SlideShare a Scribd company logo
Electronusa Mechanical System [Research Center for Electronic and Mechanical]
1 | P a g e
The Impedance Matching in The Audio Signal Processing
Umar Sidik.BEng.MSc*
Director of Engineering
Electronusa Mechanical System (CTRONICS)
*umar.sidik@engineer.com
1. Introduction
Commonly, impedance is obstruction to transfer energy in the electronic circuit. Therefore, the
impedance matching is required to achieve the maximum power transfer. Furthermore, the
impedance matching equalizes the source impedance and load impedance. In other hand, the
emitter-follower (common-collector) provides the impedance matching delivered from the base
(input) to the emitter (output). The emitter-follower has high input resistance and low output
resistance. In the emitter-follower, the input resistance depends on the load resistance, while the
output resistance depends on the source resistance. In addition, this study implements the radial
electrolytic capacitor 4.7ߤ‫ܨ‬ 16ܸ⁄ .
2. Analytical Work
In this study, ܴଵ and ܴଶ form the Thevenin voltage, while ‫ܥ‬ଵ and ‫ܥ‬ଶ deliver ac signal as ‫ݒ‬௜௡ and
‫ݒ‬௢௨௧(figure 1).
(a) (b)
Figure 1. (a). The concept of circuit analyzed in the study
(b). The equivalent circuit
2.1 Analysis of dc
First step, we have to calculate the Thevenin’s voltage in figure 1:
்ܸு ൌ
ܴଶ
ܴଵ ൅ ܴଶ
ൈ ܸ஼஼
For this circuit, ܸ஼஼ is 5ܸ, then:
்ܸு ൌ
24݇Ω
10݇Ω ൅ 24݇Ω
ൈ 5ܸ
்ܸு
24݇Ω
34݇Ω
ൈ 5ܸ
்ܸு ൌ ሺ0.71ሻ ൈ 5ܸ
்ܸு ൌ 3.55ܸ
Electronusa Mechanical System [Research Center for Electronic and Mechanical]
2 | P a g e
Actually, in this circuit ்ܸு ൌ ܸ஻, so ܸ஻ ൌ 3.55ܸ.
The second step, we have to calculate ܸா:
ܸா ൌ ܸ஻ െ ܸ஻ா
ܸா ൌ 3.55ܸ െ 0.7ܸ
ܸா ൌ 2.85ܸ
The third step, we have to calculate ‫ܫ‬ா:
‫ܫ‬ா ൌ
ܸா
ܴா
‫ܫ‬ா ൌ
2.85ܸ
150Ω
‫ܫ‬ா ൌ 19݉‫ܣ‬
2.2 Analysis of ac
In the analysis of ac, we involve the capacitor to pass the ac signal and we also involve the internal
resistance of emitter known as ‫ݎ‬௘ (figure 2).
(a) (b)
Figure 2. (a). The ac circuit
(b). The equivalent circuit for ac analysis
The first step, we have to calculate ‫ݎ‬௘ in the figure 2:
‫ݎ‬௘ ൌ
25݉‫ݒ‬
‫ܫ‬ா
‫ݎ‬௘ ൌ
25ܸ݉
19݉‫ܣ‬
‫ݎ‬௘ ൌ 1.32Ω
The second step, we have to calculate ‫ݎ‬௜௡ሺ௕௔௦௘ሻ:
‫ݎ‬௜௡ሺ௕௔௦௘ሻ ൌ ሺߚ ൅ 1ሻ൫ሺܴଷ ൅ ܴସሻԡ‫ݎ‬௘൯
‫ݎ‬௜௡ሺ௕௔௦௘ሻ ൌ ሺ200 ൅ 1ሻ൫ሺ150Ω ൅ 8.2Ωሻԡ1.32Ω൯
Electronusa Mechanical System [Research Center for Electronic and Mechanical]
3 | P a g e
‫ݎ‬௜௡ሺ௕௔௦௘ሻ ൌ ሺ201ሻ൫ሺ158.2Ωሻԡ1.32Ω൯
‫ݎ‬௜௡ሺ௕௔௦௘ሻ ൌ ሺ201ሻ ൬
1
158.2Ω
൅
1
1.32Ω
൰
‫ݎ‬௜௡ሺ௕௔௦௘ሻ ൌ ሺ201ሻ ൬
1.32
208.824Ω
൅
158.2
208.824Ω
൰
‫ݎ‬௜௡ሺ௕௔௦௘ሻ ൌ ሺ201ሻ ൬
159.52
208.824Ω
൰
‫ݎ‬௜௡ሺ௕௔௦௘ሻ ൌ ሺ201ሻሺ0.764Ωሻ
‫ݎ‬௜௡ሺ௕௔௦௘ሻ ൌ 153.564Ω
The third step is to calculate ݅௕:
݅௕ ൌ
‫ݒ‬௜௡
‫ݎ‬௜௡ሺ௕௔௦௘ሻ
݅௕ ൌ
1ܸ݉
153.564Ω
݅௕ ൌ 0.0065݉‫ܣ‬
݅௕ ൌ 6.5ߤ‫ܣ‬
The fourth step is to calculate ݅௖:
݅௖ ൌ ߚ݅௕
݅௖ ൌ ሺ200ሻሺ0.0065݉‫ܣ‬ሻ
݅௖ ൌ 1.3݉‫ܣ‬
The last step is to calculate ‫ݒ‬௢௨௧:
‫ݒ‬௢௨௧ ൌ ݅௖‫ݎ‬௢௨௧
‫ݒ‬௢௨௧ ൌ ሺ1.3݉‫ܣ‬ሻሺ0.764Ωሻ
‫ݒ‬௢௨௧ ൌ 0.9932ܸ݉
‫ݒ‬௢௨௧ ൌ 993.2ߤܸ
3. Simulation Work
The simulation work can be classified into the dc analysis and the ac analysis.
3.1 Analysis of dc
In the simulation, ்ܸு is 3ܸ (figure 3), while in the analytical work ்ܸு is 3.55ܸ.
The different of the analytical work and the simulation work is:
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ
்ܸுሺ௔௡௔௟௬௧௜௖௔௟ሻ െ ்ܸுሺ௦௜௠௨௟௔௧௜௢௡ሻ
்ܸுሺ௔௡௔௟௬௧௜௖௔௟ሻ
ൈ 100%
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ
3.55ܸ െ 3ܸ
3.55ܸ
ൈ 100%
Electronusa Mechanical System [Research Center for Electronic and Mechanical]
4 | P a g e
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ
0.55ܸ
3.55ܸ
ൈ 100%
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 18.33%
Figure 3. ்ܸு in the simulation
In the simulation, ܸா is 2.25ܸ (figure 4), while in the analytical work ܸா is 2.85ܸ. The different of the
analytical work and the simulation work is:
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ
ܸாሺ௔௡௔௟௬௧௜௖௔௟ሻ െ ܸாሺ௦௜௠௨௟௔௧௜௢௡ሻ
ܸாሺ௔௡௔௟௬௧௜௖௔௟ሻ
ൈ 100%
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ
2.85ܸ െ 2.25ܸ
2.85ܸ
ൈ 100%
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ
0.6ܸ
2.85ܸ
ൈ 100%
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 21.05%
Figure 4. ܸா in the simulation
In the simulation, ‫ܫ‬ா is 15݉‫ܣ‬ (figure 5), while in the analytical work ‫ܫ‬ா is 19݉‫.ܣ‬ The difference is:
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ
‫ܫ‬ாሺ௔௡௔௟௬௧௜௖௔௟ሻ െ ‫ܫ‬ாሺ௦௜௠௨௔௧௜௢௡ሻ
‫ܫ‬ாሺ௔௡௔௟௬௧௜௖௔௟ሻ
ൈ 100%
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ
19݉‫ܣ‬ െ 15݉‫ܣ‬
19݉‫ܣ‬
ൈ 100%
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ
4݉‫ܣ‬
19݉‫ܣ‬
ൈ 100%
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 21.05%
Electronusa Mechanical System [Research Center for Electronic and Mechanical]
5 | P a g e
Figure 5. ‫ܫ‬ா in the simulation
3.2 Analysis of ac
In the analytical ݅௕ is 6.5ߤ‫ܣ‬ (0.0065݉‫ܣ‬ሻ, while in the simulation ݅௕ is 0.07݉‫ܣ‬ (figure 6). The
difference is:
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ
݅௕ሺ௦௜௠௨௟௔௧௜௢௡ሻ െ ݅௕ሺ௔௡௔௟௬௧௜௖௔௟ሻ
݅௕ሺ௦௜௠௨௟௔௧௜௢௡ሻ
ൈ 100%
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ
0.07݉‫ܣ‬ െ 0.0065݉‫ܣ‬
0.07݉‫ܣ‬
ൈ 100%
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ
0.0635
0.07
ൈ 100%
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 90.71%
(a) (b) (c)
(d) (e)
Figure 6. (a). ݅௕ in the simulation at 1Hz
(b). ݅௕ in the simulation at 10Hz
(c). ݅௕ in the simulation at 100Hz
(d). ݅௕ in the simulation at 1kHz
(e). ݅௕ in the simulation at 10kHz
Electronusa Mechanical System [Research Center for Electronic and Mechanical]
6 | P a g e
In the simulation, ݅௖ is 14.9݉‫ܣ‬ (figure 7), while in the analytical ݅௖ is 1.3݉‫.ܣ‬ The difference is:
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ
݅௖ሺ௦௜௠௨௟௔௧௜௢௡ሻ െ ݅௖ሺ௔௡௔௟௬௧௜௖௔௟ሻ
݅௖ሺ௦௜௠௨௟௔௧௜௢௡ሻ
ൈ 100%
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ
14.9݉‫ܣ‬ െ 1.3݉‫ܣ‬
14.9݉‫ܣ‬
ൈ 100%
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ
13.6݉‫ܣ‬
14.9݉‫ܣ‬
ൈ 100%
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 91.275%
(a) (b) (c)
(d) (e)
Figure 7. (a). ݅௖ in the simulation at 1Hz
(b). ݅௖ in the simulation at 10Hz
(c). ݅௖ in the simulation at 100Hz
(d). ݅௖ in the simulation at 1kHz
(e). ݅௖ in the simulation at 10kHz
In the simulation, ݅௢௨௧ is 0ߤ‫ܣ‬ at 1Hz, is 0ߤ‫ܣ‬ at 10Hz, is 0.05ߤ‫ܣ‬ at 100Hz, is 0.94ߤ‫ܣ‬ at 1kHz, 9.61ߤ‫ܣ‬ at
10kHz, and 15.2ߤ‫ܣ‬ at 16kHz (figure 8). The difference is:
For 1Hz,
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ
݅௢௨௧ሺ௔௡௔௟௬௧௜௖௔௟ሻ െ ݅௢௨௧ሺ௦௜௠௨௟௔௧௜௢௡ሻ
݅௢௨௧ሺ௔௡௔௟௬௧௜௖௔௟ሻ
ൈ 100%
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ
1.3݉‫ܣ‬ െ 0ߤ‫ܣ‬
1.3݉‫ܣ‬
ൈ 100%
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ
1.3݉‫ܣ‬ െ 0݉‫ܣ‬
1.3݉‫ܣ‬
ൈ 100%
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ
1.3݉‫ܣ‬
1.3݉‫ܣ‬
ൈ 100%
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 100%
Electronusa Mechanical System [Research Center for Electronic and Mechanical]
7 | P a g e
For 10Hz,
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ
݅௢௨௧ሺ௔௡௔௟௬௧௜௖௔௟ሻ െ ݅௢௨௧ሺ௦௜௠௨௟௔௧௜௢௡ሻ
݅௢௨௧ሺ௔௡௔௟௬௧௜௖௔௟ሻ
ൈ 100%
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ
1.3݉‫ܣ‬ െ 0.18ߤ‫ܣ‬
1.3݉‫ܣ‬
ൈ 100%
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ
1.30000݉‫ܣ‬ െ 0.00018݉‫ܣ‬
1.3000݉‫ܣ‬
ൈ 100%
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ
1.29982݉‫ܣ‬
1.3000݉‫ܣ‬
ൈ 100%
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 99.986%
For 100Hz,
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ
݅௢௨௧ሺ௔௡௔௟௬௧௜௖௔௟ሻ െ ݅௢௨௧ሺ௦௜௠௨௟௔௧௜௢௡ሻ
݅௢௨௧ሺ௔௡௔௟௬௧௜௖௔௟ሻ
ൈ 100%
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ
1.3݉‫ܣ‬ െ 2.02ߤ‫ܣ‬
1.3݉‫ܣ‬
ൈ 100%
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ
1.300݉‫ܣ‬ െ 0.00202݉‫ܣ‬
1.3000݉‫ܣ‬
ൈ 100%
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ
1.29798݉‫ܣ‬
1.3000݉‫ܣ‬
ൈ 100%
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 99.84%
For 1kHz,
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ
݅௢௨௧ሺ௔௡௔௟௬௧௜௖௔௟ሻ െ ݅௢௨௧ሺ௦௜௠௨௟௔௧௜௢௡ሻ
݅௢௨௧ሺ௔௡௔௟௬௧௜௖௔௟ሻ
ൈ 100%
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ
1.3݉‫ܣ‬ െ 20.1ߤ‫ܣ‬
1.3݉‫ܣ‬
ൈ 100%
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ
1.3000݉‫ܣ‬ െ 0.0201݉‫ܣ‬
1.3000݉‫ܣ‬
ൈ 100%
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ
1.2799݉‫ܣ‬
1.3000݉‫ܣ‬
ൈ 100%
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 98.45%
For 10kHz,
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ
݅௢௨௧ሺ௔௡௔௟௬௧௜௖௔௟ሻ െ ݅௢௨௧ሺ௦௜௠௨௟௔௧௜௢௡ሻ
݅௢௨௧ሺ௔௡௔௟௬௧௜௖௔௟ሻ
ൈ 100%
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ
1.3݉‫ܣ‬ െ 78.4ߤ‫ܣ‬
1.3݉‫ܣ‬
ൈ 100%
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ
1.3000݉‫ܣ‬ െ 0.0784݉‫ܣ‬
1.3000݉‫ܣ‬
ൈ 100%
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ
1.2216݉‫ܣ‬
1.3000݉‫ܣ‬
ൈ 100%
Electronusa Mechanical System [Research Center for Electronic and Mechanical]
8 | P a g e
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 93.969%
For 16kHz,
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ
݅௢௨௧ሺ௔௡௔௟௬௧௜௖௔௟ሻ െ ݅௢௨௧ሺ௦௜௠௨௟௔௧௜௢௡ሻ
݅௢௨௧ሺ௔௡௔௟௬௧௜௖௔௟ሻ
ൈ 100%
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ
1.3݉‫ܣ‬ െ 82.2ߤ‫ܣ‬
1.3݉‫ܣ‬
ൈ 100%
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ
1.3000݉‫ܣ‬ െ 0.0822݉‫ܣ‬
1.3000݉‫ܣ‬
ൈ 100%
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ
1.2178݉‫ܣ‬
1.3000݉‫ܣ‬
ൈ 100%
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 93.67%
(a) (b) (c)
(d) (e) (f)
Figure 8. (a). ݅௢௨௧ in the simulation at 1Hz
(b). ݅௢௨௧ in the simulation at 10Hz
(c). ݅௢௨௧ in the simulation at 100Hz
(d). ݅௢௨௧ in the simulation at 1kHz
(e). ݅௢௨௧ in the simulation at 10kHz
(f). ݅௢௨௧ in the simulation at 16kHz
In the simulation, ‫ݒ‬௢௨௧ is 0ߤܸ at 1Hz, is 0ߤܸ at 10Hz, is 0.32ߤܸ at 100Hz, is 5.36ߤܸ at 1kHz, is 53.8ߤܸ
at 10kHz, and 85.3ߤܸ at 16kHz (figure 9). The difference is:
For 1Hz,
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ
‫ݒ‬௢௨௧ሺ௔௡௔௟௬௧௜௖௔௟ሻ െ ‫ݒ‬௢௨௧ሺ௦௜௠௨௟௔௧௜௢௡ሻ
‫ݒ‬௢௨௧ሺ௔௡௔௟௬௧௜௖௔௟ሻ
ൈ 100%
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ
993.2ߤܸ െ 0.02ߤܸ
993.2ߤܸ
ൈ 100%
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ
993.18ߤܸ
993.2ߤܸ
ൈ 100%
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 99.99%
Electronusa Mechanical System [Research Center for Electronic and Mechanical]
9 | P a g e
For 10Hz,
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ
‫ݒ‬௢௨௧ሺ௔௡௔௟௬௧௜௖௔௟ሻ െ ‫ݒ‬௢௨௧ሺ௦௜௠௨௟௔௧௜௢௡ሻ
‫ݒ‬௢௨௧ሺ௔௡௔௟௬௧௜௖௔௟ሻ
ൈ 100%
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ
993.2ߤܸ െ 1ߤܸ
993.2ߤܸ
ൈ 100%
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ
992.3ߤܸ
993.2ߤܸ
ൈ 100%
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 99.909%
For 100Hz,
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ
‫ݒ‬௢௨௧ሺ௔௡௔௟௬௧௜௖௔௟ሻ െ ‫ݒ‬௢௨௧ሺ௦௜௠௨௟௔௧௜௢௡ሻ
‫ݒ‬௢௨௧ሺ௔௡௔௟௬௧௜௖௔௟ሻ
ൈ 100%
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ
993.2ߤܸ െ 11.6ߤܸ
993.2ߤܸ
ൈ 100%
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ
981.6ߤܸ
993.2ߤܸ
ൈ 100%
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 98.83%
For 1kHz,
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ
‫ݒ‬௢௨௧ሺ௔௡௔௟௬௧௜௖௔௟ሻ െ ‫ݒ‬௢௨௧ሺ௦௜௠௨௟௔௧௜௢௡ሻ
‫ݒ‬௢௨௧ሺ௔௡௔௟௬௧௜௖௔௟ሻ
ൈ 100%
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ
993.2ߤܸ െ 112ߤܸ
993.2ߤܸ
ൈ 100%
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ
881.2ߤܸ
993.2ߤܸ
ൈ 100%
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 88.72%
For 10kHz,
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ
‫ݒ‬௢௨௧ሺ௔௡௔௟௬௧௜௖௔௟ሻ െ ‫ݒ‬௢௨௧ሺ௦௜௠௨௟௔௧௜௢௡ሻ
‫ݒ‬௢௨௧ሺ௔௡௔௟௬௧௜௖௔௟ሻ
ൈ 100%
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ
993.2ߤܸ െ 439ߤܸ
993.2ߤܸ
ൈ 100%
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ
554.2ߤܸ
993.2ߤܸ
ൈ 100%
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 55.79%
For 16kHz,
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ
‫ݒ‬௢௨௧ሺ௔௡௔௟௬௧௜௖௔௟ሻ െ ‫ݒ‬௢௨௧ሺ௦௜௠௨௟௔௧௜௢௡ሻ
‫ݒ‬௢௨௧ሺ௔௡௔௟௬௧௜௖௔௟ሻ
ൈ 100%
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ
993.2ߤܸ െ 460ߤܸ
993.2ߤܸ
ൈ 100%
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ
533.2ߤܸ
993.2ߤܸ
ൈ 100%
Electronusa Mechanical System [Research Center for Electronic and Mechanical]
10 | P a g e
ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 53.68%
In this study, the simulation shows that the ݅௢௨௧ and ‫ݒ‬௢௨௧ became stable started at 1 kHz.
(a) (b) (c)
(d) (e) (f)
Figure 9. (a). ‫ݒ‬௢௨௧ in the simulation at 1Hz
(b). ‫ݒ‬௢௨௧ in the simulation at 10Hz
(c). ‫ݒ‬௢௨௧ in the simulation at 100Hz
(d). ‫ݒ‬௢௨௧ in the simulation at 1kHz
(e). ‫ݒ‬௢௨௧ in the simulation at 10kHz
(f). ‫ݒ‬௢௨௧ in the simulation at 16kHz

More Related Content

PDF
Electronusa Mechanical System
PDF
Electronusa Mechanical System
PDF
Electronusa Mechanical System
PDF
Electronusa Mechanical System
PDF
Electronusa Mechanical System
PDF
Electronusa Mechanical System
PDF
Electronusa Mechanical System
PDF
Electronusa Mechanical System
Electronusa Mechanical System
Electronusa Mechanical System
Electronusa Mechanical System
Electronusa Mechanical System
Electronusa Mechanical System
Electronusa Mechanical System
Electronusa Mechanical System
Electronusa Mechanical System

What's hot (15)

PDF
Electronusa Mechanical System
PDF
Electronusa Mechanical System
PDF
Electronusa Mechanical System
PDF
Electronusa Mechanical System
PDF
Electronusa Mechanical System
PDF
Electronusa Mechanical System
PDF
Electronusa Mechanica System
PDF
Risk assessment of a hydroelectric dam with parallel
PDF
17.pmsm speed sensor less direct torque control based on ekf
PDF
HYPERCHAOS SYNCHRONIZATION USING GBM
PDF
Risk assessment of a hydroelectric dam with parallel redundant turbine
PDF
Suspension state space controller design-lqr
PDF
Control system compensator lag lead
PDF
ADAPTIVE STABILIZATION AND SYNCHRONIZATION OF HYPERCHAOTIC QI SYSTEM
PDF
Iaetsd position control of servo systems using pid
Electronusa Mechanical System
Electronusa Mechanical System
Electronusa Mechanical System
Electronusa Mechanical System
Electronusa Mechanical System
Electronusa Mechanical System
Electronusa Mechanica System
Risk assessment of a hydroelectric dam with parallel
17.pmsm speed sensor less direct torque control based on ekf
HYPERCHAOS SYNCHRONIZATION USING GBM
Risk assessment of a hydroelectric dam with parallel redundant turbine
Suspension state space controller design-lqr
Control system compensator lag lead
ADAPTIVE STABILIZATION AND SYNCHRONIZATION OF HYPERCHAOTIC QI SYSTEM
Iaetsd position control of servo systems using pid
Ad

Viewers also liked (11)

PDF
12. the impedance matching in the audio signal processing (part vii)
PDF
The Impedance Matching in The Audio Signal Processing (Part III)
PDF
Fluid Contaminant Control as Essential Technique to Implement Proactive Maint...
PDF
10. the impedance matching in the audio signal processing (part v)
PDF
11. the impedance matching in the audio signal processing (part vi)
PDF
14. the impedance matching in the audio signal processing (part ix)
PDF
Electronusa Mechanical System
PDF
Personal branding, la maîtrise parfaite de linkedin
PDF
Martine Rainville – Le droit d’auteur appliqué aux blogues 
12. the impedance matching in the audio signal processing (part vii)
The Impedance Matching in The Audio Signal Processing (Part III)
Fluid Contaminant Control as Essential Technique to Implement Proactive Maint...
10. the impedance matching in the audio signal processing (part v)
11. the impedance matching in the audio signal processing (part vi)
14. the impedance matching in the audio signal processing (part ix)
Electronusa Mechanical System
Personal branding, la maîtrise parfaite de linkedin
Martine Rainville – Le droit d’auteur appliqué aux blogues 
Ad

Similar to Electronusa Mechanical System (17)

PDF
The Influence of Capacitance in The Emitter Follower
PDF
On the dynamic behavior of the current in the condenser of a boost converter ...
PDF
Fault modeling and parametric fault detection in analog VLSI circuits using d...
PDF
40220140501006
PDF
Simulation, bifurcation, and stability analysis of a SEPIC converter control...
PPTX
Indoor Heading Estimation
PDF
Economia01
PDF
Economia01
PDF
Hopfield neural network based selective harmonic elimination for h bridge
PDF
Pwm Control Strategy for Controlling Of Parallel Rectifiers In Single Phase T...
PDF
A New Method for a Nonlinear Acoustic Echo Cancellation System
PDF
Optimization algorithms for steady state analysis of self excited induction g...
PDF
Comparison of Estimated Torques Using Low Pass Filter and Extended Kalman Fil...
PDF
7- 1st semester_BJT_AC_Analysis (re model)-1.pdf
PDF
On tracking control problem for polysolenoid motor model predictive approach
PDF
ICICCE0324
The Influence of Capacitance in The Emitter Follower
On the dynamic behavior of the current in the condenser of a boost converter ...
Fault modeling and parametric fault detection in analog VLSI circuits using d...
40220140501006
Simulation, bifurcation, and stability analysis of a SEPIC converter control...
Indoor Heading Estimation
Economia01
Economia01
Hopfield neural network based selective harmonic elimination for h bridge
Pwm Control Strategy for Controlling Of Parallel Rectifiers In Single Phase T...
A New Method for a Nonlinear Acoustic Echo Cancellation System
Optimization algorithms for steady state analysis of self excited induction g...
Comparison of Estimated Torques Using Low Pass Filter and Extended Kalman Fil...
7- 1st semester_BJT_AC_Analysis (re model)-1.pdf
On tracking control problem for polysolenoid motor model predictive approach
ICICCE0324

More from Electronusa Mechanical System (8)

PDF
Electronusa Mechanical System
PDF
Electronusa Mechanical System
PDF
Electronusa Mechanical System
PDF
Electronusa Mechanical System
PDF
15. the impedance matching in the audio signal processing (part x)
PDF
13. the impedance matching in the audio signal processing (part viii)
PDF
The impedance Matching in The Audio Signal Processing (Part IV)
PDF
The Impedance Matching in The Audio Signal Processing
Electronusa Mechanical System
Electronusa Mechanical System
Electronusa Mechanical System
Electronusa Mechanical System
15. the impedance matching in the audio signal processing (part x)
13. the impedance matching in the audio signal processing (part viii)
The impedance Matching in The Audio Signal Processing (Part IV)
The Impedance Matching in The Audio Signal Processing

Recently uploaded (20)

PDF
Enhancing emotion recognition model for a student engagement use case through...
PDF
gpt5_lecture_notes_comprehensive_20250812015547.pdf
PPTX
observCloud-Native Containerability and monitoring.pptx
PPTX
Group 1 Presentation -Planning and Decision Making .pptx
PDF
NewMind AI Weekly Chronicles – August ’25 Week III
PDF
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
PPTX
Modernising the Digital Integration Hub
PDF
Web App vs Mobile App What Should You Build First.pdf
PPT
What is a Computer? Input Devices /output devices
PDF
From MVP to Full-Scale Product A Startup’s Software Journey.pdf
PDF
WOOl fibre morphology and structure.pdf for textiles
PPTX
TLE Review Electricity (Electricity).pptx
PDF
Microsoft Solutions Partner Drive Digital Transformation with D365.pdf
PDF
project resource management chapter-09.pdf
PDF
Developing a website for English-speaking practice to English as a foreign la...
PPTX
Chapter 5: Probability Theory and Statistics
PDF
A comparative study of natural language inference in Swahili using monolingua...
PDF
Univ-Connecticut-ChatGPT-Presentaion.pdf
PDF
A contest of sentiment analysis: k-nearest neighbor versus neural network
PPT
Module 1.ppt Iot fundamentals and Architecture
Enhancing emotion recognition model for a student engagement use case through...
gpt5_lecture_notes_comprehensive_20250812015547.pdf
observCloud-Native Containerability and monitoring.pptx
Group 1 Presentation -Planning and Decision Making .pptx
NewMind AI Weekly Chronicles – August ’25 Week III
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
Modernising the Digital Integration Hub
Web App vs Mobile App What Should You Build First.pdf
What is a Computer? Input Devices /output devices
From MVP to Full-Scale Product A Startup’s Software Journey.pdf
WOOl fibre morphology and structure.pdf for textiles
TLE Review Electricity (Electricity).pptx
Microsoft Solutions Partner Drive Digital Transformation with D365.pdf
project resource management chapter-09.pdf
Developing a website for English-speaking practice to English as a foreign la...
Chapter 5: Probability Theory and Statistics
A comparative study of natural language inference in Swahili using monolingua...
Univ-Connecticut-ChatGPT-Presentaion.pdf
A contest of sentiment analysis: k-nearest neighbor versus neural network
Module 1.ppt Iot fundamentals and Architecture

Electronusa Mechanical System

  • 1. Electronusa Mechanical System [Research Center for Electronic and Mechanical] 1 | P a g e The Impedance Matching in The Audio Signal Processing Umar Sidik.BEng.MSc* Director of Engineering Electronusa Mechanical System (CTRONICS) *umar.sidik@engineer.com 1. Introduction Commonly, impedance is obstruction to transfer energy in the electronic circuit. Therefore, the impedance matching is required to achieve the maximum power transfer. Furthermore, the impedance matching equalizes the source impedance and load impedance. In other hand, the emitter-follower (common-collector) provides the impedance matching delivered from the base (input) to the emitter (output). The emitter-follower has high input resistance and low output resistance. In the emitter-follower, the input resistance depends on the load resistance, while the output resistance depends on the source resistance. In addition, this study implements the radial electrolytic capacitor 4.7ߤ‫ܨ‬ 16ܸ⁄ . 2. Analytical Work In this study, ܴଵ and ܴଶ form the Thevenin voltage, while ‫ܥ‬ଵ and ‫ܥ‬ଶ deliver ac signal as ‫ݒ‬௜௡ and ‫ݒ‬௢௨௧(figure 1). (a) (b) Figure 1. (a). The concept of circuit analyzed in the study (b). The equivalent circuit 2.1 Analysis of dc First step, we have to calculate the Thevenin’s voltage in figure 1: ்ܸு ൌ ܴଶ ܴଵ ൅ ܴଶ ൈ ܸ஼஼ For this circuit, ܸ஼஼ is 5ܸ, then: ்ܸு ൌ 24݇Ω 10݇Ω ൅ 24݇Ω ൈ 5ܸ ்ܸு 24݇Ω 34݇Ω ൈ 5ܸ ்ܸு ൌ ሺ0.71ሻ ൈ 5ܸ ்ܸு ൌ 3.55ܸ
  • 2. Electronusa Mechanical System [Research Center for Electronic and Mechanical] 2 | P a g e Actually, in this circuit ்ܸு ൌ ܸ஻, so ܸ஻ ൌ 3.55ܸ. The second step, we have to calculate ܸா: ܸா ൌ ܸ஻ െ ܸ஻ா ܸா ൌ 3.55ܸ െ 0.7ܸ ܸா ൌ 2.85ܸ The third step, we have to calculate ‫ܫ‬ா: ‫ܫ‬ா ൌ ܸா ܴா ‫ܫ‬ா ൌ 2.85ܸ 150Ω ‫ܫ‬ா ൌ 19݉‫ܣ‬ 2.2 Analysis of ac In the analysis of ac, we involve the capacitor to pass the ac signal and we also involve the internal resistance of emitter known as ‫ݎ‬௘ (figure 2). (a) (b) Figure 2. (a). The ac circuit (b). The equivalent circuit for ac analysis The first step, we have to calculate ‫ݎ‬௘ in the figure 2: ‫ݎ‬௘ ൌ 25݉‫ݒ‬ ‫ܫ‬ா ‫ݎ‬௘ ൌ 25ܸ݉ 19݉‫ܣ‬ ‫ݎ‬௘ ൌ 1.32Ω The second step, we have to calculate ‫ݎ‬௜௡ሺ௕௔௦௘ሻ: ‫ݎ‬௜௡ሺ௕௔௦௘ሻ ൌ ሺߚ ൅ 1ሻ൫ሺܴଷ ൅ ܴସሻԡ‫ݎ‬௘൯ ‫ݎ‬௜௡ሺ௕௔௦௘ሻ ൌ ሺ200 ൅ 1ሻ൫ሺ150Ω ൅ 8.2Ωሻԡ1.32Ω൯
  • 3. Electronusa Mechanical System [Research Center for Electronic and Mechanical] 3 | P a g e ‫ݎ‬௜௡ሺ௕௔௦௘ሻ ൌ ሺ201ሻ൫ሺ158.2Ωሻԡ1.32Ω൯ ‫ݎ‬௜௡ሺ௕௔௦௘ሻ ൌ ሺ201ሻ ൬ 1 158.2Ω ൅ 1 1.32Ω ൰ ‫ݎ‬௜௡ሺ௕௔௦௘ሻ ൌ ሺ201ሻ ൬ 1.32 208.824Ω ൅ 158.2 208.824Ω ൰ ‫ݎ‬௜௡ሺ௕௔௦௘ሻ ൌ ሺ201ሻ ൬ 159.52 208.824Ω ൰ ‫ݎ‬௜௡ሺ௕௔௦௘ሻ ൌ ሺ201ሻሺ0.764Ωሻ ‫ݎ‬௜௡ሺ௕௔௦௘ሻ ൌ 153.564Ω The third step is to calculate ݅௕: ݅௕ ൌ ‫ݒ‬௜௡ ‫ݎ‬௜௡ሺ௕௔௦௘ሻ ݅௕ ൌ 1ܸ݉ 153.564Ω ݅௕ ൌ 0.0065݉‫ܣ‬ ݅௕ ൌ 6.5ߤ‫ܣ‬ The fourth step is to calculate ݅௖: ݅௖ ൌ ߚ݅௕ ݅௖ ൌ ሺ200ሻሺ0.0065݉‫ܣ‬ሻ ݅௖ ൌ 1.3݉‫ܣ‬ The last step is to calculate ‫ݒ‬௢௨௧: ‫ݒ‬௢௨௧ ൌ ݅௖‫ݎ‬௢௨௧ ‫ݒ‬௢௨௧ ൌ ሺ1.3݉‫ܣ‬ሻሺ0.764Ωሻ ‫ݒ‬௢௨௧ ൌ 0.9932ܸ݉ ‫ݒ‬௢௨௧ ൌ 993.2ߤܸ 3. Simulation Work The simulation work can be classified into the dc analysis and the ac analysis. 3.1 Analysis of dc In the simulation, ்ܸு is 3ܸ (figure 3), while in the analytical work ்ܸு is 3.55ܸ. The different of the analytical work and the simulation work is: ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ ்ܸுሺ௔௡௔௟௬௧௜௖௔௟ሻ െ ்ܸுሺ௦௜௠௨௟௔௧௜௢௡ሻ ்ܸுሺ௔௡௔௟௬௧௜௖௔௟ሻ ൈ 100% ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 3.55ܸ െ 3ܸ 3.55ܸ ൈ 100%
  • 4. Electronusa Mechanical System [Research Center for Electronic and Mechanical] 4 | P a g e ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 0.55ܸ 3.55ܸ ൈ 100% ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 18.33% Figure 3. ்ܸு in the simulation In the simulation, ܸா is 2.25ܸ (figure 4), while in the analytical work ܸா is 2.85ܸ. The different of the analytical work and the simulation work is: ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ ܸாሺ௔௡௔௟௬௧௜௖௔௟ሻ െ ܸாሺ௦௜௠௨௟௔௧௜௢௡ሻ ܸாሺ௔௡௔௟௬௧௜௖௔௟ሻ ൈ 100% ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 2.85ܸ െ 2.25ܸ 2.85ܸ ൈ 100% ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 0.6ܸ 2.85ܸ ൈ 100% ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 21.05% Figure 4. ܸா in the simulation In the simulation, ‫ܫ‬ா is 15݉‫ܣ‬ (figure 5), while in the analytical work ‫ܫ‬ா is 19݉‫.ܣ‬ The difference is: ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ ‫ܫ‬ாሺ௔௡௔௟௬௧௜௖௔௟ሻ െ ‫ܫ‬ாሺ௦௜௠௨௔௧௜௢௡ሻ ‫ܫ‬ாሺ௔௡௔௟௬௧௜௖௔௟ሻ ൈ 100% ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 19݉‫ܣ‬ െ 15݉‫ܣ‬ 19݉‫ܣ‬ ൈ 100% ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 4݉‫ܣ‬ 19݉‫ܣ‬ ൈ 100% ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 21.05%
  • 5. Electronusa Mechanical System [Research Center for Electronic and Mechanical] 5 | P a g e Figure 5. ‫ܫ‬ா in the simulation 3.2 Analysis of ac In the analytical ݅௕ is 6.5ߤ‫ܣ‬ (0.0065݉‫ܣ‬ሻ, while in the simulation ݅௕ is 0.07݉‫ܣ‬ (figure 6). The difference is: ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ ݅௕ሺ௦௜௠௨௟௔௧௜௢௡ሻ െ ݅௕ሺ௔௡௔௟௬௧௜௖௔௟ሻ ݅௕ሺ௦௜௠௨௟௔௧௜௢௡ሻ ൈ 100% ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 0.07݉‫ܣ‬ െ 0.0065݉‫ܣ‬ 0.07݉‫ܣ‬ ൈ 100% ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 0.0635 0.07 ൈ 100% ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 90.71% (a) (b) (c) (d) (e) Figure 6. (a). ݅௕ in the simulation at 1Hz (b). ݅௕ in the simulation at 10Hz (c). ݅௕ in the simulation at 100Hz (d). ݅௕ in the simulation at 1kHz (e). ݅௕ in the simulation at 10kHz
  • 6. Electronusa Mechanical System [Research Center for Electronic and Mechanical] 6 | P a g e In the simulation, ݅௖ is 14.9݉‫ܣ‬ (figure 7), while in the analytical ݅௖ is 1.3݉‫.ܣ‬ The difference is: ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ ݅௖ሺ௦௜௠௨௟௔௧௜௢௡ሻ െ ݅௖ሺ௔௡௔௟௬௧௜௖௔௟ሻ ݅௖ሺ௦௜௠௨௟௔௧௜௢௡ሻ ൈ 100% ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 14.9݉‫ܣ‬ െ 1.3݉‫ܣ‬ 14.9݉‫ܣ‬ ൈ 100% ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 13.6݉‫ܣ‬ 14.9݉‫ܣ‬ ൈ 100% ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 91.275% (a) (b) (c) (d) (e) Figure 7. (a). ݅௖ in the simulation at 1Hz (b). ݅௖ in the simulation at 10Hz (c). ݅௖ in the simulation at 100Hz (d). ݅௖ in the simulation at 1kHz (e). ݅௖ in the simulation at 10kHz In the simulation, ݅௢௨௧ is 0ߤ‫ܣ‬ at 1Hz, is 0ߤ‫ܣ‬ at 10Hz, is 0.05ߤ‫ܣ‬ at 100Hz, is 0.94ߤ‫ܣ‬ at 1kHz, 9.61ߤ‫ܣ‬ at 10kHz, and 15.2ߤ‫ܣ‬ at 16kHz (figure 8). The difference is: For 1Hz, ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ ݅௢௨௧ሺ௔௡௔௟௬௧௜௖௔௟ሻ െ ݅௢௨௧ሺ௦௜௠௨௟௔௧௜௢௡ሻ ݅௢௨௧ሺ௔௡௔௟௬௧௜௖௔௟ሻ ൈ 100% ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 1.3݉‫ܣ‬ െ 0ߤ‫ܣ‬ 1.3݉‫ܣ‬ ൈ 100% ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 1.3݉‫ܣ‬ െ 0݉‫ܣ‬ 1.3݉‫ܣ‬ ൈ 100% ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 1.3݉‫ܣ‬ 1.3݉‫ܣ‬ ൈ 100% ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 100%
  • 7. Electronusa Mechanical System [Research Center for Electronic and Mechanical] 7 | P a g e For 10Hz, ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ ݅௢௨௧ሺ௔௡௔௟௬௧௜௖௔௟ሻ െ ݅௢௨௧ሺ௦௜௠௨௟௔௧௜௢௡ሻ ݅௢௨௧ሺ௔௡௔௟௬௧௜௖௔௟ሻ ൈ 100% ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 1.3݉‫ܣ‬ െ 0.18ߤ‫ܣ‬ 1.3݉‫ܣ‬ ൈ 100% ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 1.30000݉‫ܣ‬ െ 0.00018݉‫ܣ‬ 1.3000݉‫ܣ‬ ൈ 100% ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 1.29982݉‫ܣ‬ 1.3000݉‫ܣ‬ ൈ 100% ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 99.986% For 100Hz, ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ ݅௢௨௧ሺ௔௡௔௟௬௧௜௖௔௟ሻ െ ݅௢௨௧ሺ௦௜௠௨௟௔௧௜௢௡ሻ ݅௢௨௧ሺ௔௡௔௟௬௧௜௖௔௟ሻ ൈ 100% ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 1.3݉‫ܣ‬ െ 2.02ߤ‫ܣ‬ 1.3݉‫ܣ‬ ൈ 100% ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 1.300݉‫ܣ‬ െ 0.00202݉‫ܣ‬ 1.3000݉‫ܣ‬ ൈ 100% ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 1.29798݉‫ܣ‬ 1.3000݉‫ܣ‬ ൈ 100% ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 99.84% For 1kHz, ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ ݅௢௨௧ሺ௔௡௔௟௬௧௜௖௔௟ሻ െ ݅௢௨௧ሺ௦௜௠௨௟௔௧௜௢௡ሻ ݅௢௨௧ሺ௔௡௔௟௬௧௜௖௔௟ሻ ൈ 100% ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 1.3݉‫ܣ‬ െ 20.1ߤ‫ܣ‬ 1.3݉‫ܣ‬ ൈ 100% ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 1.3000݉‫ܣ‬ െ 0.0201݉‫ܣ‬ 1.3000݉‫ܣ‬ ൈ 100% ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 1.2799݉‫ܣ‬ 1.3000݉‫ܣ‬ ൈ 100% ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 98.45% For 10kHz, ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ ݅௢௨௧ሺ௔௡௔௟௬௧௜௖௔௟ሻ െ ݅௢௨௧ሺ௦௜௠௨௟௔௧௜௢௡ሻ ݅௢௨௧ሺ௔௡௔௟௬௧௜௖௔௟ሻ ൈ 100% ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 1.3݉‫ܣ‬ െ 78.4ߤ‫ܣ‬ 1.3݉‫ܣ‬ ൈ 100% ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 1.3000݉‫ܣ‬ െ 0.0784݉‫ܣ‬ 1.3000݉‫ܣ‬ ൈ 100% ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 1.2216݉‫ܣ‬ 1.3000݉‫ܣ‬ ൈ 100%
  • 8. Electronusa Mechanical System [Research Center for Electronic and Mechanical] 8 | P a g e ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 93.969% For 16kHz, ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ ݅௢௨௧ሺ௔௡௔௟௬௧௜௖௔௟ሻ െ ݅௢௨௧ሺ௦௜௠௨௟௔௧௜௢௡ሻ ݅௢௨௧ሺ௔௡௔௟௬௧௜௖௔௟ሻ ൈ 100% ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 1.3݉‫ܣ‬ െ 82.2ߤ‫ܣ‬ 1.3݉‫ܣ‬ ൈ 100% ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 1.3000݉‫ܣ‬ െ 0.0822݉‫ܣ‬ 1.3000݉‫ܣ‬ ൈ 100% ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 1.2178݉‫ܣ‬ 1.3000݉‫ܣ‬ ൈ 100% ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 93.67% (a) (b) (c) (d) (e) (f) Figure 8. (a). ݅௢௨௧ in the simulation at 1Hz (b). ݅௢௨௧ in the simulation at 10Hz (c). ݅௢௨௧ in the simulation at 100Hz (d). ݅௢௨௧ in the simulation at 1kHz (e). ݅௢௨௧ in the simulation at 10kHz (f). ݅௢௨௧ in the simulation at 16kHz In the simulation, ‫ݒ‬௢௨௧ is 0ߤܸ at 1Hz, is 0ߤܸ at 10Hz, is 0.32ߤܸ at 100Hz, is 5.36ߤܸ at 1kHz, is 53.8ߤܸ at 10kHz, and 85.3ߤܸ at 16kHz (figure 9). The difference is: For 1Hz, ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ ‫ݒ‬௢௨௧ሺ௔௡௔௟௬௧௜௖௔௟ሻ െ ‫ݒ‬௢௨௧ሺ௦௜௠௨௟௔௧௜௢௡ሻ ‫ݒ‬௢௨௧ሺ௔௡௔௟௬௧௜௖௔௟ሻ ൈ 100% ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 993.2ߤܸ െ 0.02ߤܸ 993.2ߤܸ ൈ 100% ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 993.18ߤܸ 993.2ߤܸ ൈ 100% ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 99.99%
  • 9. Electronusa Mechanical System [Research Center for Electronic and Mechanical] 9 | P a g e For 10Hz, ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ ‫ݒ‬௢௨௧ሺ௔௡௔௟௬௧௜௖௔௟ሻ െ ‫ݒ‬௢௨௧ሺ௦௜௠௨௟௔௧௜௢௡ሻ ‫ݒ‬௢௨௧ሺ௔௡௔௟௬௧௜௖௔௟ሻ ൈ 100% ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 993.2ߤܸ െ 1ߤܸ 993.2ߤܸ ൈ 100% ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 992.3ߤܸ 993.2ߤܸ ൈ 100% ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 99.909% For 100Hz, ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ ‫ݒ‬௢௨௧ሺ௔௡௔௟௬௧௜௖௔௟ሻ െ ‫ݒ‬௢௨௧ሺ௦௜௠௨௟௔௧௜௢௡ሻ ‫ݒ‬௢௨௧ሺ௔௡௔௟௬௧௜௖௔௟ሻ ൈ 100% ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 993.2ߤܸ െ 11.6ߤܸ 993.2ߤܸ ൈ 100% ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 981.6ߤܸ 993.2ߤܸ ൈ 100% ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 98.83% For 1kHz, ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ ‫ݒ‬௢௨௧ሺ௔௡௔௟௬௧௜௖௔௟ሻ െ ‫ݒ‬௢௨௧ሺ௦௜௠௨௟௔௧௜௢௡ሻ ‫ݒ‬௢௨௧ሺ௔௡௔௟௬௧௜௖௔௟ሻ ൈ 100% ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 993.2ߤܸ െ 112ߤܸ 993.2ߤܸ ൈ 100% ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 881.2ߤܸ 993.2ߤܸ ൈ 100% ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 88.72% For 10kHz, ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ ‫ݒ‬௢௨௧ሺ௔௡௔௟௬௧௜௖௔௟ሻ െ ‫ݒ‬௢௨௧ሺ௦௜௠௨௟௔௧௜௢௡ሻ ‫ݒ‬௢௨௧ሺ௔௡௔௟௬௧௜௖௔௟ሻ ൈ 100% ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 993.2ߤܸ െ 439ߤܸ 993.2ߤܸ ൈ 100% ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 554.2ߤܸ 993.2ߤܸ ൈ 100% ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 55.79% For 16kHz, ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ ‫ݒ‬௢௨௧ሺ௔௡௔௟௬௧௜௖௔௟ሻ െ ‫ݒ‬௢௨௧ሺ௦௜௠௨௟௔௧௜௢௡ሻ ‫ݒ‬௢௨௧ሺ௔௡௔௟௬௧௜௖௔௟ሻ ൈ 100% ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 993.2ߤܸ െ 460ߤܸ 993.2ߤܸ ൈ 100% ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 533.2ߤܸ 993.2ߤܸ ൈ 100%
  • 10. Electronusa Mechanical System [Research Center for Electronic and Mechanical] 10 | P a g e ሺ%ሻ݂݂݀݅݁‫݁ܿ݊݁ݎ‬ ൌ 53.68% In this study, the simulation shows that the ݅௢௨௧ and ‫ݒ‬௢௨௧ became stable started at 1 kHz. (a) (b) (c) (d) (e) (f) Figure 9. (a). ‫ݒ‬௢௨௧ in the simulation at 1Hz (b). ‫ݒ‬௢௨௧ in the simulation at 10Hz (c). ‫ݒ‬௢௨௧ in the simulation at 100Hz (d). ‫ݒ‬௢௨௧ in the simulation at 1kHz (e). ‫ݒ‬௢௨௧ in the simulation at 10kHz (f). ‫ݒ‬௢௨௧ in the simulation at 16kHz