SlideShare a Scribd company logo
Combined Functions
•Two functions (f) and (g) are combined
to form new functions in a similar
manner that we add, subtract,
multiply and divide real numbers
(f+g)(x) =
(f)(g) (x)
f(x) - g(x)
f(x) ∙ g(x)
f(x)
g(x)
f(x) + g(x)
(f-g)(x) =
(f ∙ g)(x) =
f
g
(x) =
f(x) = x + 1 g(x) = 2x
f(x) = x + 1 g(x) = 2x
f(x) + g(x)
h(x) = f(x) + g(x)
h(x) = (x + 1) + (2x)
Substitute
h(x) = (x + 1) + 1(2x) Imaginary 1
h(x) = x + 1 + 2x Add the same
terms
h(x) = 3x + 1
h(x) = 3x + 1h(x) = 3x + 1
x (f+g)(x)
-2
-1
0
1
2
h(-2) = 3(-2) + 1
= -6+ 1
= -5
-5
h(x) = 3x + 1h(x) = 3x + 1
x (f+g)(x)
-2
-1
0
1
2
h(-1) = 3(-1) + 1
= -3+ 1
= -2
-5
-2
h(x) = 3x + 1h(x) = 3x + 1
x (f+g)(x)
-2
-1
0
1
2
h(0) = 3(0) + 1
= 0 + 1
= 1
-5
-2
1
h(x) = 3x + 1h(x) = 3x + 1
x (f+g)(x)
-2
-1
0
1
2
h(1) = 3(1) + 1
= 3 + 1
= 4
-5
-2
1
4
h(x) = 3x + 1h(x) = 3x + 1
x (f+g)(x)
-2
-1
0
1
2
h(2) = 3(2) + 1
= 6 + 1
= 7
-5
-2
1
4
7
GRAPH
h(x) = 3x + 1
x (f+g)(x)
-2
-1
0
1
2
-5
-2
1
4
7
1 2 3 4
-1
-2
-3
-4
-5
-1-2-3-4
1
2
3
4
5
6
7
0
GRAPH
h(x) = 3x + 1
x (f+g)(x)
-2
-1
0
1
2
-5
-2
1
4
7
1 2 3 4
-1
-2
-3
-4
-5
-1-2-3-4
1
2
3
4
5
6
7
0
GRAPH
h(x) = 3x + 1
x (f+g)(x)
-2
-1
0
1
2
-5
-2
1
4
7
1 2 3 4
-1
-2
-3
-4
-5
-1-2-3-4
1
2
3
4
5
6
7
0
GRAPH
h(x) = 3x + 1
x (f+g)(x)
-2
-1
0
1
2
-5
-2
1
4
7
1 2 3 4
-1
-2
-3
-4
-5
-1-2-3-4
1
2
3
4
5
6
7
0
GRAPH
h(x) = 3x + 1
x (f+g)(x)
-2
-1
0
1
2
-5
-2
1
4
7
1 2 3 4
-1
-2
-3
-4
-5
-1-2-3-4
1
2
3
4
5
6
7
0
f(x) = x + 1 g(x) = 2x
f(x) - g(x)
h(x) = f(x) - g(x)
h(x) = (x + 1) - (2x)
Substitute
h(x) = (x + 1) - 1(2x) Imaginary 1
h(x) = x + 1 -2x Subtract the same
terms
h(x) = -x + 1
h(x) = -x + 1h(x) = -x + 1
x (f-g)(x)
-2
-1
0
1
2
h(-2) = -(-2) + 1
= 2+ 1
= 3
3
h(x) = -x + 1h(x) = -x + 1
x (f-g)(x)
-2
-1
0
1
2
h(-1) = -(-1) + 1
= 1+ 1
= 2
3
2
h(x) = -x + 1h(x) = -x + 1
x (f-g)(x)
-2
-1
0
1
2
h(0) = -(0) + 1
= 0+ 1
= 1
3
2
1
h(x) = -x + 1h(x) = -x + 1
x (f-g)(x)
-2
-1
0
1
2
h(1) = -(1) + 1
= -1+ 1
= 0
3
2
1
0
h(x) = -x + 1h(x) = -x + 1
x (f-g)(x)
-2
-1
0
1
2
h(2) = -(2) + 1
= -2+ 1
= -1
3
2
1
0
-1
GRAPH
h(x) = -x + 1
x (f-g)(x)
-2
-1
0
1
2
1 2 3 4
-1
-2
-3
-4
-5
-1-2-3-4
1
2
3
4
5
6
7
0
3
2
1
0
-1
GRAPH
h(x) = -x + 1
x (f-g)(x)
-2
-1
0
1
2
1 2 3 4
-1
-2
-3
-4
-5
-1-2-3-4
1
2
3
4
5
6
7
0
3
2
1
0
-1
GRAPH
h(x) = -x + 1
x (f-g)(x)
-2
-1
0
1
2
1 2 3 4
-1
-2
-3
-4
-5
-1-2-3-4
1
2
3
4
5
6
7
0
3
2
1
0
-1
GRAPH
h(x) = -x + 1
x (f-g)(x)
-2
-1
0
1
2
1 2 3 4
-1
-2
-3
-4
-5
-1-2-3-4
1
2
3
4
5
6
7
0
3
2
1
0
-1
GRAPH
h(x) = -x + 1
x (f-g)(x)
-2
-1
0
1
2
1 2 3 4
-1
-2
-3
-4
-5
-1-2-3-4
1
2
3
4
5
6
7
0
3
2
1
0
-1
f(x) = x + 1 g(x) = 2x
f(x) ∙ g(x)
h(x) = f(x) ∙ g(x)
h(x) = (x + 1) ∙ (2x)
Substitute
h(x)=
h(x) =
[(2x)(x)] [(2x)(1)]
Distribute
2x2 + 2x
h(x) = 2x2 + 2x
x (f∙g)(x)
-2
-1
0
1
2
h(-2) = 2(-2)2 + 2(-2)
= 4
4
h(x) = 2x2 + 2x
= 2[(-2)(-2)] + 2(-2)
= 2[4] - 4
= 8 - 4
h(x) = 2x2 + 2x
x (f∙g)(x)
-2
-1
0
1
2
h(-1) = 2(-1)2 + 2(-1)
= 0
4
h(x) = 2x2 + 2x
= 2[(-1)(-1)] + 2(-1)
= 2[1] - 2
= 2 - 2
0
h(x) = 2x2 + 2x
x (f∙g)(x)
-2
-1
0
1
2
h(0) = 2(0)2 + 2(0)
= 0
4
h(x) = 2x2 + 2x
= 2[(0)(0)] + 2(0)
= 2[0] - 0
= 0 - 0
0
0
h(x) = 2x2 + 2x
x (f∙g)(x)
-2
-1
0
1
2
h(1) = 2(1)2 + 2(1)
= 4
4
h(x) = 2x2 + 2x
= 2[(1)(1)] + 2(1)
= 2[1] + 2
= 2 + 2
0
0
4
h(x) = 2x2 + 2x
x (f∙g)(x)
-2
-1
0
1
2
h(2) = 2(2)2 + 2(2)
= 12
4
h(x) = 2x2 + 2x
= 2[(2)(2)] + 2(2)
= 2[4] + 4
= 8 + 4
0
0
4
12
GRAPH
h(x) = 2x2 + 2x
x (f∙g)(x)
-2
-1
0
1
2
1 2 3 4
-1
-2
-3
-4
-5
-1-2-3-4
1
2
3
4
5
6
7
0
4
0
0
4
12
GRAPH
h(x) = 2x2 + 2x
x (f∙g)(x)
-2
-1
0
1
2
1 2 3 4
-1
-2
-3
-4
-5
-1-2-3-4
1
2
3
4
5
6
7
0
4
0
0
4
12
GRAPH
h(x) = 2x2 + 2x
x (f∙g)(x)
-2
-1
0
1
2
1 2 3 4
-1
-2
-3
-4
-5
-1-2-3-4
1
2
3
4
5
6
7
0
4
0
0
4
12
GRAPH
h(x) = 2x2 + 2x
x (f∙g)(x)
-2
-1
0
1
2
1 2 3 4
-1
-2
-3
-4
-5
-1-2-3-4
1
2
3
4
5
6
7
0
4
0
0
4
12
GRAPH
h(x) = 2x2 + 2x
x (f∙g)(x)
-2
-1
0
1
2
1 2 3 4
-1
-2
-3
-4
-5
-1-2-3-4
1
2
3
4
5
6
7
0
4
0
0
4
12
f(x) = x + 1 g(x) = 2x
h(x) = Substitute
f(x)
g(x)
f(x)
g(x)
x + 1
2x
h(x) =
x (f/g)(x)
-2
-1
0
1
2
1/4
h(x) =
X +1
2x
x + 1
2x
h(x) =
-2 + 1
2(-2)
h(-2) =
- 1
- 4
=
1
4
=
x (f/g)(x)
-2
-1
0
1
2
1/4
h(x) =
X +1
2x
x + 1
2x
h(x) =
-1 + 1
2(-1)
h(-1) =
0
- 2
=
= 0
0
x (f/g)(x)
-2
-1
0
1
2
1/4
h(x) =
X +1
2x
x + 1
2x
h(x) =
0 + 1
2(0)
h(0) =
1
0
=
= undefined
0
undefined
x (f/g)(x)
-2
-1
0
1
2
1/4
h(x) =
X +1
2x
x + 1
2x
h(x) =
1 + 1
2(1)
h(1) =
2
2
=
= 1
0
1
undefined
x (f/g)(x)
-2
-1
0
1
2
1/4
h(x) =
X +1
2x
x + 1
2x
h(x) =
2 + 1
2(2)
h(2) =
3
4
=
0
1
3/4
undefined
GRAPH
x (f/g)(x)
-2
-1
0
1
2
-0.50-1
1
20
h(x) =
X +1
2x
1/4
0
1
3/4
undefined
-1.50-2
-0.50
-1.50
-1
-2
0.50 1 1.50
0.50
1.50
2
GRAPH
x (f/g)(x)
-2
-1
0
1
2
-0.50-1
1
20
h(x) =
X +1
2x
1/4
0
1
3/4
undefined
-2 -1.50
-0.50
-1.50
-1
-2
0.50 1 1.50
0.50
1.50
2
GRAPH
x (f/g)(x)
-2
-1
0
1
2
-0.50-1
1
20
h(x) =
X +1
2x
1/4
0
1
3/4
undefined
-2 -1.50
-1.50
-1
-2
0.50 1 1.50
0.50
1.50
2
-0.50
GRAPH
x (f/g)(x)
-2
-1
0
1
2
-0.50-1
1
20
h(x) =
X +1
2x
1/4
0
1
3/4
undefined
-2 -1.50
-0.50
-1.50
-1
-2
0.50 1 1.50
0.50
1.50
2
GRAPH
x (f/g)(x)
-2
-1
0
1
2
-0.50-1
1
20
h(x) =
X +1
2x
1/4
0
1
3/4
undefined
-2 -1.50
-0.50
-1.50
-1
-2
0.50 1 1.50
0.50
1.50
2
SOLVE FOR THE COMBINED FUNCTIONS,
COMPLETE THEIR FUNCTION TABLES AND
SKETCH THE GRAPH
GIVEN:
f(x) = x - 3 g(x) = x2
SOLVE FOR:
(f+g)
(f-g)
(f∙g)a.
b.
c.
d.
f
g
Combined Functions

More Related Content

PPT
L5 infinite limits squeeze theorem
PDF
10.5 Circles in the Coordinate Plane
PPT
Rate of change and tangent lines
PPT
Transformations
PPT
Distance-in-the-Coordinate-Plane (2).ppt
PPTX
6.2 vertex form
PPT
transformation of functions.ppt
PPT
Lesson 10 derivative of exponential functions
L5 infinite limits squeeze theorem
10.5 Circles in the Coordinate Plane
Rate of change and tangent lines
Transformations
Distance-in-the-Coordinate-Plane (2).ppt
6.2 vertex form
transformation of functions.ppt
Lesson 10 derivative of exponential functions

What's hot (20)

PPTX
Function and their graphs ppt
PPSX
Complex number
PPTX
Integration by partial fraction
PPT
Differentiation jan 21, 2014
PDF
Limits, Continuity & Differentiation (Theory)
PPS
Trigonometric Functions and their Graphs
PPTX
2.8 Absolute Value Functions
PDF
4.1 Inverse Functions
PPTX
Inverse function
PPTX
Inverse Function.pptx
PDF
Lesson 11: Limits and Continuity
PDF
3.5 Rational Functions
PPT
Graphing translations of trig functions
PPT
Solving Systems of Linear Inequalities
PPT
6.7 quadratic inequalities
PPT
Polynomial functionsandgraphs
PDF
5.3 Graphs of Polynomial Functions
PPT
Function transformations
PPTX
Graph of functions
PPTX
Deriving the composition of functions
Function and their graphs ppt
Complex number
Integration by partial fraction
Differentiation jan 21, 2014
Limits, Continuity & Differentiation (Theory)
Trigonometric Functions and their Graphs
2.8 Absolute Value Functions
4.1 Inverse Functions
Inverse function
Inverse Function.pptx
Lesson 11: Limits and Continuity
3.5 Rational Functions
Graphing translations of trig functions
Solving Systems of Linear Inequalities
6.7 quadratic inequalities
Polynomial functionsandgraphs
5.3 Graphs of Polynomial Functions
Function transformations
Graph of functions
Deriving the composition of functions
Ad

Similar to Combined Functions (20)

PPT
11-FUNCTIONS-OPERATIONS-COMPOSITE-INVERSE1.ppt
PPTX
OPERATIONS ON FUNCTIONS (ADDITION, SUBTRACTION, MULTIPLICATION AND DIVISION)....
PPTX
FUNCIONES.pptx
KEY
PM5006 Week 6
PPTX
Understanding the remainder theorem
PPT
Numerical differentiation integration
DOCX
Invers fungsi
PPT
comp diff
PPT
Compfuncdiff
PPSX
X std maths - Relations and functions (ex 1.5 & 1.6)
PPTX
Evaluate functions & fundamental operations of functions
PDF
Modul 3 quadratic function
PDF
Operation on functions
PDF
Day 6 examples
PDF
Day 6 examples
PPTX
GEN-MATH-WEEK-2.pptx
PPTX
Week 4 Day 3 Composition of Functions.pptx
PDF
Day 5 examples u6w14
PPT
PPTX
Sketching the Graph of the given Quadratic Equation-Mathematics 9.pptx
11-FUNCTIONS-OPERATIONS-COMPOSITE-INVERSE1.ppt
OPERATIONS ON FUNCTIONS (ADDITION, SUBTRACTION, MULTIPLICATION AND DIVISION)....
FUNCIONES.pptx
PM5006 Week 6
Understanding the remainder theorem
Numerical differentiation integration
Invers fungsi
comp diff
Compfuncdiff
X std maths - Relations and functions (ex 1.5 & 1.6)
Evaluate functions & fundamental operations of functions
Modul 3 quadratic function
Operation on functions
Day 6 examples
Day 6 examples
GEN-MATH-WEEK-2.pptx
Week 4 Day 3 Composition of Functions.pptx
Day 5 examples u6w14
Sketching the Graph of the given Quadratic Equation-Mathematics 9.pptx
Ad

Recently uploaded (20)

PPTX
Final Presentation General Medicine 03-08-2024.pptx
PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
PDF
Abdominal Access Techniques with Prof. Dr. R K Mishra
PDF
Anesthesia in Laparoscopic Surgery in India
PDF
Microbial disease of the cardiovascular and lymphatic systems
PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
PDF
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PDF
RMMM.pdf make it easy to upload and study
PPTX
human mycosis Human fungal infections are called human mycosis..pptx
PPTX
master seminar digital applications in india
PPTX
Pharma ospi slides which help in ospi learning
PPTX
Cell Types and Its function , kingdom of life
PPTX
Lesson notes of climatology university.
PDF
Complications of Minimal Access Surgery at WLH
PPTX
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
PPTX
Cell Structure & Organelles in detailed.
PDF
102 student loan defaulters named and shamed – Is someone you know on the list?
PDF
VCE English Exam - Section C Student Revision Booklet
PPTX
Renaissance Architecture: A Journey from Faith to Humanism
Final Presentation General Medicine 03-08-2024.pptx
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
Abdominal Access Techniques with Prof. Dr. R K Mishra
Anesthesia in Laparoscopic Surgery in India
Microbial disease of the cardiovascular and lymphatic systems
2.FourierTransform-ShortQuestionswithAnswers.pdf
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
RMMM.pdf make it easy to upload and study
human mycosis Human fungal infections are called human mycosis..pptx
master seminar digital applications in india
Pharma ospi slides which help in ospi learning
Cell Types and Its function , kingdom of life
Lesson notes of climatology university.
Complications of Minimal Access Surgery at WLH
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
Cell Structure & Organelles in detailed.
102 student loan defaulters named and shamed – Is someone you know on the list?
VCE English Exam - Section C Student Revision Booklet
Renaissance Architecture: A Journey from Faith to Humanism

Combined Functions

  • 2. •Two functions (f) and (g) are combined to form new functions in a similar manner that we add, subtract, multiply and divide real numbers
  • 3. (f+g)(x) = (f)(g) (x) f(x) - g(x) f(x) ∙ g(x) f(x) g(x) f(x) + g(x) (f-g)(x) = (f ∙ g)(x) = f g (x) =
  • 4. f(x) = x + 1 g(x) = 2x
  • 5. f(x) = x + 1 g(x) = 2x f(x) + g(x) h(x) = f(x) + g(x) h(x) = (x + 1) + (2x) Substitute h(x) = (x + 1) + 1(2x) Imaginary 1 h(x) = x + 1 + 2x Add the same terms h(x) = 3x + 1
  • 6. h(x) = 3x + 1h(x) = 3x + 1 x (f+g)(x) -2 -1 0 1 2 h(-2) = 3(-2) + 1 = -6+ 1 = -5 -5
  • 7. h(x) = 3x + 1h(x) = 3x + 1 x (f+g)(x) -2 -1 0 1 2 h(-1) = 3(-1) + 1 = -3+ 1 = -2 -5 -2
  • 8. h(x) = 3x + 1h(x) = 3x + 1 x (f+g)(x) -2 -1 0 1 2 h(0) = 3(0) + 1 = 0 + 1 = 1 -5 -2 1
  • 9. h(x) = 3x + 1h(x) = 3x + 1 x (f+g)(x) -2 -1 0 1 2 h(1) = 3(1) + 1 = 3 + 1 = 4 -5 -2 1 4
  • 10. h(x) = 3x + 1h(x) = 3x + 1 x (f+g)(x) -2 -1 0 1 2 h(2) = 3(2) + 1 = 6 + 1 = 7 -5 -2 1 4 7
  • 11. GRAPH h(x) = 3x + 1 x (f+g)(x) -2 -1 0 1 2 -5 -2 1 4 7 1 2 3 4 -1 -2 -3 -4 -5 -1-2-3-4 1 2 3 4 5 6 7 0
  • 12. GRAPH h(x) = 3x + 1 x (f+g)(x) -2 -1 0 1 2 -5 -2 1 4 7 1 2 3 4 -1 -2 -3 -4 -5 -1-2-3-4 1 2 3 4 5 6 7 0
  • 13. GRAPH h(x) = 3x + 1 x (f+g)(x) -2 -1 0 1 2 -5 -2 1 4 7 1 2 3 4 -1 -2 -3 -4 -5 -1-2-3-4 1 2 3 4 5 6 7 0
  • 14. GRAPH h(x) = 3x + 1 x (f+g)(x) -2 -1 0 1 2 -5 -2 1 4 7 1 2 3 4 -1 -2 -3 -4 -5 -1-2-3-4 1 2 3 4 5 6 7 0
  • 15. GRAPH h(x) = 3x + 1 x (f+g)(x) -2 -1 0 1 2 -5 -2 1 4 7 1 2 3 4 -1 -2 -3 -4 -5 -1-2-3-4 1 2 3 4 5 6 7 0
  • 16. f(x) = x + 1 g(x) = 2x f(x) - g(x) h(x) = f(x) - g(x) h(x) = (x + 1) - (2x) Substitute h(x) = (x + 1) - 1(2x) Imaginary 1 h(x) = x + 1 -2x Subtract the same terms h(x) = -x + 1
  • 17. h(x) = -x + 1h(x) = -x + 1 x (f-g)(x) -2 -1 0 1 2 h(-2) = -(-2) + 1 = 2+ 1 = 3 3
  • 18. h(x) = -x + 1h(x) = -x + 1 x (f-g)(x) -2 -1 0 1 2 h(-1) = -(-1) + 1 = 1+ 1 = 2 3 2
  • 19. h(x) = -x + 1h(x) = -x + 1 x (f-g)(x) -2 -1 0 1 2 h(0) = -(0) + 1 = 0+ 1 = 1 3 2 1
  • 20. h(x) = -x + 1h(x) = -x + 1 x (f-g)(x) -2 -1 0 1 2 h(1) = -(1) + 1 = -1+ 1 = 0 3 2 1 0
  • 21. h(x) = -x + 1h(x) = -x + 1 x (f-g)(x) -2 -1 0 1 2 h(2) = -(2) + 1 = -2+ 1 = -1 3 2 1 0 -1
  • 22. GRAPH h(x) = -x + 1 x (f-g)(x) -2 -1 0 1 2 1 2 3 4 -1 -2 -3 -4 -5 -1-2-3-4 1 2 3 4 5 6 7 0 3 2 1 0 -1
  • 23. GRAPH h(x) = -x + 1 x (f-g)(x) -2 -1 0 1 2 1 2 3 4 -1 -2 -3 -4 -5 -1-2-3-4 1 2 3 4 5 6 7 0 3 2 1 0 -1
  • 24. GRAPH h(x) = -x + 1 x (f-g)(x) -2 -1 0 1 2 1 2 3 4 -1 -2 -3 -4 -5 -1-2-3-4 1 2 3 4 5 6 7 0 3 2 1 0 -1
  • 25. GRAPH h(x) = -x + 1 x (f-g)(x) -2 -1 0 1 2 1 2 3 4 -1 -2 -3 -4 -5 -1-2-3-4 1 2 3 4 5 6 7 0 3 2 1 0 -1
  • 26. GRAPH h(x) = -x + 1 x (f-g)(x) -2 -1 0 1 2 1 2 3 4 -1 -2 -3 -4 -5 -1-2-3-4 1 2 3 4 5 6 7 0 3 2 1 0 -1
  • 27. f(x) = x + 1 g(x) = 2x f(x) ∙ g(x) h(x) = f(x) ∙ g(x) h(x) = (x + 1) ∙ (2x) Substitute h(x)= h(x) = [(2x)(x)] [(2x)(1)] Distribute 2x2 + 2x
  • 28. h(x) = 2x2 + 2x x (f∙g)(x) -2 -1 0 1 2 h(-2) = 2(-2)2 + 2(-2) = 4 4 h(x) = 2x2 + 2x = 2[(-2)(-2)] + 2(-2) = 2[4] - 4 = 8 - 4
  • 29. h(x) = 2x2 + 2x x (f∙g)(x) -2 -1 0 1 2 h(-1) = 2(-1)2 + 2(-1) = 0 4 h(x) = 2x2 + 2x = 2[(-1)(-1)] + 2(-1) = 2[1] - 2 = 2 - 2 0
  • 30. h(x) = 2x2 + 2x x (f∙g)(x) -2 -1 0 1 2 h(0) = 2(0)2 + 2(0) = 0 4 h(x) = 2x2 + 2x = 2[(0)(0)] + 2(0) = 2[0] - 0 = 0 - 0 0 0
  • 31. h(x) = 2x2 + 2x x (f∙g)(x) -2 -1 0 1 2 h(1) = 2(1)2 + 2(1) = 4 4 h(x) = 2x2 + 2x = 2[(1)(1)] + 2(1) = 2[1] + 2 = 2 + 2 0 0 4
  • 32. h(x) = 2x2 + 2x x (f∙g)(x) -2 -1 0 1 2 h(2) = 2(2)2 + 2(2) = 12 4 h(x) = 2x2 + 2x = 2[(2)(2)] + 2(2) = 2[4] + 4 = 8 + 4 0 0 4 12
  • 33. GRAPH h(x) = 2x2 + 2x x (f∙g)(x) -2 -1 0 1 2 1 2 3 4 -1 -2 -3 -4 -5 -1-2-3-4 1 2 3 4 5 6 7 0 4 0 0 4 12
  • 34. GRAPH h(x) = 2x2 + 2x x (f∙g)(x) -2 -1 0 1 2 1 2 3 4 -1 -2 -3 -4 -5 -1-2-3-4 1 2 3 4 5 6 7 0 4 0 0 4 12
  • 35. GRAPH h(x) = 2x2 + 2x x (f∙g)(x) -2 -1 0 1 2 1 2 3 4 -1 -2 -3 -4 -5 -1-2-3-4 1 2 3 4 5 6 7 0 4 0 0 4 12
  • 36. GRAPH h(x) = 2x2 + 2x x (f∙g)(x) -2 -1 0 1 2 1 2 3 4 -1 -2 -3 -4 -5 -1-2-3-4 1 2 3 4 5 6 7 0 4 0 0 4 12
  • 37. GRAPH h(x) = 2x2 + 2x x (f∙g)(x) -2 -1 0 1 2 1 2 3 4 -1 -2 -3 -4 -5 -1-2-3-4 1 2 3 4 5 6 7 0 4 0 0 4 12
  • 38. f(x) = x + 1 g(x) = 2x h(x) = Substitute f(x) g(x) f(x) g(x) x + 1 2x h(x) =
  • 39. x (f/g)(x) -2 -1 0 1 2 1/4 h(x) = X +1 2x x + 1 2x h(x) = -2 + 1 2(-2) h(-2) = - 1 - 4 = 1 4 =
  • 40. x (f/g)(x) -2 -1 0 1 2 1/4 h(x) = X +1 2x x + 1 2x h(x) = -1 + 1 2(-1) h(-1) = 0 - 2 = = 0 0
  • 41. x (f/g)(x) -2 -1 0 1 2 1/4 h(x) = X +1 2x x + 1 2x h(x) = 0 + 1 2(0) h(0) = 1 0 = = undefined 0 undefined
  • 42. x (f/g)(x) -2 -1 0 1 2 1/4 h(x) = X +1 2x x + 1 2x h(x) = 1 + 1 2(1) h(1) = 2 2 = = 1 0 1 undefined
  • 43. x (f/g)(x) -2 -1 0 1 2 1/4 h(x) = X +1 2x x + 1 2x h(x) = 2 + 1 2(2) h(2) = 3 4 = 0 1 3/4 undefined
  • 44. GRAPH x (f/g)(x) -2 -1 0 1 2 -0.50-1 1 20 h(x) = X +1 2x 1/4 0 1 3/4 undefined -1.50-2 -0.50 -1.50 -1 -2 0.50 1 1.50 0.50 1.50 2
  • 45. GRAPH x (f/g)(x) -2 -1 0 1 2 -0.50-1 1 20 h(x) = X +1 2x 1/4 0 1 3/4 undefined -2 -1.50 -0.50 -1.50 -1 -2 0.50 1 1.50 0.50 1.50 2
  • 46. GRAPH x (f/g)(x) -2 -1 0 1 2 -0.50-1 1 20 h(x) = X +1 2x 1/4 0 1 3/4 undefined -2 -1.50 -1.50 -1 -2 0.50 1 1.50 0.50 1.50 2 -0.50
  • 47. GRAPH x (f/g)(x) -2 -1 0 1 2 -0.50-1 1 20 h(x) = X +1 2x 1/4 0 1 3/4 undefined -2 -1.50 -0.50 -1.50 -1 -2 0.50 1 1.50 0.50 1.50 2
  • 48. GRAPH x (f/g)(x) -2 -1 0 1 2 -0.50-1 1 20 h(x) = X +1 2x 1/4 0 1 3/4 undefined -2 -1.50 -0.50 -1.50 -1 -2 0.50 1 1.50 0.50 1.50 2
  • 49. SOLVE FOR THE COMBINED FUNCTIONS, COMPLETE THEIR FUNCTION TABLES AND SKETCH THE GRAPH
  • 50. GIVEN: f(x) = x - 3 g(x) = x2 SOLVE FOR: (f+g) (f-g) (f∙g)a. b. c. d. f g