SlideShare a Scribd company logo
Pu#ng	
  the	
  Person	
  into	
  
Personaliza1on	
  
Elizabeth	
  F.	
  Churchill	
  
eBay	
  Research	
  Labs	
  
June	
  2014	
  
U=lity	
  
noun:	
  u=lity	
  
	
   	
  -­‐	
  the	
  state	
  of	
  being	
  useful,	
  profitable,	
  or	
  beneficial	
  
	
   	
  -­‐	
  a	
  public	
  u=lity	
  
	
  
adjec=ve:	
  u=lity	
  
	
   	
  -­‐	
  useful,	
  able	
  to	
  perform	
  several	
  func=ons	
  
	
   	
  -­‐	
  func=onal	
  rather	
  than	
  aJrac=ve	
  
	
  
Infrastructural	
  
	
  
Changing	
  models	
  of	
  commerce	
  
•  Consump=on	
  
•  Distribu=on	
  
•  Produc=on	
  
•  “Personaliza=on”	
  …..	
  different	
  perspec=ves	
  
– Marke=ng,	
  content	
  &	
  product	
  targe=ng	
  
– Engineering	
  as	
  customisa=on	
  
– Design	
  as	
  co-­‐produc=on	
  
Some	
  context	
  
ψ	
  
Human	
  Computer	
  Interac=on	
  
a	
  discipline	
  concerned	
  with	
  the	
  	
  
design,	
  implementa3on	
  and	
  evalua3on	
  of	
  
interac3ve	
  compu3ng	
  systems	
  for	
  	
  
human	
  use	
  	
  
and	
  with	
  the	
  	
  
study	
  of	
  major	
  phenomena	
  surrounding	
  them	
  
Algorithmic	
  Living*(s)	
  
Behaviour	
  system	
  –	
  rela=ons	
  of	
  the	
  data	
  
Source	
  System	
  
Data	
  system	
  –	
  interfaces	
  are	
  conduit	
  from	
  source	
  to	
  data	
  
“Algorithmic	
  Living”	
  is	
  a	
  phrase	
  borrowed	
  from	
  Paul	
  Dourish	
  (UCI)	
  and	
  colleagues	
  
Social	
  Sciences	
  Design	
  Sciences	
  
Computa=onal	
  Sciences	
  
Design	
  paEerns	
  
Informa3on	
  (re)representa3on	
  
Informa3on	
  architecture,	
  interac3on	
  design,	
  	
  
graphic	
  design	
  
Cross	
  device	
  interac3ons	
  
Field	
  research	
  methods	
  
Prototyping	
  
Human	
  Factors	
  
Experience	
  design	
  
Brain	
  &	
  Body	
  Sciences	
  
Percep3on,	
  emo3on	
  
Cogni3ve	
  Psychology	
  
Decision	
  making	
  (interrup3on	
  
and),	
  memory,	
  language,	
  
emo3on,	
  individual	
  differences	
  
Social	
  psychology	
  
Social	
  iden3ty,	
  trust,	
  communica3on	
  
Anthropology	
  
Shopping	
  &	
  the	
  circula3on	
  of	
  
goods	
  
Machine	
  Learning	
  
Personaliza3on/Recommenda3on	
  
Informa3on	
  architecture(s)	
  
Catalogues,	
  user	
  representations	
  
Search	
  Sciences	
  
Data	
  Sciences,	
  Social	
  
Network	
  Analysis	
  &	
  
Computa3onal	
  
sociology	
  
Sociology	
  
Demographics,	
  SNA	
  
Web	
  services	
  
Graph	
  theory	
  
Collabora3ve	
  Filtering	
  
Collabora3ve	
  Filtering	
  
Data	
  mining	
  
Design	
  	
  
recommenda3ons	
  
&	
  requirements	
  
Data	
  
Data	
  representa3on	
  
Adap3ve	
  
interfaces	
  &	
  
interac3ions	
  
System	
  
requirements	
  
HCI	
  &	
  Product/
Service	
  Design	
  
Computer	
  Graphics	
  
Opera3ng	
  Systems	
  
Linguis3cs	
  
Putting the Person into Personalization by Elizabeth Churchill
Design	
  aware	
  data,	
  data	
  aware	
  design	
  
•  The	
  interface	
  brokers	
  a	
  conversa=on	
  between	
  a	
  user	
  and	
  a	
  service,	
  it	
  
invites	
  (“affords”)	
  ac=ons	
  
	
  
•  Proac=ve	
  data	
  collec=on	
  versus	
  reac=ve	
  data	
  analy=cs	
  
–  Too	
  much	
  focus	
  on	
  the	
  numbers	
  and	
  not	
  on	
  the	
  insights	
  
–  Ar=factual	
  collec=ons	
  versus	
  inten=onal	
  programma=c	
  collec=on	
  
–  Assume	
  
•  Tangible	
  and	
  intangible	
  signals	
  
•  Weak	
  signals	
  
•  Par=al	
  footprints,	
  composite	
  persons	
  (shared	
  devices/accounts),	
  bots	
  
•  Misleading	
  informa=on,	
  missing	
  pieces,	
  incomplete	
  stories	
  
•  Ques=ons	
  to	
  ask	
  yourself	
  
–  What	
  are	
  you	
  asking	
  to	
  know	
  about	
  a	
  person?	
  Why?	
  
•  What	
  is	
  the	
  design	
  ra=onale	
  for	
  your	
  instrumenta=on?	
  
–  Are	
  the	
  data	
  you	
  are	
  gathering	
  fit	
  for	
  your	
  purpose,	
  valid,	
  reliable?	
  
•  Are	
  your	
  conclusions	
  jus=fied?	
  	
  
	
  
	
  
Data	
  shaping,	
  data	
  design	
  
People - ”users”
Teams
Organisational
Societal/Regulatory
Interfaces
Micro
Macro & Meta
Business
Meso
People - ”users”
Teams
Organisational
Societal/Regulatory
Interfaces
Micro
Macro & Meta
Business
Meso
Experience	
  mining	
  
For	
  “deep	
  understanding”	
  rather	
  than	
  “deep	
  learning”,	
  we	
  need	
  to	
  
triangulate	
  methods:	
  experiments,	
  ethnography,	
  interviews	
  
	
  
Triangulate	
  data	
  
Triangulate	
  perspec3ves	
  
Explore	
  different	
  units	
  of	
  
analysis	
  
	
  
Eyetracking	
  
Lab	
  experiments	
  
Interviews	
  
Prototypes	
  (lo	
  and	
  hi)	
  
Focus	
  groups	
  
Surveys	
  
Ethnographic	
  field	
  studies	
  
Experimental	
  field	
  studies	
  
Ac=vity	
  log	
  (”trace”)	
  analysis	
  
Data	
  mining	
  
Data	
  visualiza=on	
  
	
  
Computer	
  scien=sts	
  
Anthropologists	
  
Sociologists	
  
Vision	
  Scien=sts	
  
Designers:	
  product,	
  interac=on,	
  
graphic	
  
	
  
Personaliza1on	
  
Increasing	
  Relevance	
  of	
  Content	
  and	
  Presenta=on	
  Modality/Style	
  
Recommender	
  Systems	
  –	
  the	
  abstracted	
  &	
  “generic”	
  consumer	
  
Concierge	
  personaliza=on:	
  “the	
  ‘n’	
  of	
  1”	
  	
  
	
  
Putting the Person into Personalization by Elizabeth Churchill
Outcome	
  Personaliza=on:	
  Search	
  
Non-­‐personalized	
   Personalized	
  
F(f)ossil	
  collector	
  
E-­‐commerce	
  Product	
  Search:	
  Personaliza3on,	
  Diversifica3on,	
  and	
  Beyond,	
  A=sh	
  Das	
  Sarma,	
  Nish	
  Parikh,	
  Neel	
  Sundaresan,	
  Tutorial	
  at	
  WWW-­‐2014	
  
Putting the Person into Personalization by Elizabeth Churchill
 
outcome	
  
what	
  
(e.g.,	
  content	
  match/relevance)	
  
	
  
process	
  
how,	
  where,	
  when	
  
Kinect	
   Myo	
  
Google	
  glass	
   Emo=v,	
  brain	
  &	
  eye	
  control	
  
Process	
  
Consump1on	
  
Auc=onweb	
  
…the	
  history	
  of	
  eBay	
  
hJp://mashable.com/2010/08/07/ebay-­‐facts/	
  
hJp://mashable.com/2010/08/07/ebay-­‐facts/	
  
Putting the Person into Personalization by Elizabeth Churchill
Putting the Person into Personalization by Elizabeth Churchill
Value	
  is	
  beyond	
  the	
  ar=fact	
  
The	
  broken	
  laser	
  pointer…the	
  history	
  of	
  eBay	
  
hJp://mashable.com/2010/08/07/ebay-­‐facts/	
  
Putting the Person into Personalization by Elizabeth Churchill
hJp://mashable.com/2010/08/07/ebay-­‐facts/	
  
hJp://mashable.com/2010/08/07/ebay-­‐facts/	
  
Putting the Person into Personalization by Elizabeth Churchill
Literacy,	
  reputa=on	
  &	
  trust	
  
Putting the Person into Personalization by Elizabeth Churchill
Putting the Person into Personalization by Elizabeth Churchill
Selling	
  exper=se…	
  
Simplifying	
  selling	
  
Commerce	
  3.0	
  for	
  Development:	
  The	
  promise	
  of	
  the	
  Global	
  Empowerment	
  Network	
  
Distribu1on	
  
Commerce	
  3.0	
  for	
  Development:	
  The	
  promise	
  of	
  the	
  Global	
  Empowerment	
  Network	
  
Commerce	
  3.0	
  for	
  Development:	
  The	
  promise	
  of	
  the	
  Global	
  Empowerment	
  Network	
  
Modern	
  Spice	
  Routes:	
  The	
  Cultural	
  Impact	
  of	
  Cross-­‐Border	
  Shopping	
  
Modern	
  Spice	
  Routes:	
  The	
  Cultural	
  Impact	
  of	
  Cross-­‐Border	
  Shopping	
  
Modern	
  Spice	
  Routes:	
  The	
  Cultural	
  Impact	
  of	
  Cross-­‐Border	
  Shopping	
  
Commerce	
  3.0	
  for	
  Development:	
  The	
  promise	
  of	
  the	
  Global	
  Empowerment	
  Network	
  
Digital	
  consump1on	
  is	
  s1ll	
  about	
  material	
  produc1on	
  &	
  distribu1on,	
  	
  
global	
  s1ll	
  means	
  local	
  delivery	
  or	
  pick-­‐up	
  
Digital	
  consump1on	
  is	
  s1ll	
  about	
  material	
  produc1on	
  &	
  distribu1on,	
  	
  
global	
  s1ll	
  means	
  local	
  delivery	
  or	
  pick-­‐up	
  
Digital	
  consump1on	
  is	
  s1ll	
  about	
  material	
  produc1on	
  &	
  distribu1on,	
  	
  
global	
  s1ll	
  means	
  local	
  delivery	
  or	
  pick-­‐up	
  
Modern	
  Spice	
  Routes:	
  The	
  Cultural	
  Impact	
  of	
  Cross-­‐Border	
  Shopping	
  
Under	
  the	
  percentages	
  are	
  people	
  and	
  their	
  prac1ces….	
  
Modern	
  Spice	
  Routes:	
  The	
  Cultural	
  Impact	
  of	
  Cross-­‐Border	
  Shopping	
  
Under	
  the	
  percentages	
  are	
  people	
  and	
  their	
  purchases….	
  
Produc1on	
  
Changing	
  modes	
  of	
  	
  
hJp://www.inc.com/magazine/201306/eric-­‐markowitz/how-­‐to-­‐choose-­‐a-­‐crowdfunder.html	
  
Crowdfunding	
  
Putting the Person into Personalization by Elizabeth Churchill
Putting the Person into Personalization by Elizabeth Churchill
Putting the Person into Personalization by Elizabeth Churchill
Putting the Person into Personalization by Elizabeth Churchill
Crowdfunding	
  and	
  “par1cipatory”	
  produc1on	
  
Made	
  to	
  order	
  –	
  “possibility”	
  shop	
  fronts	
  
Printed	
  to	
  order	
  –	
  “possibility”	
  shop	
  fronts	
  
Printed	
  to	
  order	
  –	
  “possibility”	
  shop	
  fronts	
  
hJp://www.betabrand.com/	
  Par1cipatory	
  fashion	
  
Par1cipatory	
  fashion	
  
Algorithmic	
  Living(s)	
  
Behaviour	
  system	
  –	
  rela=ons	
  of	
  the	
  data	
  
Source	
  System	
  
Data	
  system	
  –	
  interfaces	
  are	
  conduit	
  from	
  source	
  to	
  data	
  
Changing	
  models	
  of	
  commerce	
  
•  Consump=on	
  
•  Distribu=on	
  
•  Produc=on	
  
•  “Personaliza=on”	
  …..	
  different	
  perspec=ves	
  
– Marke=ng,	
  content	
  &	
  product	
  targe=ng	
  
– Engineering	
  as	
  customisa=on	
  
– Design	
  as	
  co-­‐produc=on	
  
Commerce	
  3.0	
  for	
  Development:	
  The	
  promise	
  of	
  the	
  Global	
  Empowerment	
  Network	
  
(David)	
  Ayman	
  Shamma	
  
	
  
	
  
M.	
  Cameron	
  Jones	
  
	
  
	
  
Elizabeth	
  F.	
  Churchill	
  
	
  
Ques=ons	
  &/or	
  Comments?	
  
churchill@acm.org	
  
References	
  
•  Pung	
  the	
  person	
  back	
  into	
  personaliza3on.	
  interac=ons	
  20.5	
  (2013):	
  12-­‐15,	
  
Elizabeth	
  Churchill	
  
•  From	
  data	
  divina3on	
  to	
  data-­‐aware	
  design.	
  interac=ons	
  19.5	
  (2012):	
  10-­‐13,	
  
Elizabeth	
  Churchill	
  
•  E-­‐commerce	
  Personaliza3on	
  at	
  Scale	
  23rd	
  Interna=onal	
  Conference	
  on	
  
Informa=on	
  and	
  Knowledge	
  Management	
  (CIKM),	
  Elizabeth	
  Churchill,	
  A=sh	
  
Das	
  Sarma,	
  Ranjan	
  Sinha	
  
•  Data	
  Design	
  for	
  Personaliza3on:	
  Current	
  Challenges	
  and	
  Emerging	
  
Opportuni3es,	
  Elizabeth	
  Churchill,	
  A=sh	
  Das	
  Sarma,	
  Workshop	
  at	
  WSDM-­‐2014	
  
•  E-­‐commerce	
  Product	
  Search:	
  Personaliza3on,	
  Diversifica3on,	
  and	
  Beyond,	
  
A=sh	
  Das	
  Sarma,	
  Nish	
  Parikh,	
  Neel	
  Sundaresan,	
  Tutorial	
  at	
  WWW-­‐2014	
  
•  Commerce	
  3.0	
  for	
  Development:	
  The	
  promise	
  of	
  the	
  Global	
  Empowerment	
  
Network	
  hJp://www.ebaymainstreet.com/news-­‐events/commerce-­‐30-­‐
development-­‐promise-­‐global-­‐empowerment-­‐network	
  
•  Modern	
  Spice	
  Routes:	
  The	
  Cultural	
  Impact	
  of	
  Cross-­‐Border	
  Shopping	
  hJps://
www.paypal-­‐media.com/assets/pdf/fact_sheet/
PayPal_ModernSpiceRoutes_Report_Final.pdf	
  
	
  

More Related Content

PPTX
Building Effective Frameworks for Social Media Analysis
PPT
Alamw2013
PPTX
Leveraging Lucene/Solr as a Knowledge Graph and Intent Engine
PDF
Scaling Recommendations, Semantic Search, & Data Analytics with solr
PDF
Pratyush Pandab UX Researcher Portfolio
PDF
Pyramid™‏Digital Marketing PDF
PPTX
Knowledge Extraction from Social Media
PDF
Agile data science
Building Effective Frameworks for Social Media Analysis
Alamw2013
Leveraging Lucene/Solr as a Knowledge Graph and Intent Engine
Scaling Recommendations, Semantic Search, & Data Analytics with solr
Pratyush Pandab UX Researcher Portfolio
Pyramid™‏Digital Marketing PDF
Knowledge Extraction from Social Media
Agile data science

Similar to Putting the Person into Personalization by Elizabeth Churchill (20)

PPTX
User experience for slide share 121815
PPTX
Predictive Analytics: Context and Use Cases
PPTX
Ideation through research
PDF
Measuring Relevance in the Negative Space
PDF
AI, Search, and the Disruption of Knowledge Management
PPTX
Göteborg university(condensed)
PPT
Information Architecture in Real Life - Part I
PDF
How Could Data Transform the Arts - TCG 2017 (with notes)
PDF
Callcenter HPE IDOL overview
PDF
L’IA, booster de votre activité : principes, usages & idéation
PPTX
IBM z13 - The Heart of the Digital Transformation v1
PDF
Sweeny group think-ias2015
PDF
Enterprise Scale Knowledge Graphs
PDF
Designing the search experience the language of discovery - Findability Day 2014
PPT
chap1.ppt
PPT
Information_System_and_Data_mining12.ppt
PPT
chap1.ppt
PPT
chap1.ppt
PDF
Python for Data Science - TDC 2015
PPTX
Calin Constantinov - Neo4j - Keyboards and Mice - Craiova 2016
User experience for slide share 121815
Predictive Analytics: Context and Use Cases
Ideation through research
Measuring Relevance in the Negative Space
AI, Search, and the Disruption of Knowledge Management
Göteborg university(condensed)
Information Architecture in Real Life - Part I
How Could Data Transform the Arts - TCG 2017 (with notes)
Callcenter HPE IDOL overview
L’IA, booster de votre activité : principes, usages & idéation
IBM z13 - The Heart of the Digital Transformation v1
Sweeny group think-ias2015
Enterprise Scale Knowledge Graphs
Designing the search experience the language of discovery - Findability Day 2014
chap1.ppt
Information_System_and_Data_mining12.ppt
chap1.ppt
chap1.ppt
Python for Data Science - TDC 2015
Calin Constantinov - Neo4j - Keyboards and Mice - Craiova 2016
Ad

More from IT as a Utility Network+ (ITaaU) (18)

PDF
Cloud maker itaauconference2014
PDF
Taking IT for Granted - David De Roure
PDF
RCUK presentation to the ITaaU community conference by John Baird, Claire Wil...
PDF
The bakery presentation by Anisah Osman Britton
PPT
The value of trust: understanding the scale and depth of the user’s perspect...
PPTX
: The value of urgent reconfiguration of IT utilities: the air traffic contro...
PPTX
TOLIVS: A Typology of Loss in Vaccine Supply Chains by Ioannis Daskalopoulos
PDF
Using Wireless Networks to Support First Responders and Resilience in Upland ...
PPTX
Trusted Tiny Things by Edoardo Pignotti
PDF
Weightless Machine Communications by Yao (Frank) Gao
PDF
Fail Fast Flair: Ustwo Passion and Digital Products by Joe McCleod
PPTX
Business Models for CDIT Clusters: The Transformational Challenge for the Bou...
PPTX
Libraries of the Future by Lizzie Tait
PPTX
Communities on the Clouds by Tom Lodge
PPTX
Well Sorted by Tom Methven
PPTX
Open Data Institute (ODI) Overview by Andrea Cox
PDF
Mapping for Change by Karen Martin
PPT
CloudSME EU project by Tamas Kiss
Cloud maker itaauconference2014
Taking IT for Granted - David De Roure
RCUK presentation to the ITaaU community conference by John Baird, Claire Wil...
The bakery presentation by Anisah Osman Britton
The value of trust: understanding the scale and depth of the user’s perspect...
: The value of urgent reconfiguration of IT utilities: the air traffic contro...
TOLIVS: A Typology of Loss in Vaccine Supply Chains by Ioannis Daskalopoulos
Using Wireless Networks to Support First Responders and Resilience in Upland ...
Trusted Tiny Things by Edoardo Pignotti
Weightless Machine Communications by Yao (Frank) Gao
Fail Fast Flair: Ustwo Passion and Digital Products by Joe McCleod
Business Models for CDIT Clusters: The Transformational Challenge for the Bou...
Libraries of the Future by Lizzie Tait
Communities on the Clouds by Tom Lodge
Well Sorted by Tom Methven
Open Data Institute (ODI) Overview by Andrea Cox
Mapping for Change by Karen Martin
CloudSME EU project by Tamas Kiss
Ad

Recently uploaded (20)

PDF
Building Integrated photovoltaic BIPV_UPV.pdf
PPTX
20250228 LYD VKU AI Blended-Learning.pptx
PPTX
Digital-Transformation-Roadmap-for-Companies.pptx
PDF
The Rise and Fall of 3GPP – Time for a Sabbatical?
PDF
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
PDF
Getting Started with Data Integration: FME Form 101
PDF
Advanced methodologies resolving dimensionality complications for autism neur...
PDF
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
PPTX
1. Introduction to Computer Programming.pptx
PDF
Approach and Philosophy of On baking technology
PDF
Video forgery: An extensive analysis of inter-and intra-frame manipulation al...
PPTX
Spectroscopy.pptx food analysis technology
PDF
Electronic commerce courselecture one. Pdf
PDF
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
PDF
Unlocking AI with Model Context Protocol (MCP)
PDF
Encapsulation_ Review paper, used for researhc scholars
PDF
gpt5_lecture_notes_comprehensive_20250812015547.pdf
PDF
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
PPTX
Group 1 Presentation -Planning and Decision Making .pptx
PDF
Machine learning based COVID-19 study performance prediction
Building Integrated photovoltaic BIPV_UPV.pdf
20250228 LYD VKU AI Blended-Learning.pptx
Digital-Transformation-Roadmap-for-Companies.pptx
The Rise and Fall of 3GPP – Time for a Sabbatical?
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
Getting Started with Data Integration: FME Form 101
Advanced methodologies resolving dimensionality complications for autism neur...
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
1. Introduction to Computer Programming.pptx
Approach and Philosophy of On baking technology
Video forgery: An extensive analysis of inter-and intra-frame manipulation al...
Spectroscopy.pptx food analysis technology
Electronic commerce courselecture one. Pdf
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
Unlocking AI with Model Context Protocol (MCP)
Encapsulation_ Review paper, used for researhc scholars
gpt5_lecture_notes_comprehensive_20250812015547.pdf
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
Group 1 Presentation -Planning and Decision Making .pptx
Machine learning based COVID-19 study performance prediction

Putting the Person into Personalization by Elizabeth Churchill

  • 1. Pu#ng  the  Person  into   Personaliza1on   Elizabeth  F.  Churchill   eBay  Research  Labs   June  2014  
  • 2. U=lity   noun:  u=lity      -­‐  the  state  of  being  useful,  profitable,  or  beneficial      -­‐  a  public  u=lity     adjec=ve:  u=lity      -­‐  useful,  able  to  perform  several  func=ons      -­‐  func=onal  rather  than  aJrac=ve     Infrastructural    
  • 3. Changing  models  of  commerce   •  Consump=on   •  Distribu=on   •  Produc=on   •  “Personaliza=on”  …..  different  perspec=ves   – Marke=ng,  content  &  product  targe=ng   – Engineering  as  customisa=on   – Design  as  co-­‐produc=on  
  • 6. Human  Computer  Interac=on   a  discipline  concerned  with  the     design,  implementa3on  and  evalua3on  of   interac3ve  compu3ng  systems  for     human  use     and  with  the     study  of  major  phenomena  surrounding  them  
  • 7. Algorithmic  Living*(s)   Behaviour  system  –  rela=ons  of  the  data   Source  System   Data  system  –  interfaces  are  conduit  from  source  to  data   “Algorithmic  Living”  is  a  phrase  borrowed  from  Paul  Dourish  (UCI)  and  colleagues  
  • 8. Social  Sciences  Design  Sciences   Computa=onal  Sciences   Design  paEerns   Informa3on  (re)representa3on   Informa3on  architecture,  interac3on  design,     graphic  design   Cross  device  interac3ons   Field  research  methods   Prototyping   Human  Factors   Experience  design   Brain  &  Body  Sciences   Percep3on,  emo3on   Cogni3ve  Psychology   Decision  making  (interrup3on   and),  memory,  language,   emo3on,  individual  differences   Social  psychology   Social  iden3ty,  trust,  communica3on   Anthropology   Shopping  &  the  circula3on  of   goods   Machine  Learning   Personaliza3on/Recommenda3on   Informa3on  architecture(s)   Catalogues,  user  representations   Search  Sciences   Data  Sciences,  Social   Network  Analysis  &   Computa3onal   sociology   Sociology   Demographics,  SNA   Web  services   Graph  theory   Collabora3ve  Filtering   Collabora3ve  Filtering   Data  mining   Design     recommenda3ons   &  requirements   Data   Data  representa3on   Adap3ve   interfaces  &   interac3ions   System   requirements   HCI  &  Product/ Service  Design   Computer  Graphics   Opera3ng  Systems   Linguis3cs  
  • 10. Design  aware  data,  data  aware  design   •  The  interface  brokers  a  conversa=on  between  a  user  and  a  service,  it   invites  (“affords”)  ac=ons     •  Proac=ve  data  collec=on  versus  reac=ve  data  analy=cs   –  Too  much  focus  on  the  numbers  and  not  on  the  insights   –  Ar=factual  collec=ons  versus  inten=onal  programma=c  collec=on   –  Assume   •  Tangible  and  intangible  signals   •  Weak  signals   •  Par=al  footprints,  composite  persons  (shared  devices/accounts),  bots   •  Misleading  informa=on,  missing  pieces,  incomplete  stories   •  Ques=ons  to  ask  yourself   –  What  are  you  asking  to  know  about  a  person?  Why?   •  What  is  the  design  ra=onale  for  your  instrumenta=on?   –  Are  the  data  you  are  gathering  fit  for  your  purpose,  valid,  reliable?   •  Are  your  conclusions  jus=fied?        
  • 11. Data  shaping,  data  design   People - ”users” Teams Organisational Societal/Regulatory Interfaces Micro Macro & Meta Business Meso
  • 12. People - ”users” Teams Organisational Societal/Regulatory Interfaces Micro Macro & Meta Business Meso Experience  mining   For  “deep  understanding”  rather  than  “deep  learning”,  we  need  to   triangulate  methods:  experiments,  ethnography,  interviews    
  • 13. Triangulate  data   Triangulate  perspec3ves   Explore  different  units  of   analysis     Eyetracking   Lab  experiments   Interviews   Prototypes  (lo  and  hi)   Focus  groups   Surveys   Ethnographic  field  studies   Experimental  field  studies   Ac=vity  log  (”trace”)  analysis   Data  mining   Data  visualiza=on     Computer  scien=sts   Anthropologists   Sociologists   Vision  Scien=sts   Designers:  product,  interac=on,   graphic    
  • 14. Personaliza1on   Increasing  Relevance  of  Content  and  Presenta=on  Modality/Style  
  • 15. Recommender  Systems  –  the  abstracted  &  “generic”  consumer  
  • 16. Concierge  personaliza=on:  “the  ‘n’  of  1”      
  • 18. Outcome  Personaliza=on:  Search   Non-­‐personalized   Personalized   F(f)ossil  collector   E-­‐commerce  Product  Search:  Personaliza3on,  Diversifica3on,  and  Beyond,  A=sh  Das  Sarma,  Nish  Parikh,  Neel  Sundaresan,  Tutorial  at  WWW-­‐2014  
  • 20.   outcome   what   (e.g.,  content  match/relevance)     process   how,  where,  when  
  • 21. Kinect   Myo   Google  glass   Emo=v,  brain  &  eye  control   Process  
  • 23. Auc=onweb   …the  history  of  eBay   hJp://mashable.com/2010/08/07/ebay-­‐facts/  
  • 27. Value  is  beyond  the  ar=fact   The  broken  laser  pointer…the  history  of  eBay   hJp://mashable.com/2010/08/07/ebay-­‐facts/  
  • 37. Commerce  3.0  for  Development:  The  promise  of  the  Global  Empowerment  Network  
  • 39. Commerce  3.0  for  Development:  The  promise  of  the  Global  Empowerment  Network  
  • 40. Commerce  3.0  for  Development:  The  promise  of  the  Global  Empowerment  Network  
  • 41. Modern  Spice  Routes:  The  Cultural  Impact  of  Cross-­‐Border  Shopping  
  • 42. Modern  Spice  Routes:  The  Cultural  Impact  of  Cross-­‐Border  Shopping  
  • 43. Modern  Spice  Routes:  The  Cultural  Impact  of  Cross-­‐Border  Shopping  
  • 44. Commerce  3.0  for  Development:  The  promise  of  the  Global  Empowerment  Network  
  • 45. Digital  consump1on  is  s1ll  about  material  produc1on  &  distribu1on,     global  s1ll  means  local  delivery  or  pick-­‐up  
  • 46. Digital  consump1on  is  s1ll  about  material  produc1on  &  distribu1on,     global  s1ll  means  local  delivery  or  pick-­‐up  
  • 47. Digital  consump1on  is  s1ll  about  material  produc1on  &  distribu1on,     global  s1ll  means  local  delivery  or  pick-­‐up  
  • 48. Modern  Spice  Routes:  The  Cultural  Impact  of  Cross-­‐Border  Shopping   Under  the  percentages  are  people  and  their  prac1ces….  
  • 49. Modern  Spice  Routes:  The  Cultural  Impact  of  Cross-­‐Border  Shopping   Under  the  percentages  are  people  and  their  purchases….  
  • 57. Made  to  order  –  “possibility”  shop  fronts  
  • 58. Printed  to  order  –  “possibility”  shop  fronts  
  • 59. Printed  to  order  –  “possibility”  shop  fronts  
  • 62. Algorithmic  Living(s)   Behaviour  system  –  rela=ons  of  the  data   Source  System   Data  system  –  interfaces  are  conduit  from  source  to  data  
  • 63. Changing  models  of  commerce   •  Consump=on   •  Distribu=on   •  Produc=on   •  “Personaliza=on”  …..  different  perspec=ves   – Marke=ng,  content  &  product  targe=ng   – Engineering  as  customisa=on   – Design  as  co-­‐produc=on  
  • 64. Commerce  3.0  for  Development:  The  promise  of  the  Global  Empowerment  Network  
  • 65. (David)  Ayman  Shamma       M.  Cameron  Jones       Elizabeth  F.  Churchill     Ques=ons  &/or  Comments?   churchill@acm.org  
  • 66. References   •  Pung  the  person  back  into  personaliza3on.  interac=ons  20.5  (2013):  12-­‐15,   Elizabeth  Churchill   •  From  data  divina3on  to  data-­‐aware  design.  interac=ons  19.5  (2012):  10-­‐13,   Elizabeth  Churchill   •  E-­‐commerce  Personaliza3on  at  Scale  23rd  Interna=onal  Conference  on   Informa=on  and  Knowledge  Management  (CIKM),  Elizabeth  Churchill,  A=sh   Das  Sarma,  Ranjan  Sinha   •  Data  Design  for  Personaliza3on:  Current  Challenges  and  Emerging   Opportuni3es,  Elizabeth  Churchill,  A=sh  Das  Sarma,  Workshop  at  WSDM-­‐2014   •  E-­‐commerce  Product  Search:  Personaliza3on,  Diversifica3on,  and  Beyond,   A=sh  Das  Sarma,  Nish  Parikh,  Neel  Sundaresan,  Tutorial  at  WWW-­‐2014   •  Commerce  3.0  for  Development:  The  promise  of  the  Global  Empowerment   Network  hJp://www.ebaymainstreet.com/news-­‐events/commerce-­‐30-­‐ development-­‐promise-­‐global-­‐empowerment-­‐network   •  Modern  Spice  Routes:  The  Cultural  Impact  of  Cross-­‐Border  Shopping  hJps:// www.paypal-­‐media.com/assets/pdf/fact_sheet/ PayPal_ModernSpiceRoutes_Report_Final.pdf