ospi slides which help in ospi learning
Microbial diseases, their pathogenesis and prophylaxis

2.8A Function Operations

  • 1. 2.8A Function Operations Chapter 2 Graphs and Functions
  • 2. Concepts and Objectives  Function operations  Arithmetic operations on functions
  • 3. Operations on Functions  Given two functions f and g, then for all values of x for which both fx and gx are defined, we can also define the following:  Sum  Difference  Product  Quotient       f g x f x g x         f g x f x g x         fg x f x g x         , 0 f xf x g x g g x       
  • 4. Operations on Functions (cont.)  Example: Let and . Find each of the following: a) b) c) d)   2 1f x x    3 5g x x    1f g   3f g    5fg  0 f g      
  • 5. Operations on Functions (cont.)  Example: Let and . Find each of the following: a) b) c) d)   2 1f x x    3 5g x x    1f g    1 1gf   2 51 11 3   02 18     3f g    5fg  0 f g      
  • 6. Operations on Functions (cont.)  Example: Let and . Find each of the following: a) b) c) d)   2 1f x x    3 5g x x    1f g    1 1gf   2 51 11 3   02 18     3f g     2 3 53 31        410 14     5fg  0 f g      
  • 7. Operations on Functions (cont.)  Example: Let and . Find each of the following: a) b) c) d)   2 1f x x    3 5g x x    1f g    1 1gf   2 51 11 3   02 18     3f g     2 3 53 31        410 14     5fg    2 3 5 55 1       02026 52   0 f g      
  • 8. Operations on Functions (cont.)  Example: Let and . Find each of the following: a) b) c) d)   2 1f x x    3 5g x x    1f g    1 1gf   2 51 11 3   02 18     3f g     2 3 53 31        410 14     5fg    2 3 5 55 1       02026 52   0 f g         2 5 0 1 3 0    5 1 
  • 9. Operations on Functions (cont.)  Example: Let and . Find each of the following: a) b) c) d)   8 9f x x    2 1g x x    f g x   f g x   fg x   f x g      
  • 10. Operations on Functions (cont.)  Example: Let and . Find each of the following: a) b) c) d)   8 9f x x    2 1g x x    f g x 8 9 2 1x x      f g x   fg x   f x g      
  • 11. Operations on Functions (cont.)  Example: Let and . Find each of the following: a) b) c) d)   8 9f x x    2 1g x x    f g x 8 9 2 1x x      f g x 8 9 2 1x x      fg x   f x g      
  • 12. Operations on Functions (cont.)  Example: Let and . Find each of the following: a) b) c) d)   8 9f x x    2 1g x x    f g x 8 9 2 1x x      f g x 8 9 2 1x x      fg x  8 9 2 1x x     f x g      
  • 13. Operations on Functions (cont.)  Example: Let and . Find each of the following: a) b) c) d)   8 9f x x    2 1g x x    f g x 8 9 2 1x x      f g x 8 9 2 1x x      fg x  8 9 2 1x x     f x g       8 9 2 1 x x   
  • 14. Operations on Functions (cont.)  Example: Let and . Find each of the following: e) What restrictions are on the domain?   8 9f x x    2 1g x x 
  • 15. Operations on Functions (cont.)  Example: Let and . Find each of the following: e) What restrictions are on the domain?  There are two cases that need restrictions: taking the square root of a negative number and dividing by zero.   8 9f x x    2 1g x x 
  • 16. Operations on Functions (cont.)  Example: Let and . Find each of the following: e) What restrictions are on the domain?  There are two cases that need restrictions: taking the square root of a negative number and dividing by zero.  We address these by making sure the inside of gx > 0:   8 9f x x    2 1g x x  2 1 0 2 1 1 2 x x x     So the domain must be 1 1 or , 2 2 x       
  • 17. Classwork  2.8 Assignment (College Algebra)  2.8 – pg. 282: 2-14 (even); 2.7 – pg. 271: 24-36 (even); 2.6 – pg. 257: 48-52, 56 (even)  Classwork Check 2.8  Quiz 2.7