SlideShare a Scribd company logo
Features
• High-performance, Low-power AVR®
8-bit Microcontroller
• Advanced RISC Architecture
– 130 Powerful Instructions – Most Single Clock Cycle Execution
– 32 x 8 General Purpose Working Registers
– Fully Static Operation
– Up to 16 MIPS Throughput at 16 MHz
– On-chip 2-cycle Multiplier
• Nonvolatile Program and Data Memories
– 8K Bytes of In-System Self-Programmable Flash
Endurance: 10,000 Write/Erase Cycles
– Optional Boot Code Section with Independent Lock Bits
In-System Programming by On-chip Boot Program
True Read-While-Write Operation
– 512 Bytes EEPROM
Endurance: 100,000 Write/Erase Cycles
– 512 Bytes Internal SRAM
– Programming Lock for Software Security
• Peripheral Features
– Two 8-bit Timer/Counters with Separate Prescalers and Compare Modes
– One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture
Mode
– Real Time Counter with Separate Oscillator
– Four PWM Channels
– 8-channel, 10-bit ADC
8 Single-ended Channels
7 Differential Channels for TQFP Package Only
2 Differential Channels with Programmable Gain at 1x, 10x, or 200x for TQFP
Package Only
– Byte-oriented Two-wire Serial Interface
– Programmable Serial USART
– Master/Slave SPI Serial Interface
– Programmable Watchdog Timer with Separate On-chip Oscillator
– On-chip Analog Comparator
• Special Microcontroller Features
– Power-on Reset and Programmable Brown-out Detection
– Internal Calibrated RC Oscillator
– External and Internal Interrupt Sources
– Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby
and Extended Standby
• I/O and Packages
– 32 Programmable I/O Lines
– 40-pin PDIP, 44-lead TQFP, 44-lead PLCC, and 44-pad QFN/MLF
• Operating Voltages
– 2.7 - 5.5V for ATmega8535L
– 4.5 - 5.5V for ATmega8535
• Speed Grades
– 0 - 8 MHz for ATmega8535L
– 0 - 16 MHz for ATmega8535
8-bit
Microcontroller
with 8K Bytes
In-System
Programmable
Flash
ATmega8535
ATmega8535L
Summary
2502KS–AVR–10/06
Note: This is a summary document. A complete document
is available on our Web site at www.atmel.com.
2 ATmega8535(L)
2502KS–AVR–10/06
Pin Configurations Figure 1. Pinout ATmega8535
Disclaimer Typical values contained in this data sheet are based on simulations and characteriza-
tion of other AVR microcontrollers manufactured on the same process technology. Min
and Max values will be available after the device is characterized.
(XCK/T0) PB0
(T1) PB1
(INT2/AIN0) PB2
(OC0/AIN1) PB3
(SS) PB4
(MOSI) PB5
(MISO) PB6
(SCK) PB7
RESET
VCC
GND
XTAL2
XTAL1
(RXD) PD0
(TXD) PD1
(INT0) PD2
(INT1) PD3
(OC1B) PD4
(OC1A) PD5
(ICP1) PD6
PA0 (ADC0)
PA1 (ADC1)
PA2 (ADC2)
PA3 (ADC3)
PA4 (ADC4)
PA5 (ADC5)
PA6 (ADC6)
PA7 (ADC7)
AREF
GND
AVCC
PC7 (TOSC2)
PC6 (TOSC1)
PC5
PC4
PC3
PC2
PC1 (SDA)
PC0 (SCL)
PD7 (OC2)
1
2
3
4
5
6
7
8
9
10
11
33
32
31
30
29
28
27
26
25
24
23
(MOSI) PB5
(MISO) PB6
(SCK) PB7
RESET
VCC
GND
XTAL2
XTAL1
(RXD) PD0
(TXD) PD1
(INT0) PD2
PA4 (ADC4)
PA5 (ADC5)
PA6 (ADC6)
PA7 (ADC7)
AREF
GND
AVCC
PC7 (TOSC2)
PC6 (TOSC1)
PC5
PC4
44
43
42
41
40
39
38
37
36
35
34
12
13
14
15
16
17
18
19
20
21
22
(INT1)PD3
(OC1B)PD4
(OC1A)PD5
(ICP1)PD6
(OC2)PD7
VCC
GND
(SCL)PC0
(SDA)PC1
PC2
PC3
PB4(SS)
PB3(AIN1/OC0)
PB2(AIN0/INT2)
PB1(T1)
PB0(XCK/T0)
GND
VCC
PA0(ADC0)
PA1(ADC1)
PA2(ADC2)
PA3(ADC3)
7
8
9
10
11
12
13
14
15
16
17
39
38
37
36
35
34
33
32
31
30
29
(MOSI) PB5
(MISO) PB6
(SCK) PB7
RESET
VCC
GND
XTAL2
XTAL1
(RXD) PD0
(TXD) PD1
(INT0) PD2
PA4 (ADC4)
PA5 (ADC5)
PA6 (ADC6)
PA7 (ADC7)
AREF
GND
AVCC
PC7 (TOSC2)
PC6 (TOSC1)
PC5
PC4
6
5
4
3
2
1
44
43
42
41
40
18
19
20
21
22
23
24
25
26
27
28
(INT1)PD3
(OC1B)PD4
(OC1A)PD5
(ICP1)PD6
(OC2)PD7
VCC
GND
(SCL)PC0
(SDA)PC1
PC2
PC3
PB4(SS)
PB3(AIN1/OC0)
PB2(AIN0/INT2)
PB1(T1)
PB0(XCK/T0)
GND
VCC
PA0(ADC0)
PA1(ADC1)
PA2(ADC2)
PA3(ADC3)
PLCC
NOTE: MLF Bottom pad should be soldered to ground.
3
ATmega8535(L)
2502KS–AVR–10/06
Overview The ATmega8535 is a low-power CMOS 8-bit microcontroller based on the AVR
enhanced RISC architecture. By executing instructions in a single clock cycle, the
ATmega8535 achieves throughputs approaching 1 MIPS per MHz allowing the system
designer to optimize power consumption versus processing speed.
Block Diagram Figure 2. Block Diagram
INTERNAL
OSCILLATOR
OSCILLATOR
WATCHDOG
TIMER
MCU CTRL.
& TIMING
OSCILLATOR
TIMERS/
COUNTERS
INTERRUPT
UNIT
STACK
POINTER
EEPROM
SRAM
STATUS
REGISTER
USART
PROGRAM
COUNTER
PROGRAM
FLASH
INSTRUCTION
REGISTER
INSTRUCTION
DECODER
PROGRAMMING
LOGIC
SPI
ADC
INTERFACE
COMP.
INTERFACE
PORTA DRIVERS/BUFFERS
PORTA DIGITAL INTERFACE
GENERAL
PURPOSE
REGISTERS
X
Y
Z
ALU
+
-
PORTC DRIVERS/BUFFERS
PORTC DIGITAL INTERFACE
PORTB DIGITAL INTERFACE
PORTB DRIVERS/BUFFERS
PORTD DIGITAL INTERFACE
PORTD DRIVERS/BUFFERS
XTAL1
XTAL2
RESET
CONTROL
LINES
VCC
GND
MUX &
ADC
AREF
PA0 - PA7 PC0 - PC7
PD0 - PD7PB0 - PB7
AVR CPU
TWI
AVCC
INTERNAL
CALIBRATED
OSCILLATOR
4 ATmega8535(L)
2502KS–AVR–10/06
The AVR core combines a rich instruction set with 32 general purpose working registers.
All 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two
independent registers to be accessed in one single instruction executed in one clock
cycle. The resulting architecture is more code efficient while achieving throughputs up to
ten times faster than conventional CISC microcontrollers.
The ATmega8535 provides the following features: 8K bytes of In-System Programmable
Flash with Read-While-Write capabilities, 512 bytes EEPROM, 512 bytes SRAM, 32
general purpose I/O lines, 32 general purpose working registers, three flexible
Timer/Counters with compare modes, internal and external interrupts, a serial program-
mable USART, a byte oriented Two-wire Serial Interface, an 8-channel, 10-bit ADC with
optional differential input stage with programmable gain in TQFP package, a program-
mable Watchdog Timer with Internal Oscillator, an SPI serial port, and six software
selectable power saving modes. The Idle mode stops the CPU while allowing the
SRAM, Timer/Counters, SPI port, and interrupt system to continue functioning. The
Power-down mode saves the register contents but freezes the Oscillator, disabling all
other chip functions until the next interrupt or Hardware Reset. In Power-save mode, the
asynchronous timer continues to run, allowing the user to maintain a timer base while
the rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and
all I/O modules except asynchronous timer and ADC, to minimize switching noise during
ADC conversions. In Standby mode, the crystal/resonator Oscillator is running while the
rest of the device is sleeping. This allows very fast start-up combined with low-power
consumption. In Extended Standby mode, both the main Oscillator and the asynchro-
nous timer continue to run.
The device is manufactured using Atmel’s high density nonvolatile memory technology.
The On-chip ISP Flash allows the program memory to be reprogrammed In-System
through an SPI serial interface, by a conventional nonvolatile memory programmer, or
by an On-chip Boot program running on the AVR core. The boot program can use any
interface to download the application program in the Application Flash memory. Soft-
ware in the Boot Flash section will continue to run while the Application Flash section is
updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU
with In-System Self-Programmable Flash on a monolithic chip, the Atmel ATmega8535
is a powerful microcontroller that provides a highly flexible and cost effective solution to
many embedded control applications.
The ATmega8535 AVR is supported with a full suite of program and system develop-
ment tools including: C compilers, macro assemblers, program debugger/simulators, In-
Circuit Emulators, and evaluation kits.
AT90S8535 Compatibility The ATmega8535 provides all the features of the AT90S8535. In addition, several new
features are added. The ATmega8535 is backward compatible with AT90S8535 in most
cases. However, some incompatibilities between the two microcontrollers exist. To
solve this problem, an AT90S8535 compatibility mode can be selected by programming
the S8535C fuse. ATmega8535 is pin compatible with AT90S8535, and can replace the
AT90S8535 on current Printed Circuit Boards. However, the location of fuse bits and the
electrical characteristics differs between the two devices.
AT90S8535 Compatibility
Mode
Programming the S8535C fuse will change the following functionality:
• The timed sequence for changing the Watchdog Time-out period is disabled. See
“Timed Sequences for Changing the Configuration of the Watchdog Timer” on page
45 for details.
• The double buffering of the USART Receive Register is disabled. See “AVR USART
vs. AVR UART – Compatibility” on page 146 for details.
5
ATmega8535(L)
2502KS–AVR–10/06
Pin Descriptions
VCC Digital supply voltage.
GND Ground.
Port A (PA7..PA0) Port A serves as the analog inputs to the A/D Converter.
Port A also serves as an 8-bit bi-directional I/O port, if the A/D Converter is not used.
Port pins can provide internal pull-up resistors (selected for each bit). The Port A output
buffers have symmetrical drive characteristics with both high sink and source capability.
When pins PA0 to PA7 are used as inputs and are externally pulled low, they will source
current if the internal pull-up resistors are activated. The Port A pins are tri-stated when
a reset condition becomes active, even if the clock is not running.
Port B (PB7..PB0) Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port B output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port B pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset
condition becomes active, even if the clock is not running.
Port B also serves the functions of various special features of the ATmega8535 as listed
on page 60.
Port C (PC7..PC0) Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port C output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port C pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset
condition becomes active, even if the clock is not running.
Port D (PD7..PD0) Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port D output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port D pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset
condition becomes active, even if the clock is not running.
Port D also serves the functions of various special features of the ATmega8535 as listed
on page 64.
RESET Reset input. A low level on this pin for longer than the minimum pulse length will gener-
ate a reset, even if the clock is not running. The minimum pulse length is given in Table
15 on page 37. Shorter pulses are not guaranteed to generate a reset.
XTAL1 Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.
XTAL2 Output from the inverting Oscillator amplifier.
AVCC AVCC is the supply voltage pin for Port A and the A/D Converter. It should be externally
connected to VCC, even if the ADC is not used. If the ADC is used, it should be con-
nected to VCC through a low-pass filter.
AREF AREF is the analog reference pin for the A/D Converter.
6 ATmega8535(L)
2502KS–AVR–10/06
Resources A comprehensive set of development tools, application notes and datasheets are avail-
able for download on http://www.atmel.com/avr.
7
ATmega8535(L)
2502KS–AVR–10/06
About Code
Examples
This documentation contains simple code examples that briefly show how to use various
parts of the device. These code examples assume that the part specific header file is
included before compilation. Be aware that not all C compiler vendors include bit defini-
tions in the header files and interrupt handling in C is compiler dependent. Please
confirm with the C Compiler documentation for more details.
8 ATmega8535(L)
2502KS–AVR–10/06
.
Register Summary
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
0x3F (0x5F) SREG I T H S V N Z C 10
0x3E (0x5E) SPH – – – – – – SP9 SP8 12
0x3D (0x5D) SPL SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 12
0x3C (0x5C) OCR0 Timer/Counter0 Output Compare Register 85
0x3B (0x5B) GICR INT1 INT0 INT2 – – – IVSEL IVCE 49, 69
0x3A (0x5A) GIFR INTF1 INTF0 INTF2 – – – – – 70
0x39 (0x59) TIMSK OCIE2 TOIE2 TICIE1 OCIE1A OCIE1B TOIE1 OCIE0 TOIE0 85, 115, 133
0x38 (0x58) TIFR OCF2 TOV2 ICF1 OCF1A OCF1B TOV1 OCF0 TOV0 86, 116, 134
0x37 (0x57) SPMCR SPMIE RWWSB – RWWSRE BLBSET PGWRT PGERS SPMEN 228
0x36 (0x56) TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE 181
0x35 (0x55) MCUCR SM2 SE SM1 SM0 ISC11 ISC10 ISC01 ISC00 32, 68
0x34 (0x54) MCUCSR – ISC2 – – WDRF BORF EXTRF PORF 40, 69
0x33 (0x53) TCCR0 FOC0 WGM00 COM01 COM00 WGM01 CS02 CS01 CS00 83
0x32 (0x52) TCNT0 Timer/Counter0 (8 Bits) 85
0x31 (0x51) OSCCAL Oscillator Calibration Register 30
0x30 (0x50) SFIOR ADTS2 ADTS1 ADTS0 – ACME PUD PSR2 PSR10 59,88,135,203,223
0x2F (0x4F) TCCR1A COM1A1 COM1A0 COM1B1 COM1B0 FOC1A FOC1B WGM11 WGM10 110
0x2E (0x4E) TCCR1B ICNC1 ICES1 – WGM13 WGM12 CS12 CS11 CS10 113
0x2D (0x4D) TCNT1H Timer/Counter1 – Counter Register High Byte 114
0x2C (0x4C) TCNT1L Timer/Counter1 – Counter Register Low Byte 114
0x2B (0x4B) OCR1AH Timer/Counter1 – Output Compare Register A High Byte 114
0x2A (0x4A) OCR1AL Timer/Counter1 – Output Compare Register A Low Byte 114
0x29 (0x49) OCR1BH Timer/Counter1 – Output Compare Register B High Byte 114
0x28 (0x48) OCR1BL Timer/Counter1 – Output Compare Register B Low Byte 114
0x27 (0x47) ICR1H Timer/Counter1 – Input Capture Register High Byte 114
0x26 (0x46) ICR1L Timer/Counter1 – Input Capture Register Low Byte 114
0x25 (0x45) TCCR2 FOC2 WGM20 COM21 COM20 WGM21 CS22 CS21 CS20 128
0x24 (0x44) TCNT2 Timer/Counter2 (8 Bits) 130
0x23 (0x43) OCR2 Timer/Counter2 Output Compare Register 131
0x22 (0x42) ASSR – – – – AS2 TCN2UB OCR2UB TCR2UB 131
0x21 (0x41) WDTCR – – – WDCE WDE WDP2 WDP1 WDP0 42
0x20(1)
(0x40)(1)
UBRRH URSEL – – – UBRR[11:8] 169
UCSRC URSEL UMSEL UPM1 UPM0 USBS UCSZ1 UCSZ0 UCPOL 167
0x1F (0x3F) EEARH – – – – – – – EEAR8 19
0x1E (0x3E) EEARL EEPROM Address Register Low Byte 19
0x1D (0x3D) EEDR EEPROM Data Register 19
0x1C (0x3C) EECR – – – – EERIE EEMWE EEWE EERE 19
0x1B (0x3B) PORTA PORTA7 PORTA6 PORTA5 PORTA4 PORTA3 PORTA2 PORTA1 PORTA0 66
0x1A (0x3A) DDRA DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDA0 66
0x19 (0x39) PINA PINA7 PINA6 PINA5 PINA4 PINA3 PINA2 PINA1 PINA0 66
0x18 (0x38) PORTB PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 66
0x17 (0x37) DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 66
0x16 (0x36) PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 67
0x15 (0x35) PORTC PORTC7 PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0 67
0x14 (0x34) DDRC DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0 67
0x13 (0x33) PINC PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0 67
0x12 (0x32) PORTD PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0 67
0x11 (0x31) DDRD DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0 67
0x10 (0x30) PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 67
0x0F (0x2F) SPDR SPI Data Register 143
0x0E (0x2E) SPSR SPIF WCOL – – – – – SPI2X 143
0x0D (0x2D) SPCR SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 141
0x0C (0x2C) UDR USART I/O Data Register 164
0x0B (0x2B) UCSRA RXC TXC UDRE FE DOR PE U2X MPCM 165
0x0A (0x2A) UCSRB RXCIE TXCIE UDRIE RXEN TXEN UCSZ2 RXB8 TXB8 166
0x09 (0x29) UBRRL USART Baud Rate Register Low Byte 169
0x08 (0x28) ACSR ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0 203
0x07 (0x27) ADMUX REFS1 REFS0 ADLAR MUX4 MUX3 MUX2 MUX1 MUX0 219
0x06 (0x26) ADCSRA ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 221
0x05 (0x25) ADCH ADC Data Register High Byte 222
0x04 (0x24) ADCL ADC Data Register Low Byte 222
0x03 (0x23) TWDR Two-wire Serial Interface Data Register 183
0x02 (0x22) TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE 183
0x01 (0x21) TWSR TWS7 TWS6 TWS5 TWS4 TWS3 – TWPS1 TWPS0 183
9
ATmega8535(L)
2502KS–AVR–10/06
Notes: 1. Refer to the USART description for details on how to access UBRRH and UCSRC.
2. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses
should never be written.
3. Some of the status flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate on
all bits in the I/O Register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions
work with registers 0x00 to 0x1F only.
0x00 (0x20) TWBR Two-wire Serial Interface Bit Rate Register 181
Register Summary (Continued)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
10 ATmega8535(L)
2502KS–AVR–10/06
Instruction Set Summary
Mnemonics Operands Description Operation Flags #Clocks
ARITHMETIC AND LOGIC INSTRUCTIONS
ADD Rd, Rr Add two Registers Rd ← Rd + Rr Z,C,N,V,H 1
ADC Rd, Rr Add with Carry two Registers Rd ← Rd + Rr + C Z,C,N,V,H 1
ADIW Rdl,K Add Immediate to Word Rdh:Rdl ← Rdh:Rdl + K Z,C,N,V,S 2
SUB Rd, Rr Subtract two Registers Rd ← Rd - Rr Z,C,N,V,H 1
SUBI Rd, K Subtract Constant from Register Rd ← Rd - K Z,C,N,V,H 1
SBC Rd, Rr Subtract with Carry two Registers Rd ← Rd - Rr - C Z,C,N,V,H 1
SBCI Rd, K Subtract with Carry Constant from Reg. Rd ← Rd - K - C Z,C,N,V,H 1
SBIW Rdl,K Subtract Immediate from Word Rdh:Rdl ← Rdh:Rdl - K Z,C,N,V,S 2
AND Rd, Rr Logical AND Registers Rd ← Rd • Rr Z,N,V 1
ANDI Rd, K Logical AND Register and Constant Rd ← Rd • K Z,N,V 1
OR Rd, Rr Logical OR Registers Rd ← Rd v Rr Z,N,V 1
ORI Rd, K Logical OR Register and Constant Rd ← Rd v K Z,N,V 1
EOR Rd, Rr Exclusive OR Registers Rd ← Rd ⊕ Rr Z,N,V 1
COM Rd One’s Complement Rd ← 0xFF − Rd Z,C,N,V 1
NEG Rd Two’s Complement Rd ← 0x00 − Rd Z,C,N,V,H 1
SBR Rd,K Set Bit(s) in Register Rd ← Rd v K Z,N,V 1
CBR Rd,K Clear Bit(s) in Register Rd ← Rd • (0xFF - K) Z,N,V 1
INC Rd Increment Rd ← Rd + 1 Z,N,V 1
DEC Rd Decrement Rd ← Rd − 1 Z,N,V 1
TST Rd Test for Zero or Minus Rd ← Rd • Rd Z,N,V 1
CLR Rd Clear Register Rd ← Rd ⊕ Rd Z,N,V 1
SER Rd Set Register Rd ← 0xFF None 1
MUL Rd, Rr Multiply Unsigned R1:R0 ← Rd x Rr Z,C 2
MULS Rd, Rr Multiply Signed R1:R0 ← Rd x Rr Z,C 2
MULSU Rd, Rr Multiply Signed with Unsigned R1:R0 ← Rd x Rr Z,C 2
FMUL Rd, Rr Fractional Multiply Unsigned R1:R0 ← (Rd x Rr) << 1 Z,C 2
FMULS Rd, Rr Fractional Multiply Signed R1:R0 ← (Rd x Rr) << 1 Z,C 2
FMULSU Rd, Rr Fractional Multiply Signed with Unsigned R1:R0 ← (Rd x Rr) << 1 Z,C 2
BRANCH INSTRUCTIONS
RJMP k Relative Jump PC ← PC + k + 1 None 2
IJMP Indirect Jump to (Z) PC ← Z None 2
RCALL k Relative Subroutine Call PC ← PC + k + 1 None 3
ICALL Indirect Call to (Z) PC ← Z None 3
RET Subroutine Return PC ← STACK None 4
RETI Interrupt Return PC ← STACK I 4
CPSE Rd,Rr Compare, Skip if Equal if (Rd = Rr) PC ← PC + 2 or 3 None 1 / 2 / 3
CP Rd,Rr Compare Rd − Rr Z, N,V,C,H 1
CPC Rd,Rr Compare with Carry Rd − Rr − C Z, N,V,C,H 1
CPI Rd,K Compare Register with Immediate Rd − K Z, N,V,C,H 1
SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b)=0) PC ← PC + 2 or 3 None 1 / 2 / 3
SBRS Rr, b Skip if Bit in Register is Set if (Rr(b)=1) PC ← PC + 2 or 3 None 1 / 2 / 3
SBIC P, b Skip if Bit in I/O Register Cleared if (P(b)=0) PC ← PC + 2 or 3 None 1 / 2 / 3
SBIS P, b Skip if Bit in I/O Register is Set if (P(b)=1) PC ← PC + 2 or 3 None 1 / 2 / 3
BRBS s, k Branch if Status Flag Set if (SREG(s) = 1) then PC←PC+k + 1 None 1 / 2
BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PC←PC+k + 1 None 1 / 2
BREQ k Branch if Equal if (Z = 1) then PC ← PC + k + 1 None 1 / 2
BRNE k Branch if Not Equal if (Z = 0) then PC ← PC + k + 1 None 1 / 2
BRCS k Branch if Carry Set if (C = 1) then PC ← PC + k + 1 None 1 / 2
BRCC k Branch if Carry Cleared if (C = 0) then PC ← PC + k + 1 None 1 / 2
BRSH k Branch if Same or Higher if (C = 0) then PC ← PC + k + 1 None 1 / 2
BRLO k Branch if Lower if (C = 1) then PC ← PC + k + 1 None 1 / 2
BRMI k Branch if Minus if (N = 1) then PC ← PC + k + 1 None 1 / 2
BRPL k Branch if Plus if (N = 0) then PC ← PC + k + 1 None 1 / 2
BRGE k Branch if Greater or Equal, Signed if (N ⊕ V= 0) then PC ← PC + k + 1 None 1 / 2
BRLT k Branch if Less Than Zero, Signed if (N ⊕ V= 1) then PC ← PC + k + 1 None 1 / 2
BRHS k Branch if Half Carry Flag Set if (H = 1) then PC ← PC + k + 1 None 1 / 2
BRHC k Branch if Half Carry Flag Cleared if (H = 0) then PC ← PC + k + 1 None 1 / 2
BRTS k Branch if T Flag Set if (T = 1) then PC ← PC + k + 1 None 1 / 2
BRTC k Branch if T Flag Cleared if (T = 0) then PC ← PC + k + 1 None 1 / 2
BRVS k Branch if Overflow Flag is Set if (V = 1) then PC ← PC + k + 1 None 1 / 2
BRVC k Branch if Overflow Flag is Cleared if (V = 0) then PC ← PC + k + 1 None 1 / 2
BRIE k Branch if Interrupt Enabled if ( I = 1) then PC ← PC + k + 1 None 1 / 2
BRID k Branch if Interrupt Disabled if ( I = 0) then PC ← PC + k + 1 None 1 / 2
DATA TRANSFER INSTRUCTIONS
11
ATmega8535(L)
2502KS–AVR–10/06
MOV Rd, Rr Move Between Registers Rd ← Rr None 1
MOVW Rd, Rr Copy Register Word Rd+1:Rd ← Rr+1:Rr None 1
LDI Rd, K Load Immediate Rd ← K None 1
LD Rd, X Load Indirect Rd ← (X) None 2
LD Rd, X+ Load Indirect and Post-Inc. Rd ← (X), X ← X + 1 None 2
LD Rd, - X Load Indirect and Pre-Dec. X ← X - 1, Rd ← (X) None 2
LD Rd, Y Load Indirect Rd ← (Y) None 2
LD Rd, Y+ Load Indirect and Post-Inc. Rd ← (Y), Y ← Y + 1 None 2
LD Rd, - Y Load Indirect and Pre-Dec. Y ← Y - 1, Rd ← (Y) None 2
LDD Rd,Y+q Load Indirect with Displacement Rd ← (Y + q) None 2
LD Rd, Z Load Indirect Rd ← (Z) None 2
LD Rd, Z+ Load Indirect and Post-Inc. Rd ← (Z), Z ← Z+1 None 2
LD Rd, -Z Load Indirect and Pre-Dec. Z ← Z - 1, Rd ← (Z) None 2
LDD Rd, Z+q Load Indirect with Displacement Rd ← (Z + q) None 2
LDS Rd, k Load Direct from SRAM Rd ← (k) None 2
ST X, Rr Store Indirect (X) ← Rr None 2
ST X+, Rr Store Indirect and Post-Inc. (X) ← Rr, X ← X + 1 None 2
ST - X, Rr Store Indirect and Pre-Dec. X ← X - 1, (X) ← Rr None 2
ST Y, Rr Store Indirect (Y) ← Rr None 2
ST Y+, Rr Store Indirect and Post-Inc. (Y) ← Rr, Y ← Y + 1 None 2
ST - Y, Rr Store Indirect and Pre-Dec. Y ← Y - 1, (Y) ← Rr None 2
STD Y+q,Rr Store Indirect with Displacement (Y + q) ← Rr None 2
ST Z, Rr Store Indirect (Z) ← Rr None 2
ST Z+, Rr Store Indirect and Post-Inc. (Z) ← Rr, Z ← Z + 1 None 2
ST -Z, Rr Store Indirect and Pre-Dec. Z ← Z - 1, (Z) ← Rr None 2
STD Z+q,Rr Store Indirect with Displacement (Z + q) ← Rr None 2
STS k, Rr Store Direct to SRAM (k) ← Rr None 2
LPM Load Program Memory R0 ← (Z) None 3
LPM Rd, Z Load Program Memory Rd ← (Z) None 3
LPM Rd, Z+ Load Program Memory and Post-Inc Rd ← (Z), Z ← Z+1 None 3
SPM Store Program Memory (Z) ← R1:R0 None -
IN Rd, P In Port Rd ← P None 1
OUT P, Rr Out Port P ← Rr None 1
PUSH Rr Push Register on Stack STACK ← Rr None 2
POP Rd Pop Register from Stack Rd ← STACK None 2
BIT AND BIT-TEST INSTRUCTIONS
SBI P,b Set Bit in I/O Register I/O(P,b) ← 1 None 2
CBI P,b Clear Bit in I/O Register I/O(P,b) ← 0 None 2
LSL Rd Logical Shift Left Rd(n+1) ← Rd(n), Rd(0) ← 0 Z,C,N,V 1
LSR Rd Logical Shift Right Rd(n) ← Rd(n+1), Rd(7) ← 0 Z,C,N,V 1
ROL Rd Rotate Left Through Carry Rd(0)←C,Rd(n+1)← Rd(n),C←Rd(7) Z,C,N,V 1
ROR Rd Rotate Right Through Carry Rd(7)←C,Rd(n)← Rd(n+1),C←Rd(0) Z,C,N,V 1
ASR Rd Arithmetic Shift Right Rd(n) ← Rd(n+1), n=0..6 Z,C,N,V 1
SWAP Rd Swap Nibbles Rd(3..0)←Rd(7..4),Rd(7..4)←Rd(3..0) None 1
BSET s Flag Set SREG(s) ← 1 SREG(s) 1
BCLR s Flag Clear SREG(s) ← 0 SREG(s) 1
BST Rr, b Bit Store from Register to T T ← Rr(b) T 1
BLD Rd, b Bit load from T to Register Rd(b) ← T None 1
SEC Set Carry C ← 1 C 1
CLC Clear Carry C ← 0 C 1
SEN Set Negative Flag N ← 1 N 1
CLN Clear Negative Flag N ← 0 N 1
SEZ Set Zero Flag Z ← 1 Z 1
CLZ Clear Zero Flag Z ← 0 Z 1
SEI Global Interrupt Enable I ← 1 I 1
CLI Global Interrupt Disable I ← 0 I 1
SES Set Signed Test Flag S ← 1 S 1
CLS Clear Signed Test Flag S ← 0 S 1
SEV Set Twos Complement Overflow. V ← 1 V 1
CLV Clear Twos Complement Overflow V ← 0 V 1
SET Set T in SREG T ← 1 T 1
CLT Clear T in SREG T ← 0 T 1
SEH Set Half Carry Flag in SREG H ← 1 H 1
CLH Clear Half Carry Flag in SREG H ← 0 H 1
MCU CONTROL INSTRUCTIONS
NOP No Operation None 1
Mnemonics Operands Description Operation Flags #Clocks
12 ATmega8535(L)
2502KS–AVR–10/06
SLEEP Sleep (see specific descr. for Sleep function) None 1
WDR Watchdog Reset (see specific descr. for WDR/Timer) None 1
BREAK Break For On-chip Debug Only None N/A
Mnemonics Operands Description Operation Flags #Clocks
13
ATmega8535(L)
2502KS–AVR–10/06
Ordering Information
Note: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information
and minimum quantities..
2. Pb-free packaging alternative, complies to the European Directive for Restriction of Hazardous Substances (RoHS direc-
tive).Also Halide free and fully Green.
Speed (MHz) Power Supply Ordering Code Package(1)
Operation Range
8 2.7 - 5.5V
ATmega8535L-8AC
ATmega8535L-8PC
ATmega8535L-8JC
ATmega8535L-8MC
44A
40P6
44J
44M1
Commercial
(0°C to 70°C)
ATmega8535L-8AI
ATmega8535L-8PI
ATmega8535L-8JI
ATmega8535L-8MI
ATmega8535L-8AU(2)
ATmega8535L-8PU(2)
ATmega8535L-8JU(2)
ATmega8535L-8MU(2)
44A
40P6
44J
44M1
44A
40P6
44J
44M1
Industrial
(-40°C to 85°C)
16 4.5 - 5.5V
ATmega8535-16AC
ATmega8535-16PC
ATmega8535-16JC
ATmega8535-16MC
44A
40P6
44J
44M1
Commercial
(0°C to 70°C)
ATmega8535-16AI
ATmega8535-16PI
ATmega8535-16JI
ATmega8535-16MI
ATmega8535-16AU(2)
ATmega8535-16PU(2)
ATmega8535-16JU(2)
ATmega8535-16MU(2)
44A
40P6
44J
44M1
44A
40P6
44J
44M1
Industrial
(-40°C to 85°C)
Package Type
44A 44-lead, Thin (1.0 mm) Plastic Gull Wing Quad Flat Package (TQFP)
40P6 40-pin, 0.600” Wide, Plastic Dual Inline Package (PDIP)
44J 44-lead, Plastic J-leaded Chip Carrier (PLCC)
44M1-A 44-pad, 7 x 7 x 1.0 mm body, lead pitch 0.50 mm, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)
14 ATmega8535(L)
2502KS–AVR–10/06
Packaging Information
44A
2325 Orchard Parkway
San Jose, CA 95131
TITLE DRAWING NO.
R
REV.
44A, 44-lead, 10 x 10 mm Body Size, 1.0 mm Body Thickness,
0.8 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)
B44A
10/5/2001
PIN 1 IDENTIFIER
0˚~7˚
PIN 1
L
C
A1 A2 A
D1
D
e E1 E
B
COMMON DIMENSIONS
(Unit of Measure = mm)
SYMBOL MIN NOM MAX NOTE
Notes: 1. This package conforms to JEDEC reference MS-026, Variation ACB.
2. Dimensions D1 and E1 do not include mold protrusion. Allowable
protrusion is 0.25 mm per side. Dimensions D1 and E1 are maximum
plastic body size dimensions including mold mismatch.
3. Lead coplanarity is 0.10 mm maximum.
A – – 1.20
A1 0.05 – 0.15
A2 0.95 1.00 1.05
D 11.75 12.00 12.25
D1 9.90 10.00 10.10 Note 2
E 11.75 12.00 12.25
E1 9.90 10.00 10.10 Note 2
B 0.30 – 0.45
C 0.09 – 0.20
L 0.45 – 0.75
e 0.80 TYP
15
ATmega8535(L)
2502KS–AVR–10/06
40P6
2325 Orchard Parkway
San Jose, CA 95131
TITLE DRAWING NO.
R
REV.
40P6, 40-lead (0.600"/15.24 mm Wide) Plastic Dual
Inline Package (PDIP)
B40P6
09/28/01
PIN
1
E1
A1
B
REF
E
B1
C
L
SEATING PLANE
A
0º ~ 15º
D
e
eB
COMMON DIMENSIONS
(Unit of Measure = mm)
SYMBOL MIN NOM MAX NOTE
A – – 4.826
A1 0.381 – –
D 52.070 – 52.578 Note 2
E 15.240 – 15.875
E1 13.462 – 13.970 Note 2
B 0.356 – 0.559
B1 1.041 – 1.651
L 3.048 – 3.556
C 0.203 – 0.381
eB 15.494 – 17.526
e 2.540 TYP
Notes: 1. This package conforms to JEDEC reference MS-011, Variation AC.
2. Dimensions D and E1 do not include mold Flash or Protrusion.
Mold Flash or Protrusion shall not exceed 0.25 mm (0.010").
16 ATmega8535(L)
2502KS–AVR–10/06
44J
Notes: 1. This package conforms to JEDEC reference MS-018, Variation AC.
2. Dimensions D1 and E1 do not include mold protrusion.
Allowable protrusion is .010"(0.254 mm) per side. Dimension D1
and E1 include mold mismatch and are measured at the extreme
material condition at the upper or lower parting line.
3. Lead coplanarity is 0.004" (0.102 mm) maximum.
A 4.191 – 4.572
A1 2.286 – 3.048
A2 0.508 – –
D 17.399 – 17.653
D1 16.510 – 16.662 Note 2
E 17.399 – 17.653
E1 16.510 – 16.662 Note 2
D2/E2 14.986 – 16.002
B 0.660 – 0.813
B1 0.330 – 0.533
e 1.270 TYP
COMMON DIMENSIONS
(Unit of Measure = mm)
SYMBOL MIN NOM MAX NOTE
1.14(0.045) X 45˚ PIN NO. 1
IDENTIFIER
1.14(0.045) X 45˚
0.51(0.020)MAX
0.318(0.0125)
0.191(0.0075)
A2
45˚ MAX (3X)
A
A1
B1 D2/E2
B
e
E1 E
D1
D
44J, 44-lead, Plastic J-leaded Chip Carrier (PLCC) B44J
10/04/01
2325 Orchard Parkway
San Jose, CA 95131
TITLE DRAWING NO.
R
REV.
17
ATmega8535(L)
2502KS–AVR–10/06
44M1-A
2325 Orchard Parkway
San Jose, CA 95131
TITLE DRAWING NO.
R
REV.
44M1, 44-pad, 7 x 7 x 1.0 mm Body, Lead Pitch 0.50 mm, G44M1
5/27/06
COMMON DIMENSIONS
(Unit of Measure = mm)
SYMBOL MIN NOM MAX NOTE
A 0.80 0.90 1.00
A1 – 0.02 0.05
A3 0.25 REF
b 0.18 0.23 0.30
D
D2 5.00 5.20 5.40
6.90 7.00 7.10
6.90 7.00 7.10
E
E2 5.00 5.20 5.40
e 0.50 BSC
L 0.59 0.64 0.69
K 0.20 0.26 0.41
Note: JEDEC Standard MO-220, Fig. 1 (SAW Singulation) VKKD-3.
TOP VIEW
SIDE VIEW
BOTTOM VIEW
D
E
Marked Pin# 1 ID
E2
D2
b e
Pin #1 Corner
L
A1
A3
A
SEATING PLANE
Pin #1
Triangle
Pin #1
Chamfer
(C 0.30)
Option A
Option B
Pin #1
Notch
(0.20 R)
Option C
K
K
1
2
3
5.20 mm Exposed Pad, Micro Lead Frame Package (MLF)
18 ATmega8535(L)
2502KS–AVR–10/06
Errata The revision letter refer to the device revision.
ATmega8535
Rev. A and B
• First Analog Comparator conversion may be delayed
• Asynchronous Oscillator does not stop in Power-down
1. First Analog Comparator conversion may be delayed
If the device is powered by a slow rising VCC, the first Analog Comparator conver-
sion will take longer than expected on some devices.
Problem Fix/Workaround
When the device has been powered or reset, disable then enable the Analog Com-
parator before the first conversion.
2. Asynchronous Oscillator does not stop in Power-down
The asynchronous oscillator does not stop when entering Power-down mode. This
leads to higher power consumption than expected.
Problem Fix/Workaround
Manually disable the asynchronous timer before entering Power-down.
19
ATmega8535(L)
2502KS–AVR–10/06
Datasheet Revision
History
Please note that the referring page numbers in this section are referring to this docu-
ment. The referring revision in this section are referring to the document revision.
Changes from Rev.
2502J- 08/06 to Rev.
2502K- 10/06
1. Updated TOP/BOTTOM description for all Timer/Counters Fast PWM mode.
2. Updated “Errata” on page 18.
Changes from Rev.
2502I- 06/06 to Rev.
2502J- 08/06
1. Updated “Ordering Information” on page 13.
Changes from Rev.
2502H- 04/06 to Rev.
2502I- 06/06
1. Updated code example “USART Initialization” on page 150.
Changes from Rev.
2502G- 04/05 to Rev.
2502H- 04/06
1. Added “Resources” on page 6.
2. Updated Table 7 on page 29, Table 17 on page 42 and Table 111 on page 258.
3. Updated “Serial Peripheral Interface – SPI” on page 136.
4. Updated note in “Bit Rate Generator Unit” on page 180.
Changes from Rev.
2502F- 06/04 to Rev.
2502G- 04/05
1. Removed “Preliminary” and TBD’s.
2. Updated Table 37 on page 69 and Table 113 on page 261.
3. Updated “Electrical Characteristics” on page 255.
4. Updated “Ordering Information” on page 13.
Changes from Rev.
2502E-12/03 to Rev.
2502G-06/04
1. MLF-package alternative changed to “Quad Flat No-Lead/Micro Lead Frame
Package QFN/MLF”.
Changes from Rev.
2502E-12/03 to Rev.
2502F-06/04
1. Updated “Reset Characteristics” on page 37.
2. Updated SPH in “Stack Pointer” on page 12.
3. Updated C code in “USART Initialization” on page 150.
4. Updated “Errata” on page 18.
Changes from Rev.
2502D-09/03 to Rev.
2502E-12/03
1. Updated “Calibrated Internal RC Oscillator” on page 29.
2. Added section “Errata” on page 18.
20 ATmega8535(L)
2502KS–AVR–10/06
Changes from Rev.
2502C-04/03 to Rev.
2502D-09/03
1. Removed “Advance Information” and some TBD’s from the datasheet.
2. Added note to “Pinout ATmega8535” on page 2.
3. Updated “Reset Characteristics” on page 37.
4. Updated “Absolute Maximum Ratings” and “DC Characteristics” in “Electrical
Characteristics” on page 255.
5. Updated Table 111 on page 258.
6. Updated “ADC Characteristics” on page 263.
7. Updated “ATmega8535 Typical Characteristics” on page 266.
8. Removed CALL and JMP instructions from code examples and “Instruction
Set Summary” on page 10.
Changes from Rev.
2502B-09/02 to Rev.
2502C-04/03
1. Updated “Packaging Information” on page 14.
2. Updated Figure 1 on page 2, Figure 84 on page 179, Figure 85 on page 185,
Figure 87 on page 191, Figure 98 on page 207.
3. Added the section “EEPROM Write During Power-down Sleep Mode” on page
22.
4. Removed the references to the application notes “Multi-purpose Oscillator”
and “32 kHz Crystal Oscillator”, which do not exist.
5. Updated code examples on page 44.
6. Removed ADHSM bit.
7. Renamed Port D pin ICP to ICP1. See “Alternate Functions of Port D” on page
64.
8. Added information about PWM symmetry for Timer 0 on page 79 and Timer 2
on page 126.
9. Updated Table 68 on page 169, Table 75 on page 190, Table 76 on page 193,
Table 77 on page 196, Table 108 on page 253, Table 113 on page 261.
10. Updated description on “Bit 5 – TWSTA: TWI START Condition Bit” on page
182.
11. Updated the description in “Filling the Temporary Buffer (Page Loading)” and
“Performing a Page Write” on page 231.
12. Removed the section description in “SPI Serial Programming Characteristics”
on page 254.
13. Updated “Electrical Characteristics” on page 255.
21
ATmega8535(L)
2502KS–AVR–10/06
14. Updated “ADC Characteristics” on page 263.
14. Updated “Register Summary” on page 8.
15. Various Timer 1 corrections.
16. Added WD_FUSE period in Table 108 on page 253.
Changes from Rev.
2502A-06/02 to Rev.
2502B-09/02
1. Canged the Endurance on the Flash to 10,000 Write/Erase Cycles.
2502KS–AVR–10/06
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Atmel’s products are not
intended, authorized, or warranted for use as components in applications intended to support or sustain life.
Atmel Corporation Atmel Operations
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600
Regional Headquarters
Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500
Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369
Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581
Memory
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60
ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743
RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom
Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80
Literature Requests
www.atmel.com/literature
© 2006 Atmel Corporation. All rights reserved. Atmel®
, logo and combinations thereof, Everywhere You Are®
, AVR®
, and others are the trade-
marks or registered trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

More Related Content

PDF
Doc2502
PDF
Atmel-7735-Automotive-Microcontrollers-ATmega169P_-968165.pdf
PDF
Atmega16 Microconntroller Data sheet
PDF
A tmega16A Microcontroller Data Sheet
PDF
Atmel 2486-8-bit-avr-microcontroller-atmega8 l-datasheet
PDF
Atmega324 p
Doc2502
Atmel-7735-Automotive-Microcontrollers-ATmega169P_-968165.pdf
Atmega16 Microconntroller Data sheet
A tmega16A Microcontroller Data Sheet
Atmel 2486-8-bit-avr-microcontroller-atmega8 l-datasheet
Atmega324 p

What's hot (17)

PDF
Atmega 128 datasheet
PPT
atmega 128 and communication protocol
PDF
Atmel 8271-8-bit-avr-microcontroller-a tmega48-a-48pa-88a-88pa-168a-168pa-328...
PDF
Atmega8u2 mur
PDF
PPT
AVR Fundamentals
PDF
Xmega d4 microcontroller
PPTX
ATmega 16
PPTX
Features of ATMEL microcontrollers
PDF
AVR Micro controller Interfacing
PDF
Atmel 42735-8-bit-avr-microcontroller-a tmega328-328-p_summary
PDF
AVR introduction
PDF
Atmel microcontrollers-a tmega328-p_datasheet
PPT
Ii avr-basics(1)
PDF
Meta88full
PPT
A tmega8 basics
Atmega 128 datasheet
atmega 128 and communication protocol
Atmel 8271-8-bit-avr-microcontroller-a tmega48-a-48pa-88a-88pa-168a-168pa-328...
Atmega8u2 mur
AVR Fundamentals
Xmega d4 microcontroller
ATmega 16
Features of ATMEL microcontrollers
AVR Micro controller Interfacing
Atmel 42735-8-bit-avr-microcontroller-a tmega328-328-p_summary
AVR introduction
Atmel microcontrollers-a tmega328-p_datasheet
Ii avr-basics(1)
Meta88full
A tmega8 basics
Ad

Similar to 2502s (20)

PDF
At 89c51
PDF
Atmel 8159-8-bit-avr-microcontroller-a tmega8-a_datasheet
PDF
Atmega16 datasheet
PDF
Atemega saya
PDF
Atmega 8
PDF
At 89c52
PDF
Datasheet 89S8253.pdf
PDF
PDF
Data sheet of chip ATMEGA64 from Microchip
DOCX
Avr report
PDF
AT89C51 Data sheets
PPTX
Overview of Microcontroller and ATMega32 microcontroller
PDF
89 c2051
PDF
At89 c2051 (3)
PDF
At89s51
PDF
Información de microcontrolador attiny85
PPT
Embedded systems, 8051 microcontroller
PPT
Microcontroller 8051
PDF
8449972 embedded-systems-and-model-of-metro-train
At 89c51
Atmel 8159-8-bit-avr-microcontroller-a tmega8-a_datasheet
Atmega16 datasheet
Atemega saya
Atmega 8
At 89c52
Datasheet 89S8253.pdf
Data sheet of chip ATMEGA64 from Microchip
Avr report
AT89C51 Data sheets
Overview of Microcontroller and ATMega32 microcontroller
89 c2051
At89 c2051 (3)
At89s51
Información de microcontrolador attiny85
Embedded systems, 8051 microcontroller
Microcontroller 8051
8449972 embedded-systems-and-model-of-metro-train
Ad

Recently uploaded (20)

DOCX
unit 2 cost accounting- Tender and Quotation & Reconciliation Statement
PDF
20250805_A. Stotz All Weather Strategy - Performance review July 2025.pdf
PDF
SIMNET Inc – 2023’s Most Trusted IT Services & Solution Provider
PPTX
Principles of Marketing, Industrial, Consumers,
PDF
Training And Development of Employee .pdf
DOCX
Euro SEO Services 1st 3 General Updates.docx
PDF
Ôn tập tiếng anh trong kinh doanh nâng cao
PDF
How to Get Funding for Your Trucking Business
PDF
Stem Cell Market Report | Trends, Growth & Forecast 2025-2034
DOCX
Business Management - unit 1 and 2
PDF
WRN_Investor_Presentation_August 2025.pdf
PPTX
job Avenue by vinith.pptxvnbvnvnvbnvbnbmnbmbh
PDF
Reconciliation AND MEMORANDUM RECONCILATION
PDF
Katrina Stoneking: Shaking Up the Alcohol Beverage Industry
PDF
pdfcoffee.com-opt-b1plus-sb-answers.pdfvi
PPTX
The Marketing Journey - Tracey Phillips - Marketing Matters 7-2025.pptx
PDF
Elevate Cleaning Efficiency Using Tallfly Hair Remover Roller Factory Expertise
PDF
Business model innovation report 2022.pdf
PPTX
5 Stages of group development guide.pptx
PDF
kom-180-proposal-for-a-directive-amending-directive-2014-45-eu-and-directive-...
unit 2 cost accounting- Tender and Quotation & Reconciliation Statement
20250805_A. Stotz All Weather Strategy - Performance review July 2025.pdf
SIMNET Inc – 2023’s Most Trusted IT Services & Solution Provider
Principles of Marketing, Industrial, Consumers,
Training And Development of Employee .pdf
Euro SEO Services 1st 3 General Updates.docx
Ôn tập tiếng anh trong kinh doanh nâng cao
How to Get Funding for Your Trucking Business
Stem Cell Market Report | Trends, Growth & Forecast 2025-2034
Business Management - unit 1 and 2
WRN_Investor_Presentation_August 2025.pdf
job Avenue by vinith.pptxvnbvnvnvbnvbnbmnbmbh
Reconciliation AND MEMORANDUM RECONCILATION
Katrina Stoneking: Shaking Up the Alcohol Beverage Industry
pdfcoffee.com-opt-b1plus-sb-answers.pdfvi
The Marketing Journey - Tracey Phillips - Marketing Matters 7-2025.pptx
Elevate Cleaning Efficiency Using Tallfly Hair Remover Roller Factory Expertise
Business model innovation report 2022.pdf
5 Stages of group development guide.pptx
kom-180-proposal-for-a-directive-amending-directive-2014-45-eu-and-directive-...

2502s

  • 1. Features • High-performance, Low-power AVR® 8-bit Microcontroller • Advanced RISC Architecture – 130 Powerful Instructions – Most Single Clock Cycle Execution – 32 x 8 General Purpose Working Registers – Fully Static Operation – Up to 16 MIPS Throughput at 16 MHz – On-chip 2-cycle Multiplier • Nonvolatile Program and Data Memories – 8K Bytes of In-System Self-Programmable Flash Endurance: 10,000 Write/Erase Cycles – Optional Boot Code Section with Independent Lock Bits In-System Programming by On-chip Boot Program True Read-While-Write Operation – 512 Bytes EEPROM Endurance: 100,000 Write/Erase Cycles – 512 Bytes Internal SRAM – Programming Lock for Software Security • Peripheral Features – Two 8-bit Timer/Counters with Separate Prescalers and Compare Modes – One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture Mode – Real Time Counter with Separate Oscillator – Four PWM Channels – 8-channel, 10-bit ADC 8 Single-ended Channels 7 Differential Channels for TQFP Package Only 2 Differential Channels with Programmable Gain at 1x, 10x, or 200x for TQFP Package Only – Byte-oriented Two-wire Serial Interface – Programmable Serial USART – Master/Slave SPI Serial Interface – Programmable Watchdog Timer with Separate On-chip Oscillator – On-chip Analog Comparator • Special Microcontroller Features – Power-on Reset and Programmable Brown-out Detection – Internal Calibrated RC Oscillator – External and Internal Interrupt Sources – Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby and Extended Standby • I/O and Packages – 32 Programmable I/O Lines – 40-pin PDIP, 44-lead TQFP, 44-lead PLCC, and 44-pad QFN/MLF • Operating Voltages – 2.7 - 5.5V for ATmega8535L – 4.5 - 5.5V for ATmega8535 • Speed Grades – 0 - 8 MHz for ATmega8535L – 0 - 16 MHz for ATmega8535 8-bit Microcontroller with 8K Bytes In-System Programmable Flash ATmega8535 ATmega8535L Summary 2502KS–AVR–10/06 Note: This is a summary document. A complete document is available on our Web site at www.atmel.com.
  • 2. 2 ATmega8535(L) 2502KS–AVR–10/06 Pin Configurations Figure 1. Pinout ATmega8535 Disclaimer Typical values contained in this data sheet are based on simulations and characteriza- tion of other AVR microcontrollers manufactured on the same process technology. Min and Max values will be available after the device is characterized. (XCK/T0) PB0 (T1) PB1 (INT2/AIN0) PB2 (OC0/AIN1) PB3 (SS) PB4 (MOSI) PB5 (MISO) PB6 (SCK) PB7 RESET VCC GND XTAL2 XTAL1 (RXD) PD0 (TXD) PD1 (INT0) PD2 (INT1) PD3 (OC1B) PD4 (OC1A) PD5 (ICP1) PD6 PA0 (ADC0) PA1 (ADC1) PA2 (ADC2) PA3 (ADC3) PA4 (ADC4) PA5 (ADC5) PA6 (ADC6) PA7 (ADC7) AREF GND AVCC PC7 (TOSC2) PC6 (TOSC1) PC5 PC4 PC3 PC2 PC1 (SDA) PC0 (SCL) PD7 (OC2) 1 2 3 4 5 6 7 8 9 10 11 33 32 31 30 29 28 27 26 25 24 23 (MOSI) PB5 (MISO) PB6 (SCK) PB7 RESET VCC GND XTAL2 XTAL1 (RXD) PD0 (TXD) PD1 (INT0) PD2 PA4 (ADC4) PA5 (ADC5) PA6 (ADC6) PA7 (ADC7) AREF GND AVCC PC7 (TOSC2) PC6 (TOSC1) PC5 PC4 44 43 42 41 40 39 38 37 36 35 34 12 13 14 15 16 17 18 19 20 21 22 (INT1)PD3 (OC1B)PD4 (OC1A)PD5 (ICP1)PD6 (OC2)PD7 VCC GND (SCL)PC0 (SDA)PC1 PC2 PC3 PB4(SS) PB3(AIN1/OC0) PB2(AIN0/INT2) PB1(T1) PB0(XCK/T0) GND VCC PA0(ADC0) PA1(ADC1) PA2(ADC2) PA3(ADC3) 7 8 9 10 11 12 13 14 15 16 17 39 38 37 36 35 34 33 32 31 30 29 (MOSI) PB5 (MISO) PB6 (SCK) PB7 RESET VCC GND XTAL2 XTAL1 (RXD) PD0 (TXD) PD1 (INT0) PD2 PA4 (ADC4) PA5 (ADC5) PA6 (ADC6) PA7 (ADC7) AREF GND AVCC PC7 (TOSC2) PC6 (TOSC1) PC5 PC4 6 5 4 3 2 1 44 43 42 41 40 18 19 20 21 22 23 24 25 26 27 28 (INT1)PD3 (OC1B)PD4 (OC1A)PD5 (ICP1)PD6 (OC2)PD7 VCC GND (SCL)PC0 (SDA)PC1 PC2 PC3 PB4(SS) PB3(AIN1/OC0) PB2(AIN0/INT2) PB1(T1) PB0(XCK/T0) GND VCC PA0(ADC0) PA1(ADC1) PA2(ADC2) PA3(ADC3) PLCC NOTE: MLF Bottom pad should be soldered to ground.
  • 3. 3 ATmega8535(L) 2502KS–AVR–10/06 Overview The ATmega8535 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing instructions in a single clock cycle, the ATmega8535 achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed. Block Diagram Figure 2. Block Diagram INTERNAL OSCILLATOR OSCILLATOR WATCHDOG TIMER MCU CTRL. & TIMING OSCILLATOR TIMERS/ COUNTERS INTERRUPT UNIT STACK POINTER EEPROM SRAM STATUS REGISTER USART PROGRAM COUNTER PROGRAM FLASH INSTRUCTION REGISTER INSTRUCTION DECODER PROGRAMMING LOGIC SPI ADC INTERFACE COMP. INTERFACE PORTA DRIVERS/BUFFERS PORTA DIGITAL INTERFACE GENERAL PURPOSE REGISTERS X Y Z ALU + - PORTC DRIVERS/BUFFERS PORTC DIGITAL INTERFACE PORTB DIGITAL INTERFACE PORTB DRIVERS/BUFFERS PORTD DIGITAL INTERFACE PORTD DRIVERS/BUFFERS XTAL1 XTAL2 RESET CONTROL LINES VCC GND MUX & ADC AREF PA0 - PA7 PC0 - PC7 PD0 - PD7PB0 - PB7 AVR CPU TWI AVCC INTERNAL CALIBRATED OSCILLATOR
  • 4. 4 ATmega8535(L) 2502KS–AVR–10/06 The AVR core combines a rich instruction set with 32 general purpose working registers. All 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers. The ATmega8535 provides the following features: 8K bytes of In-System Programmable Flash with Read-While-Write capabilities, 512 bytes EEPROM, 512 bytes SRAM, 32 general purpose I/O lines, 32 general purpose working registers, three flexible Timer/Counters with compare modes, internal and external interrupts, a serial program- mable USART, a byte oriented Two-wire Serial Interface, an 8-channel, 10-bit ADC with optional differential input stage with programmable gain in TQFP package, a program- mable Watchdog Timer with Internal Oscillator, an SPI serial port, and six software selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, SPI port, and interrupt system to continue functioning. The Power-down mode saves the register contents but freezes the Oscillator, disabling all other chip functions until the next interrupt or Hardware Reset. In Power-save mode, the asynchronous timer continues to run, allowing the user to maintain a timer base while the rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and all I/O modules except asynchronous timer and ADC, to minimize switching noise during ADC conversions. In Standby mode, the crystal/resonator Oscillator is running while the rest of the device is sleeping. This allows very fast start-up combined with low-power consumption. In Extended Standby mode, both the main Oscillator and the asynchro- nous timer continue to run. The device is manufactured using Atmel’s high density nonvolatile memory technology. The On-chip ISP Flash allows the program memory to be reprogrammed In-System through an SPI serial interface, by a conventional nonvolatile memory programmer, or by an On-chip Boot program running on the AVR core. The boot program can use any interface to download the application program in the Application Flash memory. Soft- ware in the Boot Flash section will continue to run while the Application Flash section is updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the Atmel ATmega8535 is a powerful microcontroller that provides a highly flexible and cost effective solution to many embedded control applications. The ATmega8535 AVR is supported with a full suite of program and system develop- ment tools including: C compilers, macro assemblers, program debugger/simulators, In- Circuit Emulators, and evaluation kits. AT90S8535 Compatibility The ATmega8535 provides all the features of the AT90S8535. In addition, several new features are added. The ATmega8535 is backward compatible with AT90S8535 in most cases. However, some incompatibilities between the two microcontrollers exist. To solve this problem, an AT90S8535 compatibility mode can be selected by programming the S8535C fuse. ATmega8535 is pin compatible with AT90S8535, and can replace the AT90S8535 on current Printed Circuit Boards. However, the location of fuse bits and the electrical characteristics differs between the two devices. AT90S8535 Compatibility Mode Programming the S8535C fuse will change the following functionality: • The timed sequence for changing the Watchdog Time-out period is disabled. See “Timed Sequences for Changing the Configuration of the Watchdog Timer” on page 45 for details. • The double buffering of the USART Receive Register is disabled. See “AVR USART vs. AVR UART – Compatibility” on page 146 for details.
  • 5. 5 ATmega8535(L) 2502KS–AVR–10/06 Pin Descriptions VCC Digital supply voltage. GND Ground. Port A (PA7..PA0) Port A serves as the analog inputs to the A/D Converter. Port A also serves as an 8-bit bi-directional I/O port, if the A/D Converter is not used. Port pins can provide internal pull-up resistors (selected for each bit). The Port A output buffers have symmetrical drive characteristics with both high sink and source capability. When pins PA0 to PA7 are used as inputs and are externally pulled low, they will source current if the internal pull-up resistors are activated. The Port A pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port B (PB7..PB0) Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port B also serves the functions of various special features of the ATmega8535 as listed on page 60. Port C (PC7..PC0) Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port C output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port D (PD7..PD0) Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port D output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port D also serves the functions of various special features of the ATmega8535 as listed on page 64. RESET Reset input. A low level on this pin for longer than the minimum pulse length will gener- ate a reset, even if the clock is not running. The minimum pulse length is given in Table 15 on page 37. Shorter pulses are not guaranteed to generate a reset. XTAL1 Input to the inverting Oscillator amplifier and input to the internal clock operating circuit. XTAL2 Output from the inverting Oscillator amplifier. AVCC AVCC is the supply voltage pin for Port A and the A/D Converter. It should be externally connected to VCC, even if the ADC is not used. If the ADC is used, it should be con- nected to VCC through a low-pass filter. AREF AREF is the analog reference pin for the A/D Converter.
  • 6. 6 ATmega8535(L) 2502KS–AVR–10/06 Resources A comprehensive set of development tools, application notes and datasheets are avail- able for download on http://www.atmel.com/avr.
  • 7. 7 ATmega8535(L) 2502KS–AVR–10/06 About Code Examples This documentation contains simple code examples that briefly show how to use various parts of the device. These code examples assume that the part specific header file is included before compilation. Be aware that not all C compiler vendors include bit defini- tions in the header files and interrupt handling in C is compiler dependent. Please confirm with the C Compiler documentation for more details.
  • 8. 8 ATmega8535(L) 2502KS–AVR–10/06 . Register Summary Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page 0x3F (0x5F) SREG I T H S V N Z C 10 0x3E (0x5E) SPH – – – – – – SP9 SP8 12 0x3D (0x5D) SPL SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 12 0x3C (0x5C) OCR0 Timer/Counter0 Output Compare Register 85 0x3B (0x5B) GICR INT1 INT0 INT2 – – – IVSEL IVCE 49, 69 0x3A (0x5A) GIFR INTF1 INTF0 INTF2 – – – – – 70 0x39 (0x59) TIMSK OCIE2 TOIE2 TICIE1 OCIE1A OCIE1B TOIE1 OCIE0 TOIE0 85, 115, 133 0x38 (0x58) TIFR OCF2 TOV2 ICF1 OCF1A OCF1B TOV1 OCF0 TOV0 86, 116, 134 0x37 (0x57) SPMCR SPMIE RWWSB – RWWSRE BLBSET PGWRT PGERS SPMEN 228 0x36 (0x56) TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE 181 0x35 (0x55) MCUCR SM2 SE SM1 SM0 ISC11 ISC10 ISC01 ISC00 32, 68 0x34 (0x54) MCUCSR – ISC2 – – WDRF BORF EXTRF PORF 40, 69 0x33 (0x53) TCCR0 FOC0 WGM00 COM01 COM00 WGM01 CS02 CS01 CS00 83 0x32 (0x52) TCNT0 Timer/Counter0 (8 Bits) 85 0x31 (0x51) OSCCAL Oscillator Calibration Register 30 0x30 (0x50) SFIOR ADTS2 ADTS1 ADTS0 – ACME PUD PSR2 PSR10 59,88,135,203,223 0x2F (0x4F) TCCR1A COM1A1 COM1A0 COM1B1 COM1B0 FOC1A FOC1B WGM11 WGM10 110 0x2E (0x4E) TCCR1B ICNC1 ICES1 – WGM13 WGM12 CS12 CS11 CS10 113 0x2D (0x4D) TCNT1H Timer/Counter1 – Counter Register High Byte 114 0x2C (0x4C) TCNT1L Timer/Counter1 – Counter Register Low Byte 114 0x2B (0x4B) OCR1AH Timer/Counter1 – Output Compare Register A High Byte 114 0x2A (0x4A) OCR1AL Timer/Counter1 – Output Compare Register A Low Byte 114 0x29 (0x49) OCR1BH Timer/Counter1 – Output Compare Register B High Byte 114 0x28 (0x48) OCR1BL Timer/Counter1 – Output Compare Register B Low Byte 114 0x27 (0x47) ICR1H Timer/Counter1 – Input Capture Register High Byte 114 0x26 (0x46) ICR1L Timer/Counter1 – Input Capture Register Low Byte 114 0x25 (0x45) TCCR2 FOC2 WGM20 COM21 COM20 WGM21 CS22 CS21 CS20 128 0x24 (0x44) TCNT2 Timer/Counter2 (8 Bits) 130 0x23 (0x43) OCR2 Timer/Counter2 Output Compare Register 131 0x22 (0x42) ASSR – – – – AS2 TCN2UB OCR2UB TCR2UB 131 0x21 (0x41) WDTCR – – – WDCE WDE WDP2 WDP1 WDP0 42 0x20(1) (0x40)(1) UBRRH URSEL – – – UBRR[11:8] 169 UCSRC URSEL UMSEL UPM1 UPM0 USBS UCSZ1 UCSZ0 UCPOL 167 0x1F (0x3F) EEARH – – – – – – – EEAR8 19 0x1E (0x3E) EEARL EEPROM Address Register Low Byte 19 0x1D (0x3D) EEDR EEPROM Data Register 19 0x1C (0x3C) EECR – – – – EERIE EEMWE EEWE EERE 19 0x1B (0x3B) PORTA PORTA7 PORTA6 PORTA5 PORTA4 PORTA3 PORTA2 PORTA1 PORTA0 66 0x1A (0x3A) DDRA DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDA0 66 0x19 (0x39) PINA PINA7 PINA6 PINA5 PINA4 PINA3 PINA2 PINA1 PINA0 66 0x18 (0x38) PORTB PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 66 0x17 (0x37) DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 66 0x16 (0x36) PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 67 0x15 (0x35) PORTC PORTC7 PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0 67 0x14 (0x34) DDRC DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0 67 0x13 (0x33) PINC PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0 67 0x12 (0x32) PORTD PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0 67 0x11 (0x31) DDRD DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0 67 0x10 (0x30) PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 67 0x0F (0x2F) SPDR SPI Data Register 143 0x0E (0x2E) SPSR SPIF WCOL – – – – – SPI2X 143 0x0D (0x2D) SPCR SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 141 0x0C (0x2C) UDR USART I/O Data Register 164 0x0B (0x2B) UCSRA RXC TXC UDRE FE DOR PE U2X MPCM 165 0x0A (0x2A) UCSRB RXCIE TXCIE UDRIE RXEN TXEN UCSZ2 RXB8 TXB8 166 0x09 (0x29) UBRRL USART Baud Rate Register Low Byte 169 0x08 (0x28) ACSR ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0 203 0x07 (0x27) ADMUX REFS1 REFS0 ADLAR MUX4 MUX3 MUX2 MUX1 MUX0 219 0x06 (0x26) ADCSRA ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 221 0x05 (0x25) ADCH ADC Data Register High Byte 222 0x04 (0x24) ADCL ADC Data Register Low Byte 222 0x03 (0x23) TWDR Two-wire Serial Interface Data Register 183 0x02 (0x22) TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE 183 0x01 (0x21) TWSR TWS7 TWS6 TWS5 TWS4 TWS3 – TWPS1 TWPS0 183
  • 9. 9 ATmega8535(L) 2502KS–AVR–10/06 Notes: 1. Refer to the USART description for details on how to access UBRRH and UCSRC. 2. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written. 3. Some of the status flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate on all bits in the I/O Register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions work with registers 0x00 to 0x1F only. 0x00 (0x20) TWBR Two-wire Serial Interface Bit Rate Register 181 Register Summary (Continued) Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
  • 10. 10 ATmega8535(L) 2502KS–AVR–10/06 Instruction Set Summary Mnemonics Operands Description Operation Flags #Clocks ARITHMETIC AND LOGIC INSTRUCTIONS ADD Rd, Rr Add two Registers Rd ← Rd + Rr Z,C,N,V,H 1 ADC Rd, Rr Add with Carry two Registers Rd ← Rd + Rr + C Z,C,N,V,H 1 ADIW Rdl,K Add Immediate to Word Rdh:Rdl ← Rdh:Rdl + K Z,C,N,V,S 2 SUB Rd, Rr Subtract two Registers Rd ← Rd - Rr Z,C,N,V,H 1 SUBI Rd, K Subtract Constant from Register Rd ← Rd - K Z,C,N,V,H 1 SBC Rd, Rr Subtract with Carry two Registers Rd ← Rd - Rr - C Z,C,N,V,H 1 SBCI Rd, K Subtract with Carry Constant from Reg. Rd ← Rd - K - C Z,C,N,V,H 1 SBIW Rdl,K Subtract Immediate from Word Rdh:Rdl ← Rdh:Rdl - K Z,C,N,V,S 2 AND Rd, Rr Logical AND Registers Rd ← Rd • Rr Z,N,V 1 ANDI Rd, K Logical AND Register and Constant Rd ← Rd • K Z,N,V 1 OR Rd, Rr Logical OR Registers Rd ← Rd v Rr Z,N,V 1 ORI Rd, K Logical OR Register and Constant Rd ← Rd v K Z,N,V 1 EOR Rd, Rr Exclusive OR Registers Rd ← Rd ⊕ Rr Z,N,V 1 COM Rd One’s Complement Rd ← 0xFF − Rd Z,C,N,V 1 NEG Rd Two’s Complement Rd ← 0x00 − Rd Z,C,N,V,H 1 SBR Rd,K Set Bit(s) in Register Rd ← Rd v K Z,N,V 1 CBR Rd,K Clear Bit(s) in Register Rd ← Rd • (0xFF - K) Z,N,V 1 INC Rd Increment Rd ← Rd + 1 Z,N,V 1 DEC Rd Decrement Rd ← Rd − 1 Z,N,V 1 TST Rd Test for Zero or Minus Rd ← Rd • Rd Z,N,V 1 CLR Rd Clear Register Rd ← Rd ⊕ Rd Z,N,V 1 SER Rd Set Register Rd ← 0xFF None 1 MUL Rd, Rr Multiply Unsigned R1:R0 ← Rd x Rr Z,C 2 MULS Rd, Rr Multiply Signed R1:R0 ← Rd x Rr Z,C 2 MULSU Rd, Rr Multiply Signed with Unsigned R1:R0 ← Rd x Rr Z,C 2 FMUL Rd, Rr Fractional Multiply Unsigned R1:R0 ← (Rd x Rr) << 1 Z,C 2 FMULS Rd, Rr Fractional Multiply Signed R1:R0 ← (Rd x Rr) << 1 Z,C 2 FMULSU Rd, Rr Fractional Multiply Signed with Unsigned R1:R0 ← (Rd x Rr) << 1 Z,C 2 BRANCH INSTRUCTIONS RJMP k Relative Jump PC ← PC + k + 1 None 2 IJMP Indirect Jump to (Z) PC ← Z None 2 RCALL k Relative Subroutine Call PC ← PC + k + 1 None 3 ICALL Indirect Call to (Z) PC ← Z None 3 RET Subroutine Return PC ← STACK None 4 RETI Interrupt Return PC ← STACK I 4 CPSE Rd,Rr Compare, Skip if Equal if (Rd = Rr) PC ← PC + 2 or 3 None 1 / 2 / 3 CP Rd,Rr Compare Rd − Rr Z, N,V,C,H 1 CPC Rd,Rr Compare with Carry Rd − Rr − C Z, N,V,C,H 1 CPI Rd,K Compare Register with Immediate Rd − K Z, N,V,C,H 1 SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b)=0) PC ← PC + 2 or 3 None 1 / 2 / 3 SBRS Rr, b Skip if Bit in Register is Set if (Rr(b)=1) PC ← PC + 2 or 3 None 1 / 2 / 3 SBIC P, b Skip if Bit in I/O Register Cleared if (P(b)=0) PC ← PC + 2 or 3 None 1 / 2 / 3 SBIS P, b Skip if Bit in I/O Register is Set if (P(b)=1) PC ← PC + 2 or 3 None 1 / 2 / 3 BRBS s, k Branch if Status Flag Set if (SREG(s) = 1) then PC←PC+k + 1 None 1 / 2 BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PC←PC+k + 1 None 1 / 2 BREQ k Branch if Equal if (Z = 1) then PC ← PC + k + 1 None 1 / 2 BRNE k Branch if Not Equal if (Z = 0) then PC ← PC + k + 1 None 1 / 2 BRCS k Branch if Carry Set if (C = 1) then PC ← PC + k + 1 None 1 / 2 BRCC k Branch if Carry Cleared if (C = 0) then PC ← PC + k + 1 None 1 / 2 BRSH k Branch if Same or Higher if (C = 0) then PC ← PC + k + 1 None 1 / 2 BRLO k Branch if Lower if (C = 1) then PC ← PC + k + 1 None 1 / 2 BRMI k Branch if Minus if (N = 1) then PC ← PC + k + 1 None 1 / 2 BRPL k Branch if Plus if (N = 0) then PC ← PC + k + 1 None 1 / 2 BRGE k Branch if Greater or Equal, Signed if (N ⊕ V= 0) then PC ← PC + k + 1 None 1 / 2 BRLT k Branch if Less Than Zero, Signed if (N ⊕ V= 1) then PC ← PC + k + 1 None 1 / 2 BRHS k Branch if Half Carry Flag Set if (H = 1) then PC ← PC + k + 1 None 1 / 2 BRHC k Branch if Half Carry Flag Cleared if (H = 0) then PC ← PC + k + 1 None 1 / 2 BRTS k Branch if T Flag Set if (T = 1) then PC ← PC + k + 1 None 1 / 2 BRTC k Branch if T Flag Cleared if (T = 0) then PC ← PC + k + 1 None 1 / 2 BRVS k Branch if Overflow Flag is Set if (V = 1) then PC ← PC + k + 1 None 1 / 2 BRVC k Branch if Overflow Flag is Cleared if (V = 0) then PC ← PC + k + 1 None 1 / 2 BRIE k Branch if Interrupt Enabled if ( I = 1) then PC ← PC + k + 1 None 1 / 2 BRID k Branch if Interrupt Disabled if ( I = 0) then PC ← PC + k + 1 None 1 / 2 DATA TRANSFER INSTRUCTIONS
  • 11. 11 ATmega8535(L) 2502KS–AVR–10/06 MOV Rd, Rr Move Between Registers Rd ← Rr None 1 MOVW Rd, Rr Copy Register Word Rd+1:Rd ← Rr+1:Rr None 1 LDI Rd, K Load Immediate Rd ← K None 1 LD Rd, X Load Indirect Rd ← (X) None 2 LD Rd, X+ Load Indirect and Post-Inc. Rd ← (X), X ← X + 1 None 2 LD Rd, - X Load Indirect and Pre-Dec. X ← X - 1, Rd ← (X) None 2 LD Rd, Y Load Indirect Rd ← (Y) None 2 LD Rd, Y+ Load Indirect and Post-Inc. Rd ← (Y), Y ← Y + 1 None 2 LD Rd, - Y Load Indirect and Pre-Dec. Y ← Y - 1, Rd ← (Y) None 2 LDD Rd,Y+q Load Indirect with Displacement Rd ← (Y + q) None 2 LD Rd, Z Load Indirect Rd ← (Z) None 2 LD Rd, Z+ Load Indirect and Post-Inc. Rd ← (Z), Z ← Z+1 None 2 LD Rd, -Z Load Indirect and Pre-Dec. Z ← Z - 1, Rd ← (Z) None 2 LDD Rd, Z+q Load Indirect with Displacement Rd ← (Z + q) None 2 LDS Rd, k Load Direct from SRAM Rd ← (k) None 2 ST X, Rr Store Indirect (X) ← Rr None 2 ST X+, Rr Store Indirect and Post-Inc. (X) ← Rr, X ← X + 1 None 2 ST - X, Rr Store Indirect and Pre-Dec. X ← X - 1, (X) ← Rr None 2 ST Y, Rr Store Indirect (Y) ← Rr None 2 ST Y+, Rr Store Indirect and Post-Inc. (Y) ← Rr, Y ← Y + 1 None 2 ST - Y, Rr Store Indirect and Pre-Dec. Y ← Y - 1, (Y) ← Rr None 2 STD Y+q,Rr Store Indirect with Displacement (Y + q) ← Rr None 2 ST Z, Rr Store Indirect (Z) ← Rr None 2 ST Z+, Rr Store Indirect and Post-Inc. (Z) ← Rr, Z ← Z + 1 None 2 ST -Z, Rr Store Indirect and Pre-Dec. Z ← Z - 1, (Z) ← Rr None 2 STD Z+q,Rr Store Indirect with Displacement (Z + q) ← Rr None 2 STS k, Rr Store Direct to SRAM (k) ← Rr None 2 LPM Load Program Memory R0 ← (Z) None 3 LPM Rd, Z Load Program Memory Rd ← (Z) None 3 LPM Rd, Z+ Load Program Memory and Post-Inc Rd ← (Z), Z ← Z+1 None 3 SPM Store Program Memory (Z) ← R1:R0 None - IN Rd, P In Port Rd ← P None 1 OUT P, Rr Out Port P ← Rr None 1 PUSH Rr Push Register on Stack STACK ← Rr None 2 POP Rd Pop Register from Stack Rd ← STACK None 2 BIT AND BIT-TEST INSTRUCTIONS SBI P,b Set Bit in I/O Register I/O(P,b) ← 1 None 2 CBI P,b Clear Bit in I/O Register I/O(P,b) ← 0 None 2 LSL Rd Logical Shift Left Rd(n+1) ← Rd(n), Rd(0) ← 0 Z,C,N,V 1 LSR Rd Logical Shift Right Rd(n) ← Rd(n+1), Rd(7) ← 0 Z,C,N,V 1 ROL Rd Rotate Left Through Carry Rd(0)←C,Rd(n+1)← Rd(n),C←Rd(7) Z,C,N,V 1 ROR Rd Rotate Right Through Carry Rd(7)←C,Rd(n)← Rd(n+1),C←Rd(0) Z,C,N,V 1 ASR Rd Arithmetic Shift Right Rd(n) ← Rd(n+1), n=0..6 Z,C,N,V 1 SWAP Rd Swap Nibbles Rd(3..0)←Rd(7..4),Rd(7..4)←Rd(3..0) None 1 BSET s Flag Set SREG(s) ← 1 SREG(s) 1 BCLR s Flag Clear SREG(s) ← 0 SREG(s) 1 BST Rr, b Bit Store from Register to T T ← Rr(b) T 1 BLD Rd, b Bit load from T to Register Rd(b) ← T None 1 SEC Set Carry C ← 1 C 1 CLC Clear Carry C ← 0 C 1 SEN Set Negative Flag N ← 1 N 1 CLN Clear Negative Flag N ← 0 N 1 SEZ Set Zero Flag Z ← 1 Z 1 CLZ Clear Zero Flag Z ← 0 Z 1 SEI Global Interrupt Enable I ← 1 I 1 CLI Global Interrupt Disable I ← 0 I 1 SES Set Signed Test Flag S ← 1 S 1 CLS Clear Signed Test Flag S ← 0 S 1 SEV Set Twos Complement Overflow. V ← 1 V 1 CLV Clear Twos Complement Overflow V ← 0 V 1 SET Set T in SREG T ← 1 T 1 CLT Clear T in SREG T ← 0 T 1 SEH Set Half Carry Flag in SREG H ← 1 H 1 CLH Clear Half Carry Flag in SREG H ← 0 H 1 MCU CONTROL INSTRUCTIONS NOP No Operation None 1 Mnemonics Operands Description Operation Flags #Clocks
  • 12. 12 ATmega8535(L) 2502KS–AVR–10/06 SLEEP Sleep (see specific descr. for Sleep function) None 1 WDR Watchdog Reset (see specific descr. for WDR/Timer) None 1 BREAK Break For On-chip Debug Only None N/A Mnemonics Operands Description Operation Flags #Clocks
  • 13. 13 ATmega8535(L) 2502KS–AVR–10/06 Ordering Information Note: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.. 2. Pb-free packaging alternative, complies to the European Directive for Restriction of Hazardous Substances (RoHS direc- tive).Also Halide free and fully Green. Speed (MHz) Power Supply Ordering Code Package(1) Operation Range 8 2.7 - 5.5V ATmega8535L-8AC ATmega8535L-8PC ATmega8535L-8JC ATmega8535L-8MC 44A 40P6 44J 44M1 Commercial (0°C to 70°C) ATmega8535L-8AI ATmega8535L-8PI ATmega8535L-8JI ATmega8535L-8MI ATmega8535L-8AU(2) ATmega8535L-8PU(2) ATmega8535L-8JU(2) ATmega8535L-8MU(2) 44A 40P6 44J 44M1 44A 40P6 44J 44M1 Industrial (-40°C to 85°C) 16 4.5 - 5.5V ATmega8535-16AC ATmega8535-16PC ATmega8535-16JC ATmega8535-16MC 44A 40P6 44J 44M1 Commercial (0°C to 70°C) ATmega8535-16AI ATmega8535-16PI ATmega8535-16JI ATmega8535-16MI ATmega8535-16AU(2) ATmega8535-16PU(2) ATmega8535-16JU(2) ATmega8535-16MU(2) 44A 40P6 44J 44M1 44A 40P6 44J 44M1 Industrial (-40°C to 85°C) Package Type 44A 44-lead, Thin (1.0 mm) Plastic Gull Wing Quad Flat Package (TQFP) 40P6 40-pin, 0.600” Wide, Plastic Dual Inline Package (PDIP) 44J 44-lead, Plastic J-leaded Chip Carrier (PLCC) 44M1-A 44-pad, 7 x 7 x 1.0 mm body, lead pitch 0.50 mm, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)
  • 14. 14 ATmega8535(L) 2502KS–AVR–10/06 Packaging Information 44A 2325 Orchard Parkway San Jose, CA 95131 TITLE DRAWING NO. R REV. 44A, 44-lead, 10 x 10 mm Body Size, 1.0 mm Body Thickness, 0.8 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP) B44A 10/5/2001 PIN 1 IDENTIFIER 0˚~7˚ PIN 1 L C A1 A2 A D1 D e E1 E B COMMON DIMENSIONS (Unit of Measure = mm) SYMBOL MIN NOM MAX NOTE Notes: 1. This package conforms to JEDEC reference MS-026, Variation ACB. 2. Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25 mm per side. Dimensions D1 and E1 are maximum plastic body size dimensions including mold mismatch. 3. Lead coplanarity is 0.10 mm maximum. A – – 1.20 A1 0.05 – 0.15 A2 0.95 1.00 1.05 D 11.75 12.00 12.25 D1 9.90 10.00 10.10 Note 2 E 11.75 12.00 12.25 E1 9.90 10.00 10.10 Note 2 B 0.30 – 0.45 C 0.09 – 0.20 L 0.45 – 0.75 e 0.80 TYP
  • 15. 15 ATmega8535(L) 2502KS–AVR–10/06 40P6 2325 Orchard Parkway San Jose, CA 95131 TITLE DRAWING NO. R REV. 40P6, 40-lead (0.600"/15.24 mm Wide) Plastic Dual Inline Package (PDIP) B40P6 09/28/01 PIN 1 E1 A1 B REF E B1 C L SEATING PLANE A 0º ~ 15º D e eB COMMON DIMENSIONS (Unit of Measure = mm) SYMBOL MIN NOM MAX NOTE A – – 4.826 A1 0.381 – – D 52.070 – 52.578 Note 2 E 15.240 – 15.875 E1 13.462 – 13.970 Note 2 B 0.356 – 0.559 B1 1.041 – 1.651 L 3.048 – 3.556 C 0.203 – 0.381 eB 15.494 – 17.526 e 2.540 TYP Notes: 1. This package conforms to JEDEC reference MS-011, Variation AC. 2. Dimensions D and E1 do not include mold Flash or Protrusion. Mold Flash or Protrusion shall not exceed 0.25 mm (0.010").
  • 16. 16 ATmega8535(L) 2502KS–AVR–10/06 44J Notes: 1. This package conforms to JEDEC reference MS-018, Variation AC. 2. Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is .010"(0.254 mm) per side. Dimension D1 and E1 include mold mismatch and are measured at the extreme material condition at the upper or lower parting line. 3. Lead coplanarity is 0.004" (0.102 mm) maximum. A 4.191 – 4.572 A1 2.286 – 3.048 A2 0.508 – – D 17.399 – 17.653 D1 16.510 – 16.662 Note 2 E 17.399 – 17.653 E1 16.510 – 16.662 Note 2 D2/E2 14.986 – 16.002 B 0.660 – 0.813 B1 0.330 – 0.533 e 1.270 TYP COMMON DIMENSIONS (Unit of Measure = mm) SYMBOL MIN NOM MAX NOTE 1.14(0.045) X 45˚ PIN NO. 1 IDENTIFIER 1.14(0.045) X 45˚ 0.51(0.020)MAX 0.318(0.0125) 0.191(0.0075) A2 45˚ MAX (3X) A A1 B1 D2/E2 B e E1 E D1 D 44J, 44-lead, Plastic J-leaded Chip Carrier (PLCC) B44J 10/04/01 2325 Orchard Parkway San Jose, CA 95131 TITLE DRAWING NO. R REV.
  • 17. 17 ATmega8535(L) 2502KS–AVR–10/06 44M1-A 2325 Orchard Parkway San Jose, CA 95131 TITLE DRAWING NO. R REV. 44M1, 44-pad, 7 x 7 x 1.0 mm Body, Lead Pitch 0.50 mm, G44M1 5/27/06 COMMON DIMENSIONS (Unit of Measure = mm) SYMBOL MIN NOM MAX NOTE A 0.80 0.90 1.00 A1 – 0.02 0.05 A3 0.25 REF b 0.18 0.23 0.30 D D2 5.00 5.20 5.40 6.90 7.00 7.10 6.90 7.00 7.10 E E2 5.00 5.20 5.40 e 0.50 BSC L 0.59 0.64 0.69 K 0.20 0.26 0.41 Note: JEDEC Standard MO-220, Fig. 1 (SAW Singulation) VKKD-3. TOP VIEW SIDE VIEW BOTTOM VIEW D E Marked Pin# 1 ID E2 D2 b e Pin #1 Corner L A1 A3 A SEATING PLANE Pin #1 Triangle Pin #1 Chamfer (C 0.30) Option A Option B Pin #1 Notch (0.20 R) Option C K K 1 2 3 5.20 mm Exposed Pad, Micro Lead Frame Package (MLF)
  • 18. 18 ATmega8535(L) 2502KS–AVR–10/06 Errata The revision letter refer to the device revision. ATmega8535 Rev. A and B • First Analog Comparator conversion may be delayed • Asynchronous Oscillator does not stop in Power-down 1. First Analog Comparator conversion may be delayed If the device is powered by a slow rising VCC, the first Analog Comparator conver- sion will take longer than expected on some devices. Problem Fix/Workaround When the device has been powered or reset, disable then enable the Analog Com- parator before the first conversion. 2. Asynchronous Oscillator does not stop in Power-down The asynchronous oscillator does not stop when entering Power-down mode. This leads to higher power consumption than expected. Problem Fix/Workaround Manually disable the asynchronous timer before entering Power-down.
  • 19. 19 ATmega8535(L) 2502KS–AVR–10/06 Datasheet Revision History Please note that the referring page numbers in this section are referring to this docu- ment. The referring revision in this section are referring to the document revision. Changes from Rev. 2502J- 08/06 to Rev. 2502K- 10/06 1. Updated TOP/BOTTOM description for all Timer/Counters Fast PWM mode. 2. Updated “Errata” on page 18. Changes from Rev. 2502I- 06/06 to Rev. 2502J- 08/06 1. Updated “Ordering Information” on page 13. Changes from Rev. 2502H- 04/06 to Rev. 2502I- 06/06 1. Updated code example “USART Initialization” on page 150. Changes from Rev. 2502G- 04/05 to Rev. 2502H- 04/06 1. Added “Resources” on page 6. 2. Updated Table 7 on page 29, Table 17 on page 42 and Table 111 on page 258. 3. Updated “Serial Peripheral Interface – SPI” on page 136. 4. Updated note in “Bit Rate Generator Unit” on page 180. Changes from Rev. 2502F- 06/04 to Rev. 2502G- 04/05 1. Removed “Preliminary” and TBD’s. 2. Updated Table 37 on page 69 and Table 113 on page 261. 3. Updated “Electrical Characteristics” on page 255. 4. Updated “Ordering Information” on page 13. Changes from Rev. 2502E-12/03 to Rev. 2502G-06/04 1. MLF-package alternative changed to “Quad Flat No-Lead/Micro Lead Frame Package QFN/MLF”. Changes from Rev. 2502E-12/03 to Rev. 2502F-06/04 1. Updated “Reset Characteristics” on page 37. 2. Updated SPH in “Stack Pointer” on page 12. 3. Updated C code in “USART Initialization” on page 150. 4. Updated “Errata” on page 18. Changes from Rev. 2502D-09/03 to Rev. 2502E-12/03 1. Updated “Calibrated Internal RC Oscillator” on page 29. 2. Added section “Errata” on page 18.
  • 20. 20 ATmega8535(L) 2502KS–AVR–10/06 Changes from Rev. 2502C-04/03 to Rev. 2502D-09/03 1. Removed “Advance Information” and some TBD’s from the datasheet. 2. Added note to “Pinout ATmega8535” on page 2. 3. Updated “Reset Characteristics” on page 37. 4. Updated “Absolute Maximum Ratings” and “DC Characteristics” in “Electrical Characteristics” on page 255. 5. Updated Table 111 on page 258. 6. Updated “ADC Characteristics” on page 263. 7. Updated “ATmega8535 Typical Characteristics” on page 266. 8. Removed CALL and JMP instructions from code examples and “Instruction Set Summary” on page 10. Changes from Rev. 2502B-09/02 to Rev. 2502C-04/03 1. Updated “Packaging Information” on page 14. 2. Updated Figure 1 on page 2, Figure 84 on page 179, Figure 85 on page 185, Figure 87 on page 191, Figure 98 on page 207. 3. Added the section “EEPROM Write During Power-down Sleep Mode” on page 22. 4. Removed the references to the application notes “Multi-purpose Oscillator” and “32 kHz Crystal Oscillator”, which do not exist. 5. Updated code examples on page 44. 6. Removed ADHSM bit. 7. Renamed Port D pin ICP to ICP1. See “Alternate Functions of Port D” on page 64. 8. Added information about PWM symmetry for Timer 0 on page 79 and Timer 2 on page 126. 9. Updated Table 68 on page 169, Table 75 on page 190, Table 76 on page 193, Table 77 on page 196, Table 108 on page 253, Table 113 on page 261. 10. Updated description on “Bit 5 – TWSTA: TWI START Condition Bit” on page 182. 11. Updated the description in “Filling the Temporary Buffer (Page Loading)” and “Performing a Page Write” on page 231. 12. Removed the section description in “SPI Serial Programming Characteristics” on page 254. 13. Updated “Electrical Characteristics” on page 255.
  • 21. 21 ATmega8535(L) 2502KS–AVR–10/06 14. Updated “ADC Characteristics” on page 263. 14. Updated “Register Summary” on page 8. 15. Various Timer 1 corrections. 16. Added WD_FUSE period in Table 108 on page 253. Changes from Rev. 2502A-06/02 to Rev. 2502B-09/02 1. Canged the Endurance on the Flash to 10,000 Write/Erase Cycles.
  • 22. 2502KS–AVR–10/06 Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI- TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN- TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life. Atmel Corporation Atmel Operations 2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600 Regional Headquarters Europe Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland Tel: (41) 26-426-5555 Fax: (41) 26-426-5500 Asia Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369 Japan 9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581 Memory 2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314 Microcontrollers 2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314 La Chantrerie BP 70602 44306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60 ASIC/ASSP/Smart Cards Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00 Fax: (33) 4-42-53-60-01 1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759 Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland Tel: (44) 1355-803-000 Fax: (44) 1355-242-743 RF/Automotive Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0 Fax: (49) 71-31-67-2340 1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759 Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80 Literature Requests www.atmel.com/literature © 2006 Atmel Corporation. All rights reserved. Atmel® , logo and combinations thereof, Everywhere You Are® , AVR® , and others are the trade- marks or registered trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.